Skip to content
GitLab
Menu
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Anthony Larcher
evALLIES
Commits
0f6a9bdf
Commit
0f6a9bdf
authored
Jun 08, 2021
by
Anthony Larcher
Browse files
cleaning
parent
fe8e0dd1
Changes
1
Hide whitespace changes
Inline
Side-by-side
lium_baseline/system.py
View file @
0f6a9bdf
...
...
@@ -84,7 +84,7 @@ def init_clustering(init_diar, cep, model_cfg, vad_type="none"):
"""
# Bic_lin is only applied when starting from a VAD segmentation or from UEM
if
model_cfg
[
"model"
][
"vad"
][
"
type
"
]
!=
"reference"
:
if
vad_
type
!=
"reference"
:
output_diar
=
bic_linear_segmentation
(
init_diar
,
cep
,
model_cfg
)
else
:
output_diar
=
init_diar
...
...
@@ -94,7 +94,7 @@ def init_clustering(init_diar, cep, model_cfg, vad_type="none"):
output_diar
=
cluster
.
perform
()
# Viterbi devoding is only applied when starting from a VAD segmentation or from scratch
if
model_cfg
[
"model"
][
"vad"
][
"
type
"
]
!=
"reference"
:
if
vad_
type
!=
"reference"
:
output_diar
=
s4d
.
viterbi
.
viterbi_decoding
(
cep
,
output_diar
,
model_cfg
[
'first_seg'
][
'thr_vit'
])
return
output_diar
...
...
@@ -135,14 +135,15 @@ def vec2link_xv(model_cfg, xv_vec, current_diar):
check_missing
=
False
)
# Use 2 gaussian to shift the scores
if
scores
.
modelset
.
shape
[
0
]
>
2
:
th_w
=
customize_threshold
(
scores
,
th_w
)
#
if scores.modelset.shape[0] > 2:
#
th_w = customize_threshold(scores, th_w)
scores
.
scoremat
=
0.5
*
(
scores
.
scoremat
+
scores
.
scoremat
.
transpose
())
# Make the cluster names consistent
for
idx
in
range
(
len
(
scores
.
modelset
)):
scores
.
modelset
[
idx
]
=
current_diar
[
idx
][
"cluster"
]
#scores.modelset[idx] = current_diar[idx]["cluster"]
scores
.
modelset
[
idx
]
=
xv_vec
.
modelset
[
idx
]
######################################################################################
# MODIFIED AS WE NOW USE COSINE SIMILARITIES
...
...
@@ -305,8 +306,8 @@ def perform_second_seg(model,
scores
.
scoremat
=
0.5
*
(
scores
.
scoremat
+
scores
.
scoremat
.
transpose
())
# Calibration
if
scores
.
modelset
.
shape
[
0
]
>
2
:
th_w
=
customize_threshold
(
scores
,
th_w
)
#
if scores.modelset.shape[0] > 2:
#
th_w = customize_threshold(scores, th_w)
# Run HAC clustering
print
(
f
"Avant HAC : len(diar)=
{
len
(
initial_diar
.
unique
(
'cluster'
))
}
, min et max scores:
{
scores
.
scoremat
.
min
()
}
et
{
scores
.
scoremat
.
max
()
}
, th =
{
th_w
}
"
)
...
...
@@ -794,7 +795,6 @@ def allies_init_seg(model, model_cfg, show, data_folder, verbose=False):
init_diar
.
pad
(
15
)
init_diar
.
pack
(
25
)
init_diar
.
pack
(
25
)
# Run the first pass of segmentation
logger
.
info
(
"
\t
* run 1st clustering"
)
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment