xvector.py 88.8 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
25
Copyright 2014-2021 Anthony Larcher, Yevhenii Prokopalo
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28

Anthony Larcher's avatar
Anthony Larcher committed
29
import logging
Anthony Larcher's avatar
debug    
Anthony Larcher committed
30
import math
Anthony Larcher's avatar
Anthony Larcher committed
31
import os
Anthony Larcher's avatar
Anthony Larcher committed
32
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
33
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
34
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
35
import shutil
Anthony Larcher's avatar
Anthony Larcher committed
36
import tabulate
37
import time
Anthony Larcher's avatar
Anthony Larcher committed
38
import torch
Anthony Larcher's avatar
debug    
Anthony Larcher committed
39
import torchaudio
Anthony Larcher's avatar
Anthony Larcher committed
40
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
41
42
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
43
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
44
45
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
46
47
48
from .pooling import MeanStdPooling
from .pooling import AttentivePooling
from .pooling import GruPooling
Anthony Larcher's avatar
Anthony Larcher committed
49
50
51
from .preprocessor import MfccFrontEnd
from .preprocessor import MelSpecFrontEnd
from .preprocessor import RawPreprocessor
Anthony Larcher's avatar
Anthony Larcher committed
52
from .xsets import SideSet
Anthony Larcher's avatar
Anthony Larcher committed
53
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
54
from .xsets import IdMapSetPerSpeaker
Anthony Larcher's avatar
Anthony Larcher committed
55
from .xsets import SideSampler
Anthony Larcher's avatar
Anthony Larcher committed
56
57
58
59
from .res_net import ResBlockWFMS
from .res_net import ResBlock
from .res_net import PreResNet34
from .res_net import PreFastResNet34
Anthony Larcher's avatar
Anthony Larcher committed
60
from ..bosaris import IdMap
Anthony Larcher's avatar
Anthony Larcher committed
61
62
from ..bosaris import Key
from ..bosaris import Ndx
Anthony Larcher's avatar
Anthony Larcher committed
63
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
64
from ..iv_scoring import cosine_scoring
Anthony Larcher's avatar
Anthony Larcher committed
65
from .sincnet import SincNet
Anthony Larcher's avatar
merge    
Anthony Larcher committed
66
from ..bosaris.detplot import rocch, rocch2eer
Anthony Larcher's avatar
merge    
Anthony Larcher committed
67
from .loss import SoftmaxAngularProto, ArcLinear
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
68
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
69
from .loss import ArcMarginProduct
Anthony Larcher's avatar
Anthony Larcher committed
70

Anthony Larcher's avatar
Anthony Larcher committed
71
from ..sidekit_io import init_logging
Anthony Larcher's avatar
ddp    
Anthony Larcher committed
72

Anthony Larcher's avatar
Anthony Larcher committed
73
74
torch.backends.cudnn.benchmark = True

Anthony Larcher's avatar
Anthony Larcher committed
75
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
76

Anthony Larcher's avatar
Anthony Larcher committed
77
78
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
79
__copyright__ = "Copyright 2015-2021 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
80
81
82
83
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
84
85


Anthony Larcher's avatar
Anthony Larcher committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
def eer(negatives, positives):
    """Logarithmic complexity EER computation

    Args:
        negative_scores (numpy array): impostor scores
        positive_scores (numpy array): genuine scores

    Returns:
        float: Equal Error Rate (EER)
    """

    positives = numpy.sort(positives)
    negatives = numpy.sort(negatives)[::-1]

    pos_count = positives.shape[0]
    neg_count = negatives.shape[0]

    p_score = positives[0]
    n_score = negatives[0]

    p_index = 0
    n_index = 0

    next_p_jump = pos_count//2
    next_n_jump = neg_count//2

    kdx = 0
    while True:
        kdx += 1
        if p_index < 0 or n_index < 0:
            return 0
        if p_index > pos_count or n_index > neg_count:
            return 100
        if p_score < n_score:
            p_index = p_index + next_p_jump
            n_index = n_index + next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break
        elif p_score >= n_score:
            p_index = p_index - next_p_jump
            n_index = n_index - next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break

        p_score = positives[p_index]
        n_score = negatives[n_index]
        next_p_jump = next_p_jump//2
        next_n_jump = next_n_jump//2

    eer_predicate = 100

    tfr = (abs(p_index))/pos_count
    tfa = (1+abs(n_index))/neg_count
    if (p_score == n_score and tfr == tfa):
        return tfr

    while positives[p_index] < negatives[n_index]:
        if p_index < pos_count - 1:
            p_index += 1
        elif n_index < neg_count - 1:
            n_index += 1
        else:
            break

    while positives[p_index] > negatives[n_index] and n_index >= 1:
        n_index -= 1

    tfr = (1+p_index)/pos_count
    tfa = (1+n_index)/neg_count

    while tfa > tfr:
        p_index += 1
        while positives[p_index] > negatives[n_index] and n_index >= 1:
            n_index -= 1
        tfr = (1+p_index)/pos_count
        tfa = (1+n_index)/neg_count

    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    tfr = p_index/pos_count
    tfa = (1+n_index)/neg_count
    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    while True:
        while negatives[n_index + 1] <= positives[p_index - 1]:
            p_index -= 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer
        while negatives[n_index + 1] > positives[p_index - 1]:
            n_index += 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer

    return eer


Anthony Larcher's avatar
debug    
Anthony Larcher committed
200
201
def test_metrics(model,
                 device,
Anthony Larcher's avatar
Anthony Larcher committed
202
                 speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
203
204
                 num_thread,
                 mixed_precision):
Anthony Larcher's avatar
Anthony Larcher committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
Anthony Larcher's avatar
Anthony Larcher committed
221

Anthony Larcher's avatar
Anthony Larcher committed
222
223
224
225
    idmap_test_filename = '/lium/raid01_c/larcher/data/allies_dev_verif_idmap.h5'
    ndx_test_filename = '/lium/raid01_c/larcher/data/allies_dev_verif_ndx.h5'
    key_test_filename = '/lium/raid01_c/larcher/data/allies_dev_verif_key.h5'
    data_root_name='/lium/corpus/base/ALLIES/wav'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
226

227
    transform_pipeline = dict()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
228
229
230
231
232

    xv_stat = extract_embeddings(idmap_name=idmap_test_filename,
                                 model_filename=model,
                                 data_root_name=data_root_name,
                                 device=device,
Anthony Larcher's avatar
Anthony Larcher committed
233
                                 loss="aam",
Anthony Larcher's avatar
Anthony Larcher committed
234
235
                                 transform_pipeline=transform_pipeline,
                                 num_thread=num_thread,
Anthony Larcher's avatar
Anthony Larcher committed
236
                                 mixed_precision=mixed_precision)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
237

Anthony Larcher's avatar
merge    
Anthony Larcher committed
238
239
240
241
242
243
244
    tar, non = cosine_scoring(xv_stat,
                              xv_stat,
                              Ndx(ndx_test_filename),
                              wccn=None,
                              check_missing=True,
                              device=device
                              ).get_tar_non(Key(key_test_filename))
Anthony Larcher's avatar
debug    
Anthony Larcher committed
245

Anthony Larcher's avatar
merge    
Anthony Larcher committed
246
247
248
249
    #test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))
    pmiss, pfa = rocch(tar, non)

    return rocch2eer(pmiss, pfa)
Anthony Larcher's avatar
Anthony Larcher committed
250

Anthony Larcher's avatar
Anthony Larcher committed
251
def new_test_metrics(model,
Anthony Larcher's avatar
Anthony Larcher committed
252
253
254
                     device,
                     data_opts,
                     train_opts):
Anthony Larcher's avatar
Anthony Larcher committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
    transform_pipeline = dict()

Anthony Larcher's avatar
Anthony Larcher committed
273
    xv_stat = extract_embeddings(idmap_name=data_opts["test"]["idmap"],
Anthony Larcher's avatar
Anthony Larcher committed
274
                                 model_filename=model,
Anthony Larcher's avatar
Anthony Larcher committed
275
                                 data_root_name=data_opts["test"]["data_path"],
Anthony Larcher's avatar
Anthony Larcher committed
276
277
278
                                 device=device,
                                 loss=model.loss,
                                 transform_pipeline=transform_pipeline,
Anthony Larcher's avatar
Anthony Larcher committed
279
                                 num_thread=train_opts["num_cpu"],
Anthony Larcher's avatar
Anthony Larcher committed
280
281
282
283
                                 mixed_precision=train_opts["mixed_precision"])

