xvector.py 68.7 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
25
Copyright 2014-2021 Anthony Larcher, Yevhenii Prokopalo
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
30

import pdb
import traceback
Anthony Larcher's avatar
Anthony Larcher committed
31
import logging
Anthony Larcher's avatar
Anthony Larcher committed
32
import matplotlib.pyplot as plt
Anthony Larcher's avatar
Anthony Larcher committed
33
import multiprocessing
Anthony Larcher's avatar
Anthony Larcher committed
34
import os
Anthony Larcher's avatar
Anthony Larcher committed
35
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
36
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
37
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
38
import shutil
Anthony Larcher's avatar
Anthony Larcher committed
39
import sys
40
import time
Anthony Larcher's avatar
Anthony Larcher committed
41
import torch
Anthony Larcher's avatar
Anthony Larcher committed
42
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
43
44
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
45
from torchvision import transforms
Anthony Larcher's avatar
Anthony Larcher committed
46
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
47
from .xsets import SideSet
Anthony Larcher's avatar
debug    
Anthony Larcher committed
48
from .xsets import FileSet
Anthony Larcher's avatar
Anthony Larcher committed
49
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
50
from .xsets import IdMapSet_per_speaker
Anthony Larcher's avatar
debug    
Anthony Larcher committed
51
from .xsets import SpkSet
Anthony Larcher's avatar
Anthony Larcher committed
52
from .res_net import RawPreprocessor, ResBlockWFMS, ResBlock, PreResNet34
Anthony Larcher's avatar
Anthony Larcher committed
53
from ..bosaris import IdMap
Anthony Larcher's avatar
Anthony Larcher committed
54
55
56
57
from ..bosaris import Key
from ..bosaris import Ndx
from ..bosaris.detplot import rocch
from ..bosaris.detplot import rocch2eer
Anthony Larcher's avatar
Anthony Larcher committed
58
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
59
from ..iv_scoring import cosine_scoring
Anthony Larcher's avatar
Anthony Larcher committed
60
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
61
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
62
from .sincnet import SincNet
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
63
64
65
from .loss import ArcLinear
from .loss import ArcFace
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
66
from .loss import ArcMarginProduct
Anthony Larcher's avatar
Anthony Larcher committed
67

Anthony Larcher's avatar
ddp    
Anthony Larcher committed
68

Anthony Larcher's avatar
Anthony Larcher committed
69
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
70

Anthony Larcher's avatar
Anthony Larcher committed
71
72
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
73
__copyright__ = "Copyright 2015-2021 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
74
75
76
77
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
78
79


Anthony Larcher's avatar
Anthony Larcher committed
80
81
logging.basicConfig(format='%(asctime)s %(message)s')

Anthony Larcher's avatar
Anthony Larcher committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

# Make PyTorch Deterministic
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
numpy.random.seed(0)


class GuruMeditation (torch.autograd.detect_anomaly):
    
    def __init__(self):
        super(GuruMeditation, self).__init__()

    def __enter__(self):
        super(GuruMeditation, self).__enter__()
        return self

    def __exit__(self, type, value, trace):
        super(GuruMeditation, self).__exit__()
        if isinstance(value, RuntimeError):
            traceback.print_tb(trace)
Anthony Larcher's avatar
Anthony Larcher committed
103
            self.halt(str(value))
Anthony Larcher's avatar
Anthony Larcher committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

    def halt(msg):
        print (msg)
        pdb.set_trace()


def select_n_random(data, labels, n=100):
    '''
    Selects n random datapoints and their corresponding labels from a dataset
    '''
    assert len(data) == len(labels)

    perm = torch.randperm(len(data))
    return data[perm][:n], labels[perm][:n]


def matplotlib_imshow(img, one_channel=False):
    if one_channel:
        img = img.mean(dim=0)
    img = img / 2 + 0.5     # unnormalize
    npimg = img.cpu().numpy()
    if one_channel:
        plt.imshow(npimg, cmap="Greys")
    else:
Anthony Larcher's avatar
Anthony Larcher committed
128
        plt.imshow(numpy.transpose(npimg, (1, 2, 0)))
Anthony Larcher's avatar
Anthony Larcher committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

def speech_to_probs(model, speech):
    '''
    Generates predictions and corresponding probabilities from a trained
    network and a list of images
    '''
    output = model(speech)
    # convert output probabilities to predicted class
    _, preds_tensor = torch.max(output, 1)
    preds = numpy.squeeze(preds_tensor.cpu().numpy())
    return preds, [torch.nn.functional.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]


def plot_classes_preds(model, speech, labels):
    '''
Anthony Larcher's avatar
Anthony Larcher committed
144