    tar, non = cosine_scoring(xv_stat,
                              xv_stat,
Anthony Larcher's avatar
Anthony Larcher committed
284
                              Ndx(data_opts["test"]["ndx"]),
Anthony Larcher's avatar
Anthony Larcher committed
285
286
287
                              wccn=None,
                              check_missing=True,
                              device=device
Anthony Larcher's avatar
Anthony Larcher committed
288
                              ).get_tar_non(Key(data_opts["test"]["key"]))
Anthony Larcher's avatar
Anthony Larcher committed
289
290
291
292
293
294

    #test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))
    pmiss, pfa = rocch(tar, non)

    return rocch2eer(pmiss, pfa)

Anthony Larcher's avatar
Anthony Larcher committed
295

Anthony Larcher's avatar
Anthony Larcher committed
296
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
297
298
299
300
301
302
303
304
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
305
306
307
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
308

Anthony Larcher's avatar
Anthony Larcher committed
309

Anthony Larcher's avatar
Anthony Larcher committed
310
class TrainingMonitor():
Anthony Larcher's avatar
Anthony Larcher committed
311
    """
Anthony Larcher's avatar
Anthony Larcher committed
312

Anthony Larcher's avatar
Anthony Larcher committed
313
    """
Anthony Larcher's avatar
Anthony Larcher committed
314
    def __init__(self,
Anthony Larcher's avatar
Anthony Larcher committed
315
                 output_file,
Anthony Larcher's avatar
Anthony Larcher committed
316
                 log_interval=10,
Anthony Larcher's avatar
Anthony Larcher committed
317
318
                 patience=numpy.inf,
                 best_accuracy=0.0,
Anthony Larcher's avatar
Anthony Larcher committed
319
                 best_eer_epoch=1,
Anthony Larcher's avatar
Anthony Larcher committed
320
321
322
                 best_eer=100,
                 compute_test_eer=False
                 ):
Anthony Larcher's avatar
Anthony Larcher committed
323

Anthony Larcher's avatar
Anthony Larcher committed
324
        self.current_epoch = 0
Anthony Larcher's avatar
Anthony Larcher committed
325
        self.log_interval = log_interval
Anthony Larcher's avatar
Anthony Larcher committed
326
327
328
        self.init_patience = patience
        self.current_patience = patience
        self.best_accuracy = best_accuracy
Anthony Larcher's avatar
Anthony Larcher committed
329
        self.best_eer_epoch = best_eer_epoch
Anthony Larcher's avatar
Anthony Larcher committed
330
        self.best_eer = best_eer
Anthony Larcher's avatar
Anthony Larcher committed
331
        self.compute_test_eer = compute_test_eer
Anthony Larcher's avatar
Anthony Larcher committed
332
        self.test_eer = []
Anthony Larcher's avatar
Anthony Larcher committed
333
334
335
336

        self.training_loss = []
        self.training_acc = []

Anthony Larcher's avatar
Anthony Larcher committed
337
338
        self.val_loss = []
        self.val_acc = []
Anthony Larcher's avatar
Anthony Larcher committed
339
340
        self.val_eer = []

Anthony Larcher's avatar
Anthony Larcher committed
341
342
        self.is_best = True

Anthony Larcher's avatar
Anthony Larcher committed
343
        # Initialize the logger
Anthony Larcher's avatar
Anthony Larcher committed
344
        logging_format = '%(asctime)-15s %(message)s'
Anthony Larcher's avatar
Anthony Larcher committed
345
        logging.basicConfig(level=logging.DEBUG, format=logging_format, datefmt='%m-%d %H:%M')
Anthony Larcher's avatar
Anthony Larcher committed
346
347
        logger = logging.getLogger('Monitoring')
        logger.setLevel(logging.DEBUG)
Anthony Larcher's avatar
Anthony Larcher committed
348
349
        # create file handler which logs even debug messages
        fh = logging.FileHandler(output_file)
Anthony Larcher's avatar
Anthony Larcher committed
350
351
        formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
        fh.setFormatter(formatter)
Anthony Larcher's avatar
Anthony Larcher committed
352
        fh.setLevel(logging.DEBUG)
Anthony Larcher's avatar
Anthony Larcher committed
353