Anthony Larcher's avatar
Anthony Larcher committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    Generates matplotlib Figure using a trained network, along with images
    and labels from a batch, that shows the network's top prediction along
    with its probability, alongside the actual label, coloring this
    information based on whether the prediction was correct or not.
    Uses the "speech_to_probs" function.
    '''
    preds, probs = speech_to_probs(model, speech)
    # plot the images in the batch, along with predicted and true labels
    fig = plt.figure(figsize=(12, 48))
    for idx in numpy.arange(4):
         ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])
         #matplotlib_imshow(speech[idx], one_channel=True)
         ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
                                                           preds[idx],
                                                           probs[idx] * 100.0,
                                                           labels[idx]),
                                                           color=("green" if preds[idx]==labels[idx].item() else "red"))
    return fig


Anthony Larcher's avatar
debug    
Anthony Larcher committed
165
166
167
def test_metrics(model,
                 device,
                 speaker_number):
Anthony Larcher's avatar
Anthony Larcher committed
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
Anthony Larcher's avatar
debug    
Anthony Larcher committed
184
185
186
    idmap_test_filename = 'h5f/idmap_test.h5'
    ndx_test_filename = 'h5f/ndx_test.h5'
    key_test_filename = 'h5f/key_test.h5'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
187
    data_root_name='/lium/corpus/base/voxceleb1/test/wav'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
188
189
190

    transform_pipeline = dict()
    mfcc_config = dict()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
191
192
    mfcc_config['nb_filters'] = 81
    mfcc_config['nb_ceps'] = 80
Anthony Larcher's avatar
debug    
Anthony Larcher committed
193
194
195
196
    mfcc_config['lowfreq'] = 133.333
    mfcc_config['maxfreq'] = 6855.4976
    mfcc_config['win_time'] = 0.025
    mfcc_config['shift'] = 0.01
Anthony Larcher's avatar
debug    
Anthony Larcher committed
197
    mfcc_config['n_fft'] = 2048
Anthony Larcher's avatar
debug    
Anthony Larcher committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    transform_pipeline['MFCC'] = mfcc_config
    transform_pipeline['CMVN'] = {}

    xv_stat = extract_embeddings(idmap_name=idmap_test_filename,
                                 speaker_number=speaker_number,
                                 model_filename=model,
                                 data_root_name=data_root_name,
                                 device=device,
                                 transform_pipeline=transform_pipeline)

    scores = cosine_scoring(xv_stat,
                            xv_stat,
                            Ndx(ndx_test_filename),
                            wccn=None,
                            check_missing=True)

    tar, non = scores.get_tar_non(Key(key_test_filename))

    test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))

    return test_eer
Anthony Larcher's avatar
Anthony Larcher committed
219

Anthony Larcher's avatar
Anthony Larcher committed
220

221
def get_lr(optimizer):
Anthony Larcher's avatar
Anthony Larcher committed
222
223
224
225
226
    """

    :param optimizer:
    :return:
    """
227
228
229
230
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
231
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
232
233
234
235
236
237
238
239
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
240
241
242
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
243

Anthony Larcher's avatar
Anthony Larcher committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
class MeanStdPooling(torch.nn.Module):
    """
    Mean and Standard deviation pooling
    """
    def __init__(self):
        """

        """
        super(MeanStdPooling, self).__init__()
        pass

    def forward(self, x):
        """

        :param x:
        :return:
        """
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        return torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
264

Anthony Larcher's avatar
Anthony Larcher committed
265

Anthony Larcher's avatar
Anthony Larcher committed
266
267
268
269
270
271
272
273
274
275
276
class GruPooling(torch.nn.Module):
    """

    """
    def __init__(self, input_size, gru_node, nb_gru_layer):
        """

        :param input_size:
        :param gru_node:
        :param nb_gru_layer:
        """
Anthony Larcher's avatar
Anthony Larcher committed
277
        super(GruPooling, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
        self.lrelu_keras = torch.nn.LeakyReLU(negative_slope = 0.3)
        self.bn_before_gru = torch.nn.BatchNorm1d(num_features = input_size)
        self.gru = torch.nn.GRU(input_size = input_size,
                          hidden_size = gru_node,
                          num_layers = nb_gru_layer,
                          batch_first = True)

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = self.bn_before_gru(x)
        x = self.lrelu_keras(x)
        x = x.permute(0, 2, 1)  #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
        x = x[:,-1,:]

        return x

Anthony Larcher's avatar
Anthony Larcher committed
300

Anthony Larcher's avatar
Anthony Larcher committed
301
class Xtractor(torch.nn.Module):
302
303
304
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
305

Anthony Larcher's avatar
Anthony Larcher committed
306
307
308
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
309
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
310
311
312
                 norm_embedding=False,
                 aam_margin=0.5,
                 aam_s=0.5):
Anthony Larcher's avatar
Anthony Larcher committed
313
314
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
315
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
316
        """
Anthony Larcher's avatar
Anthony Larcher committed
317
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
318
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
319
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
320
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
321

Anthony Larcher's avatar
Anthony Larcher committed
322
323
        print(f"Speaker number : {self.speaker_number}")

Anthony Larcher's avatar
Anthony Larcher committed
324
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
325

Anthony Larcher's avatar
Anthony Larcher committed
326
327
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
328
329
330
331
332
            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
333
            self.feature_size = 30
Anthony Larcher's avatar
Anthony Larcher committed
334
335
336
            self.activation = torch.nn.LeakyReLU(0.2)

            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
337

Anthony Larcher's avatar
xv    
Anthony Larcher committed
338
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
339
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
340
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
341
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
342
343
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
344
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
345
346
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
347
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
348
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
349
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
350
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
351
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
352
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
353
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
354
355
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
356
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
357
            self.stat_pooling_weight_decay = 0
Anthony Larcher's avatar
xv    
Anthony Larcher committed
358
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
359
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
360
361
            ]))

362
363
            self.embedding_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
364
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
365
366
367
368
369
                self.after_speaker_embedding = ArcMarginProduct(512,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)
Anthony Larcher's avatar
Anthony Larcher committed
370
371
372
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
373
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
374
375
376
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
377
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
378
379
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
380

Anthony Larcher's avatar
Anthony Larcher committed
381
382
383
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002
384
            self.embedding_size = 512
Anthony Larcher's avatar
Anthony Larcher committed
385

Anthony Larcher's avatar
Anthony Larcher committed
386
        elif model_archi == "resnet34":
Anthony Larcher's avatar
Anthony Larcher committed
387
            self.input_nbdim = 3
Anthony Larcher's avatar
Anthony Larcher committed
388
389
390
391
392
393
394
395
396
            self.preprocessor = None
            self.sequence_network = PreResNet34()

            self.before_speaker_embedding = torch.nn.Linear(in_features = 5120,
                                                            out_features = 256)

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

397
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
398

399
            self.loss = "aam"
Anthony Larcher's avatar
Anthony Larcher committed
400
401
402
403
404
            self.after_speaker_embedding = ArcMarginProduct(256,
                                                            int(self.speaker_number),
                                                            s = 30.0,
                                                            m = 0.50,
                                                            easy_margin = False)
Anthony Larcher's avatar
Anthony Larcher committed
405
406
407
408
409
410
411
412

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00


Anthony Larcher's avatar
Anthony Larcher committed
413
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
414
415
416
417
418
419

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
420
421
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
422
423
424
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
425
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
426
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
427
428
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
446
447
448
449
450
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
451
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
452
453
454
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
455

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
456
457
458
459
460
461
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
462
        else:
Anthony Larcher's avatar
Anthony Larcher committed
463
464
            is_first_resblock = True

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
465
466
467
468
469
470
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
471

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
472
            self.loss = cfg["training"]["loss"]
Anthony Larcher's avatar
Anthony Larcher committed
473
            if self.loss == "aam":
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
474
475
                self.aam_margin = cfg["training"]["aam_margin"]
                self.aam_s = cfg["training"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
476

Anthony Larcher's avatar
Anthony Larcher committed
477
478
479
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
480
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
481
482
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
483
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
484
485
486
487
488
489
490
491
492
493
494
495
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
496
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
497
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
498
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
499
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
500
501
502
503
504
505
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
506
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
507
508