Anthony Larcher's avatar
Anthony Larcher committed
354
355
356
357
358
359
    def display(self):
        """

        :return:
        """
        # TODO
Anthony Larcher's avatar
Anthony Larcher committed
360
361
        self.logger.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Training metrics - Cross validation accuracy = {val_acc} %, EER = {val_eer * 100} %")
        self.logger.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Training metrics - Test EER = {test_eer * 100} %")
Anthony Larcher's avatar
Anthony Larcher committed
362
363
364
365
366
367

    def display_final(self):
        """

        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
368
        self.logger.critical(f"Best accuracy {self.best_accuracy * 100.} obtained at epoch {self.best_accuracy_epoch}")
Anthony Larcher's avatar
Anthony Larcher committed
369
370

    def update(self,
Anthony Larcher's avatar
Anthony Larcher committed
371
               epoch=None,
Anthony Larcher's avatar
Anthony Larcher committed
372
373
               training_acc=None,
               training_loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
374
375
376
377
378
               test_eer=None,
               val_eer=None,
               val_loss=None,
               val_acc=None):

Anthony Larcher's avatar
Anthony Larcher committed
379
380
381
        if epoch is not None:
            self.current_epoch = epoch
        if training_acc is not None:
Anthony Larcher's avatar
Anthony Larcher committed
382
            self.training_acc.append(training_acc)
Anthony Larcher's avatar
Anthony Larcher committed
383
        if training_loss is not None:
Anthony Larcher's avatar
Anthony Larcher committed
384
            self.training_loss.append(training_loss)
Anthony Larcher's avatar
Anthony Larcher committed
385
        if val_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
386
            self.val_eer.append(val_eer)
Anthony Larcher's avatar
Anthony Larcher committed
387
        if val_loss is not None:
Anthony Larcher's avatar
Anthony Larcher committed
388
            self.val_loss.append(val_loss)
Anthony Larcher's avatar
Anthony Larcher committed
389
        if val_acc is not None:
Anthony Larcher's avatar
Anthony Larcher committed
390
            self.val_acc.append(val_acc)
Anthony Larcher's avatar
Anthony Larcher committed
391
392

        # remember best accuracy and save checkpoint
Anthony Larcher's avatar
Anthony Larcher committed
393
        if self.compute_test_eer and test_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
394
395
396
            self.test_eer.append(test_eer)
            self.is_best = test_eer < self.best_eer
            self.best_eer = min(test_eer, self.best_eer)
Anthony Larcher's avatar
Anthony Larcher committed
397
398
399
400
401
            if self.is_best:
                self.best_eer_epoch = epoch
                self.current_patience = self.init_patience
            else:
                self.current_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
402
        elif val_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
403
404
            self.is_best = val_eer < self.best_eer
            self.best_eer = min(val_eer, self.best_eer)
Anthony Larcher's avatar
Anthony Larcher committed
405
406
407
408
409
            if self.is_best:
                self.best_eer_epoch = epoch
                self.current_patience = self.init_patience
            else:
                self.current_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
410
411


Anthony Larcher's avatar
Anthony Larcher committed
412
class Xtractor(torch.nn.Module):
413
414
415
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
416

Anthony Larcher's avatar
Anthony Larcher committed
417
418
419
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
420
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
421
                 norm_embedding=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
422
423
                 aam_margin=0.2,
                 aam_s=30):
Anthony Larcher's avatar
Anthony Larcher committed
424
425
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
426
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
427
        """
Anthony Larcher's avatar
Anthony Larcher committed
428
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
429
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
430
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
431
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
432

Anthony Larcher's avatar
Anthony Larcher committed
433
434
        print(f"Speaker number : {self.speaker_number}")

Anthony Larcher's avatar
Anthony Larcher committed
435
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
436

Anthony Larcher's avatar
Anthony Larcher committed
437
438
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
439
440
441
442
443
            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
444
445
            self.activation = torch.nn.LeakyReLU(0.2)

Anthony Larcher's avatar
Anthony Larcher committed
446
            self.preprocessor = MfccFrontEnd()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
447
            self.feature_size = self.preprocessor.n_mfcc
Anthony Larcher's avatar
Anthony Larcher committed
448