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
509
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
510
            """
Anthony Larcher's avatar
Anthony Larcher committed
511
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
512
513
514
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
515
516
517
518
519
520
521
522
523
524
525
526
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

Anthony Larcher's avatar
Anthony Larcher committed
527
528
529
530
531
            if cfg["segmental"][list(cfg["segmental"].keys())[0]].startswith("conv2D"):
                self.input_nbdim = 3
            elif cfg["segmental"][list(cfg["segmental"].keys())[0]].startswith("conv"):
                self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
532
533
534
            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
535
536
537
538
539
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

Anthony Larcher's avatar
Anthony Larcher committed
540
541
542
543
544
                elif k.startswith("conv2D"):
                    segmental_layers.append((k, torch.nn.Conv2d(in_channels=1,
                                                                out_channels=entry_conv_out_channels,
                                                                kernel_size=entry_conv_kernel_size,
                                                                padding=3,
Anthony Larcher's avatar
Anthony Larcher committed
545
                                                                stride=1)))
Anthony Larcher's avatar
Anthony Larcher committed
546

Anthony Larcher's avatar
Anthony Larcher committed
547
                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
548
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
549
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
550
551
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
552
553
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
554
555
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
556
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
557
558
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
559
560
561
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
562
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
563
564
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
565
566
567
568
569
570
                elif k.startswith('resblock'):
                    segmental_layers.append((ResBlock(cfg["segmental"][k]["input_channel"],
                                                      cfg["segmental"][k]["output_channel"],
                                                      is_first_resblock)))
                    is_first_resblock = False

Anthony Larcher's avatar
Anthony Larcher committed
571
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
572
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
573

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
574
575
576
577
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
578
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
579
580
581
582
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
583
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
584

Anthony Larcher's avatar
Anthony Larcher committed
585
586
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
587
            """
Anthony Larcher's avatar
Anthony Larcher committed
588
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
589
            """
Anthony Larcher's avatar
Anthony Larcher committed
590
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
591
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
592
593
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
594
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
595
596
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
597
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
598
599
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
600
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
601
602

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
603
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
604

Anthony Larcher's avatar
Anthony Larcher committed
605
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
606
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
607
608

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
609
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
610

Anthony Larcher's avatar
Anthony Larcher committed
611
            self.embedding_size = input_size
Anthony Larcher's avatar
Anthony Larcher committed
612
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
613
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
614

Anthony Larcher's avatar
Anthony Larcher committed
615
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
616
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
617
618
619
620
621
622
623
624
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
625
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
626
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
627

Anthony Larcher's avatar
Anthony Larcher committed
628
629
630
631
632
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
633

Anthony Larcher's avatar
Anthony Larcher committed
634
635
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
636

Anthony Larcher's avatar
Anthony Larcher committed
637
638
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
639

Anthony Larcher's avatar
Anthony Larcher committed
640
641
642
643
644
645
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
646
647
648
649
650
651
652
                self.norm_embedding = True
                self.after_speaker_embedding = ArcMarginProduct(input_size,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)

Anthony Larcher's avatar
arcface    
Anthony Larcher committed
653
654
655
656
                #self.after_speaker_embedding = ArcLinear(input_size,
                #                                         self.speaker_number,
                #                                         margin=self.aam_margin,
                #                                         s=self.aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
657
658
659
660
                #self.after_speaker_embedding = ArcFace(embedding_size=input_size,
                #                                       classnum=self.speaker_number,
                #                                       s=64.,
                #                                       m=0.5)
Anthony Larcher's avatar
Anthony Larcher committed
661

Anthony Larcher's avatar
Anthony Larcher committed
662
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
663

Anthony Larcher's avatar
Anthony Larcher committed
664

665
    def forward(self, x, is_eval=False, target=None, extract_after_pooling=False):
666
667
668
        """

        :param x:
669
        :param is_eval: False for training
670
671
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
672
673
674
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
675
        x = self.sequence_network(x)
676

Anthony Larcher's avatar
Anthony Larcher committed
677
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
678
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
679

680
681
682
        if extract_after_pooling:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
683
        x = self.before_speaker_embedding(x)
684

Anthony Larcher's avatar
Anthony Larcher committed
685
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
686
            #x_norm = x.norm(p=2,dim=1, keepdim=True) / 10. # Why  10. ?
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
687
688
689
            #x_norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True, out=None, dtype=None)
            #x = torch.div(x, x_norm)
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
690

Anthony Larcher's avatar
Anthony Larcher committed
691
        if self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
692
693
694
695
            if is_eval:
                return self.after_speaker_embedding(x), x
            else:
                return self.after_speaker_embedding(x)
Anthony Larcher's avatar
Anthony Larcher committed
696

Anthony Larcher's avatar
Anthony Larcher committed
697
698
        elif self.loss == "aam":
            if not is_eval:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
699
                x = self.after_speaker_embedding(torch.nn.functional.normalize(x, dim=1), target=target), torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
700
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
701
                x = self.after_speaker_embedding(torch.nn.functional.normalize(x, dim=1), target=None), torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
702

Anthony Larcher's avatar
Anthony Larcher committed
703
        return x
Anthony Larcher's avatar
Anthony Larcher committed
704

705
706
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
707
708
709
710
711
712
713
714
715
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
716

Anthony Larcher's avatar
Anthony Larcher committed
717
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
718
           dataset_yaml,
Anthony Larcher's avatar
Anthony Larcher committed
719
720
           epochs=None,
           lr=None,
Anthony Larcher's avatar
Anthony Larcher committed
721
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
722
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
723
724
725
726
           loss=None,
           aam_margin=None,
           aam_s=None,
           patience=None,
Anthony Larcher's avatar
Anthony Larcher committed
727
           tmp_model_name=None,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
728
           best_model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
729
           multi_gpu=True,
730
           clipping=False,
Anthony Larcher's avatar
Anthony Larcher committed
731
           opt=None,
Anthony Larcher's avatar
Anthony Larcher committed
732
733
           reset_parts=[],
           freeze_parts=[],
Anthony Larcher's avatar
Anthony Larcher committed
734
735
736
737
           num_thread=None,
           write_batches_to_disk=False,
           load_batches_from_disk=False,
           tmp_batch_dir=None):
738
739
    """

Anthony Larcher's avatar
Anthony Larcher committed
740
741
742
743
744
745
    :param speaker_number:
    :param dataset_yaml:
    :param epochs:
    :param lr:
    :param model_yaml:
    :param model_name:
Anthony Larcher's avatar
Anthony Larcher committed
746
747
748
749
    :param loss:
    :param aam_margin:
    :param aam_s:
    :param patience:
Anthony Larcher's avatar
Anthony Larcher committed
750
751
752
753
    :param tmp_model_name:
    :param best_model_name:
    :param multi_gpu:
    :param clipping:
Anthony Larcher's avatar
Anthony Larcher committed
754
755
756
    :param opt:
    :param reset_parts:
    :param freeze_parts:
Anthony Larcher's avatar
Anthony Larcher committed
757
    :param num_thread:
758
759
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
760
761
762
763
    # Add for tensorboard
    # Writer will output to ./runs/ directory by default
    #writer = SummaryWriter("runs/xvectors_experiments_2")
    writer = None
Anthony Larcher's avatar
Anthony Larcher committed
764

Anthony Larcher's avatar
Anthony Larcher committed
765
766
767
    if write_batches_to_disk:
        load_batches_from_disk = True

Anthony Larcher's avatar
Anthony Larcher committed
768
    if num_thread is None:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
769
770
        import multiprocessing

Anthony Larcher's avatar
Anthony Larcher committed
771
772
        num_thread = multiprocessing.cpu_count()

Anthony Larcher's avatar
Anthony Larcher committed
773
    logging.critical(f"Use {num_thread} cpus")
Anthony Larcher's avatar
Anthony Larcher committed
774
    logging.critical(f"Start process at {time.strftime('%H:%M:%S', time.localtime())}")
775