Anthony Larcher's avatar
xv    
Anthony Larcher committed
449
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
450
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
451
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
452
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
453
454
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
455
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
456
457
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
458
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
459
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
460
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
461
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
462
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
463
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
464
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
465
466
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
467
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
468
            self.stat_pooling_weight_decay = 0
Anthony Larcher's avatar
xv    
Anthony Larcher committed
469
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
470
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
471
472
            ]))

473
474
            self.embedding_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
475
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
476
477
478
479
480
                self.after_speaker_embedding = ArcMarginProduct(512,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)
Anthony Larcher's avatar
Anthony Larcher committed
481
482
483
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
484
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
485
486
487
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
488
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
489
490
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
491

492
            self.preprocessor_weight_decay = 0.0002
Anthony Larcher's avatar
debug    
Anthony Larcher committed
493
494
495
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002
496
            self.embedding_size = 512
Anthony Larcher's avatar
Anthony Larcher committed
497

Anthony Larcher's avatar
Anthony Larcher committed
498
        elif model_archi == "resnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
499

Anthony Larcher's avatar
Anthony Larcher committed
500
            self.preprocessor = MelSpecFrontEnd(n_mels=80)
Anthony Larcher's avatar
Anthony Larcher committed
501
            self.sequence_network = PreResNet34()
Anthony Larcher's avatar
Anthony Larcher committed
502
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
503

Anthony Larcher's avatar
Anthony Larcher committed
504
505
            self.before_speaker_embedding = torch.nn.Linear(in_features=5120,
                                                            out_features=self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
506
507
508
509

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

510
            self.loss = "aam"
Anthony Larcher's avatar
Anthony Larcher committed
511
            self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
Anthony Larcher's avatar
Anthony Larcher committed
512
513
                                                            int(self.speaker_number),
                                                            s = 30.0,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
514
                                                            m = 0.20,
Anthony Larcher's avatar
Anthony Larcher committed
515
                                                            easy_margin = False)
Anthony Larcher's avatar
Anthony Larcher committed
516
517
518
519
520
521
522

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
523
        elif model_archi == "fastresnet34":
Anthony Larcher's avatar
Anthony Larcher committed
524
            self.preprocessor = MelSpecFrontEnd()
Anthony Larcher's avatar
Anthony Larcher committed
525
            self.sequence_network = PreFastResNet34()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
526
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
527

Anthony Larcher's avatar
Anthony Larcher committed
528
            self.before_speaker_embedding = torch.nn.Linear(in_features = 2560,
Anthony Larcher's avatar
Anthony Larcher committed
529
                                                            out_features = self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
530
531
532
533

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

Anthony Larcher's avatar
merge    
Anthony Larcher committed
534
535
536
537
            self.loss = loss
            if self.loss == "aam":
                self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
                                                                int(self.speaker_number),
Anthony Larcher's avatar
merge    
Anthony Larcher committed
538
539
                                                                s = 30,
                                                                m = 0.2,
Anthony Larcher's avatar
merge    
Anthony Larcher committed
540
541
542
543
                                                                easy_margin = False)

            elif self.loss == 'aps':
                self.after_speaker_embedding = SoftmaxAngularProto(int(self.speaker_number))
Anthony Larcher's avatar
Anthony Larcher committed
544

Anthony Larcher's avatar
Anthony Larcher committed
545
546
547
548
549
            self.preprocessor_weight_decay = 0.00002
            self.sequence_network_weight_decay = 0.00002
            self.stat_pooling_weight_decay = 0.00002
            self.before_speaker_embedding_weight_decay = 0.00002
            self.after_speaker_embedding_weight_decay = 0.0002
Anthony Larcher's avatar
Anthony Larcher committed
550

Anthony Larcher's avatar
Anthony Larcher committed
551
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
552
553
554
555
556
557

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
558
559
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
560
561
562
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
563
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
564
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
565
566
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
584
585
586
587
588
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
589
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
590
591
592
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
593

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
594
595
596
597
598
599
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
600
        else:
Anthony Larcher's avatar
Anthony Larcher committed
601
602
            is_first_resblock = True

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
603
604
605
606
607
608
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
609