Anthony Larcher's avatar
Anthony Larcher committed
776
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Anthony Larcher's avatar
Anthony Larcher committed
777
    # Start from scratch
778
    if model_name is None and model_yaml in ["xvector", "rawnet2", "resnet34"]:
Anthony Larcher's avatar
Anthony Larcher committed
779
        # Initialize a first model
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
780
        if model_yaml == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
781
            model = Xtractor(speaker_number, "xvector", loss=loss)
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
782
        elif model_yaml == "rawnet2":
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
783
            model = Xtractor(speaker_number, "rawnet2")
784
785
        elif model_yaml == "resnet34":
            model = Xtractor(speaker_number, "resnet34")
Anthony Larcher's avatar
Anthony Larcher committed
786
        model_archi = model_yaml
Anthony Larcher's avatar
Anthony Larcher committed
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
    else:
        with open(model_yaml, 'r') as fh:
            model_archi = yaml.load(fh, Loader=yaml.FullLoader)
            if epochs is None:
                epochs = model_archi["training"]["epochs"]
            if patience is None:
                patience = model_archi["training"]["patience"]
            if opt is None:
                opt = model_archi["training"]["opt"]
            if lr is None:
                lr = model_archi["training"]["lr"]
            if loss is None:
                loss = model_archi["training"]["loss"]
            if aam_margin is None and model_archi["training"]["loss"] == "aam":
                aam_margin = model_archi["training"]["aam_margin"]
            if aam_s is None and model_archi["training"]["loss"] == "aam":
                aam_s = model_archi["training"]["aam_s"]
            if tmp_model_name is None:
                tmp_model_name = model_archi["training"]["tmp_model_name"]
            if best_model_name is None:
                best_model_name = model_archi["training"]["best_model_name"]
            if multi_gpu is None:
                multi_gpu = model_archi["training"]["multi_gpu"]
            if clipping is None:
                clipping = model_archi["training"]["clipping"]

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
813
        if model_name is None:
Anthony Larcher's avatar
Anthony Larcher committed
814
815
816
            model = Xtractor(speaker_number, model_yaml)

         # If we start from an existing model
Anthony Larcher's avatar
Anthony Larcher committed
817
        else:
Anthony Larcher's avatar
Anthony Larcher committed
818
819
820
            # Load the model
            logging.critical(f"*** Load model from = {model_name}")
            checkpoint = torch.load(model_name)
Anthony Larcher's avatar
Anthony Larcher committed
821
            model = Xtractor(speaker_number, model_yaml)
Anthony Larcher's avatar
Anthony Larcher committed
822

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
823
824
            """
            Here we remove all layers that we don't want to reload
Anthony Larcher's avatar
Anthony Larcher committed
825
        
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
826
827
828
829
830
831
832
833
834
835
836
837
838
            """
            pretrained_dict = checkpoint["model_state_dict"]
            for part in reset_parts:
                pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

            new_model_dict = model.state_dict()
            new_model_dict.update(pretrained_dict)
            model.load_state_dict(new_model_dict)

        # Freeze required layers
        for name, param in model.named_parameters():
            if name.split(".")[0] in freeze_parts:
                param.requires_grad = False
Anthony Larcher's avatar
Anthony Larcher committed
839

Anthony Larcher's avatar
Anthony Larcher committed
840
    print(model)
Anthony Larcher's avatar
Anthony Larcher committed
841
    embedding_size = model.embedding_size
Anthony Larcher's avatar
Anthony Larcher committed
842

Anthony Larcher's avatar
Anthony Larcher committed
843
    if torch.cuda.device_count() > 1 and multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
844
845
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)
Anthony Larcher's avatar
Anthony Larcher committed
846
        #model = DDP(model)
Anthony Larcher's avatar
Anthony Larcher committed
847
848
    else:
        print("Train on a single GPU")
Anthony Larcher's avatar
Anthony Larcher committed
849
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
850

Anthony Larcher's avatar
debug    
Anthony Larcher committed
851
852
853
854
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])

Anthony Larcher's avatar
Anthony Larcher committed
855
856
857
    if load_batches_from_disk:
        train_batch_fn_format = tmp_batch_dir + "/train/train_{}_batch.h5"
        val_batch_fn_format = tmp_batch_dir + "/val/val_{}_batch.h5"
858

Anthony Larcher's avatar
Anthony Larcher committed
859
860
861
862
863
864
865
    if not load_batches_from_disk or write_batches_to_disk:
        """
        Set the dataloaders according to the dataset_yaml
        
        First we load the dataframe from CSV file in order to split it for training and validation purpose
        Then we provide those two 
        """
Anthony Larcher's avatar
Anthony Larcher committed
866