Anthony Larcher's avatar
Anthony Larcher committed
610
            self.loss = cfg["loss"]["type"]
Anthony Larcher's avatar
Anthony Larcher committed
611
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
612
613
                self.aam_margin = cfg["loss"]["aam_margin"]
                self.aam_s = cfg["loss"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
614

Anthony Larcher's avatar
Anthony Larcher committed
615
616
617
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
618
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
619
620
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
621
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
622
623
624
625
626
627
628
629
630
631
632
633
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
634
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
635
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
636
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
637
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
638
639
640
641
642
643
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
644
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
645
646

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
647
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
648
            """
Anthony Larcher's avatar
Anthony Larcher committed
649
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
650
            if self.feature_size is None:
Anthony Larcher's avatar
Anthony Larcher committed
651
                self.feature_size = cfg["preprocessor"]["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
652

Anthony Larcher's avatar
Anthony Larcher committed
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
668
669
670
671
672
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

Anthony Larcher's avatar
Anthony Larcher committed
673
674
675
676
677
                elif k.startswith("conv2D"):
                    segmental_layers.append((k, torch.nn.Conv2d(in_channels=1,
                                                                out_channels=entry_conv_out_channels,
                                                                kernel_size=entry_conv_kernel_size,
                                                                padding=3,
Anthony Larcher's avatar
Anthony Larcher committed
678
                                                                stride=1)))
Anthony Larcher's avatar
Anthony Larcher committed
679

Anthony Larcher's avatar
Anthony Larcher committed
680
                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
681
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
682
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
683
684
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
685
686
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
687
688
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
689
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
690
691
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
692
693
694
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
695
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
696
697
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
698
699
700
701
702
703
                elif k.startswith('resblock'):
                    segmental_layers.append((ResBlock(cfg["segmental"][k]["input_channel"],
                                                      cfg["segmental"][k]["output_channel"],
                                                      is_first_resblock)))
                    is_first_resblock = False

Anthony Larcher's avatar
Anthony Larcher committed
704
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
705
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
706

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
707
708
709
710
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
711
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
712
713
714
715
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
716
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
717

Anthony Larcher's avatar
Anthony Larcher committed
718
719
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
720
            """
Anthony Larcher's avatar
Anthony Larcher committed
721
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
722
            """
Anthony Larcher's avatar
Anthony Larcher committed
723
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
724
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
725
726
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
727
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
728
729
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
730
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
731
732
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
733
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
734
735

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
736
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
737

Anthony Larcher's avatar
Anthony Larcher committed
738
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
739
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
740
741

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
742
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
743

Anthony Larcher's avatar
Anthony Larcher committed
744
            self.embedding_size = input_size
Anthony Larcher's avatar
Anthony Larcher committed
745
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
746
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
747

Anthony Larcher's avatar
Anthony Larcher committed
748
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
749
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
750
751
752
753
754
755
756
757
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
758
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
759
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
760

Anthony Larcher's avatar
Anthony Larcher committed
761
762
763
764
765
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
766

Anthony Larcher's avatar
Anthony Larcher committed
767
768
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
769

Anthony Larcher's avatar
Anthony Larcher committed
770
771
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
772

Anthony Larcher's avatar
Anthony Larcher committed
773
774
775
776
777
778
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
779
780
781
782
783
784
785
                self.norm_embedding = True
                self.after_speaker_embedding = ArcMarginProduct(input_size,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)

Anthony Larcher's avatar
Anthony Larcher committed
786
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
787

788
    def forward(self, x, is_eval=False, target=None, extract_after_pooling=False):
789
790
791
        """

        :param x:
792
        :param is_eval: False for training
793
794
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
795
796
797
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
798
        x = self.sequence_network(x)
799

Anthony Larcher's avatar
Anthony Larcher committed
800
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
801
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
802

803
804
805
        if extract_after_pooling:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
806
        x = self.before_speaker_embedding(x)
807

Anthony Larcher's avatar
Anthony Larcher committed
808
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
809
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
810

Anthony Larcher's avatar
Anthony Larcher committed
811
        if self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
812
            if is_eval:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
813
                return x
Anthony Larcher's avatar
debug    
Anthony Larcher committed
814
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
815
                return self.after_speaker_embedding(x), x
Anthony Larcher's avatar
Anthony Larcher committed
816

Anthony Larcher's avatar
merge    
Anthony Larcher committed
817
        elif self.loss in ['aam', 'aps']:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
818
819
            if is_eval:
                x = torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
820
            else:
Anthony Larcher's avatar
merge    
Anthony Larcher committed
821
                x = self.after_speaker_embedding(x, target=target), torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
822

Anthony Larcher's avatar
Anthony Larcher committed
823
        return x
Anthony Larcher's avatar
Anthony Larcher committed
824

825
826
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
827
828
829
830
831
832
833
834
835
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
836

Anthony Larcher's avatar
Anthony Larcher committed
837

Anthony Larcher's avatar
Anthony Larcher committed
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
def fill_dict(target_dict, source_dict, prefix = ""):
    """
    Recursively Fill a dictionary target_dict by taking values from source_dict

    :param target_dict: output dictionary that is initialized with default values
    :param source_dict: input dictionary
    :return:
    """
    for k1, v1 in target_dict.items():

        if isinstance(v1, dict):
            if k1 in source_dict and isinstance(source_dict[k1], dict):
                #print(f"\n{prefix}{k1}")
                fill_dict(v1, source_dict[k1], prefix + "\t")
                #print("\n")
            else:
                #print(f"{prefix}{k1} set to default value: {target_dict[k1]}")
                pass
        else:
            if k1 in source_dict and source_dict[k1] is not None:
                target_dict[k1] = source_dict[k1]
                #print(f"{prefix}{k1} set to: {source_dict[k1]}")
            else:
                #print(f"{prefix}{k1} set to default value: {target_dict[k1]}")
                pass


Anthony Larcher's avatar
Anthony Larcher committed
865
866
def update_training_dictionary(dataset_description,
                               model_description,
Anthony Larcher's avatar
Anthony Larcher committed
867
868
                               training_description,
                               kwargs=None):
Anthony Larcher's avatar
Anthony Larcher committed
869
870
    """

Anthony Larcher's avatar
Anthony Larcher committed
871
872
873
874
    :param dataset_description:
    :param model_description:
    :param training_description:
    :param kwargs:
Anthony Larcher's avatar
Anthony Larcher committed
875
876
877
878
879
880
    :return:
    """
    dataset_opts=dict()
    model_opts=dict()
    training_opts=dict()

Anthony Larcher's avatar
Anthony Larcher committed
881
882
883
884
885
    if isinstance(dataset_description, str) and os.path.isfile(dataset_description):
        with open(dataset_description, 'r') as fh:
            tmp_data_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_data_dict = dataset_description
Anthony Larcher's avatar
Anthony Larcher committed
886

Anthony Larcher's avatar
Anthony Larcher committed
887
888
889
890
891
    if isinstance(model_description, str) and os.path.isfile(model_description):
        with open(model_description, 'r') as fh:
            tmp_model_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_model_dict = model_description
Anthony Larcher's avatar
Anthony Larcher committed
892

Anthony Larcher's avatar
Anthony Larcher committed
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
    if isinstance(training_description, str) and os.path.isfile(training_description):
        with open(training_description, 'r') as fh:
            tmp_train_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_train_dict = training_description

    # Initialize default dictionaries
    dataset_opts["data_path"] = None
    dataset_opts["dataset_csv"] = None
    dataset_opts["data_file_extension"] = ".wav"
    dataset_opts["sample_rate"] = 16000

    dataset_opts["validation_ratio"] = 0.1
    dataset_opts["batch_size"] = 64

    dataset_opts["train"] = dict()
    dataset_opts["train"]["duration"] = 2.
    dataset_opts["train"]["chunk_per_segment"] = -1
    dataset_opts["train"]["overlap"] = 1.9
Anthony Larcher's avatar
Anthony Larcher committed
912
913
914
    dataset_opts["train"]["sampler"] = dict()
    dataset_opts["train"]["sampler"]["examples_per_speaker"] = 1
    dataset_opts["train"]["sampler"]["samples_per_speaker"] = 100
Anthony Larcher's avatar
Anthony Larcher committed
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
    dataset_opts["train"]["transformation"] = dict()
    dataset_opts["train"]["transformation"]["pipeline"] = ""
    dataset_opts["train"]["transformation"]["add_noise"] = dict()
    dataset_opts["train"]["transformation"]["add_noise"]["noise_db_csv"] = ""
    dataset_opts["train"]["transformation"]["add_noise"]["data_path"] = ""
    dataset_opts["train"]["transformation"]["add_reverb"] = dict()
    dataset_opts["train"]["transformation"]["add_reverb"]["noise_db_csv"] = ""
    dataset_opts["train"]["transformation"]["add_reverb"]["data_path"] = ""

    dataset_opts["valid"] = dict()
    dataset_opts["valid"]["duration"] = 2.
    dataset_opts["valid"]["transformation"] = dict()
    dataset_opts["valid"]["transformation"]["pipeline"] = ""
    dataset_opts["valid"]["transformation"]["add_noise"] = dict()
    dataset_opts["valid"]["transformation"]["add_noise"]["noise_db_csv"] = ""
    dataset_opts["valid"]["transformation"]["add_noise"]["data_path"] = ""
    dataset_opts["valid"]["transformation"]["add_reverb"] = dict()
    dataset_opts["valid"]["transformation"]["add_reverb"]["noise_db_csv"] = ""
    dataset_opts["valid"]["transformation"]["add_reverb"]["data_path"] = ""

    dataset_opts["test"] = dict()
    dataset_opts["test"]["idmap"] = ""
    dataset_opts["test"]["ndx"] = ""
    dataset_opts["test"]["key"] = ""
    dataset_opts["test"]["data_path"] =""

    # Initialize model options
    model_opts["speaker_number"] = None
    model_opts["loss"] = dict()
    model_opts["loss"]["type"] ="aam"
    model_opts["loss"]["aam_margin"] = 0.2
    model_opts["loss"]["aam_s"] = 30

    model_opts["initial_model_name"] = None
    model_opts["reset_parts"] = []
    model_opts["freeze_parts"] = []

    model_opts["model_type"] = "fastresnet"

Anthony Larcher's avatar
Anthony Larcher committed
954
955
956
    model_opts["preprocessor"] = dict()
    model_opts["preprocessor"]["type"] =  "mel_spec"
    model_opts["preprocessor"]["feature_size"] = 80
Anthony Larcher's avatar
Anthony Larcher committed
957
958
959
960

    # Initialize training options
    training_opts["log_file"] = "sidekit.log"
    training_opts["seed"] = 42
Anthony Larcher's avatar
Anthony Larcher committed
961
    training_opts["deterministic"] = False
Anthony Larcher's avatar
Anthony Larcher committed
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
    training_opts["epochs"] = 100
    training_opts["lr"] = 1e-3
    training_opts["patience"] = 50
    training_opts["multi_gpu"] = False
    training_opts["num_cpu"] = 5
    training_opts["mixed_precision"] = False
    training_opts["clipping"] = False

    training_opts["optimizer"] = dict()
    training_opts["optimizer"]["type"] = "sgd"
    training_opts["optimizer"]["options"] = None

    training_opts["scheduler"] = dict()
    training_opts["scheduler"]["type"] = "ReduceLROnPlateau"
    training_opts["scheduler"]["options"] = None

    training_opts["compute_test_eer"] = False
    training_opts["log_interval"] = 10
Anthony Larcher's avatar
Anthony Larcher committed
980
    training_opts["validation_frequency"] = 1
Anthony Larcher's avatar
Anthony Larcher committed
981
982
983
984
985
986
987
988
989
990
991
992

    training_opts["tmp_model_name"] = "tmp_model.pt"
    training_opts["best_model_name"] = "best_model.pt"
    training_opts["checkpoint_frequency"] = "10"


    # Use options from the YAML config files
    fill_dict(dataset_opts, tmp_data_dict)
    fill_dict(model_opts, tmp_model_dict)
    fill_dict(training_opts, tmp_train_dict)

    # Overwrite with manually given parameters
Anthony Larcher's avatar
Anthony Larcher committed
993
994
995
996
997
    # TODO

    return dataset_opts, model_opts, training_opts


Anthony Larcher's avatar
Anthony Larcher committed
998
def get_network(model_opts):
Anthony Larcher's avatar
Anthony Larcher committed
999
    """
Anthony Larcher's avatar
Anthony Larcher committed
1000