Anthony Larcher's avatar
minor    
Anthony Larcher committed
867
        if write_batches_to_disk or dataset_params["batch_size"] > 1:
Anthony Larcher's avatar
Anthony Larcher committed
868
869
870
871
            output_format = "numpy"
        else:
            output_format = "pytorch"

Anthony Larcher's avatar
Anthony Larcher committed
872
873
        training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"])
        torch.manual_seed(dataset_params['seed'])
Anthony Larcher's avatar
spkset    
Anthony Larcher committed
874
875
876
877
878
879
        training_set = SpkSet(dataset_yaml,
                              set_type="train",
                              dataset_df=training_df,
                              overlap=dataset_params['train']['overlap'],
                              output_format="pytorch",
                              windowed=True)
Anthony Larcher's avatar
Anthony Larcher committed
880

Anthony Larcher's avatar
Anthony Larcher committed
881
882
883
884
        validation_set = SideSet(dataset_yaml,
                                 set_type="validation",
                                 dataset_df=validation_df,
                                 output_format=output_format)
Anthony Larcher's avatar
Anthony Larcher committed
885
886


Anthony Larcher's avatar
Anthony Larcher committed
887
        if write_batches_to_disk:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
888
            logging.critical("Start writing batches on disk")
Anthony Larcher's avatar
Anthony Larcher committed
889
890
            training_set.write_to_disk(dataset_params["batch_size"], train_batch_fn_format, num_thread)
            validation_set.write_to_disk(dataset_params["batch_size"], val_batch_fn_format, num_thread)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
891
            logging.critical("---> Done")
Anthony Larcher's avatar
Anthony Larcher committed
892
893

    if load_batches_from_disk:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
894
895
896
897
898
899
900
901
902
903
904
905
906
        training_set = FileSet(train_batch_fn_format)
        validation_set = FileSet(train_batch_fn_format)
        batch_size = 1
    else:
        batch_size = dataset_params["batch_size"]


    print(f"Size of batches = {batch_size}")
    training_loader = DataLoader(training_set,
                                 batch_size=batch_size,
                                 shuffle=True,
                                 drop_last=True,
                                 pin_memory=True,
Anthony Larcher's avatar
spkset    
Anthony Larcher committed
907
908
                                 num_workers=num_thread,
                                 persistent_workers=True)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
909
910
911
912
913

    validation_loader = DataLoader(validation_set,
                                   batch_size=batch_size,
                                   drop_last=True,
                                   pin_memory=True,
Anthony Larcher's avatar
spkset    
Anthony Larcher committed
914
915
                                   num_workers=num_thread,
                                   persistent_workers=True)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
916

Anthony Larcher's avatar
Anthony Larcher committed
917
918
919
    """
    Set the training options
    """
Anthony Larcher's avatar
Anthony Larcher committed
920
    if opt == 'adam':
Anthony Larcher's avatar
Anthony Larcher committed
921
        _optimizer = torch.optim.Adam
Anthony Larcher's avatar
Anthony Larcher committed
922
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
923
924
    elif opt == 'rmsprop':
        _optimizer = torch.optim.RMSprop
Anthony Larcher's avatar
Anthony Larcher committed
925
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
926
927
928
    else: # opt == 'sgd'
        _optimizer = torch.optim.SGD
        _options = {'lr': lr, 'momentum': 0.9}
Anthony Larcher's avatar
Anthony Larcher committed
929

Anthony Larcher's avatar
Anthony Larcher committed
930
    param_list = []
Anthony Larcher's avatar
Anthony Larcher committed
931
    if type(model) is Xtractor:
Anthony Larcher's avatar
Anthony Larcher committed
932
933
934
935
936
937
938
        if model.preprocessor is not None:
            param_list.append({'params': model.preprocessor.parameters(), 'weight_decay': model.preprocessor_weight_decay})
        param_list.append({'params': model.sequence_network.parameters(), 'weight_decay': model.sequence_network_weight_decay})
        param_list.append({'params': model.stat_pooling.parameters(), 'weight_decay': model.stat_pooling_weight_decay})
        param_list.append({'params': model.before_speaker_embedding.parameters(), 'weight_decay': model.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.after_speaker_embedding.parameters(), 'weight_decay': model.after_speaker_embedding_weight_decay})

Anthony Larcher's avatar
Anthony Larcher committed
939
    else:
Anthony Larcher's avatar
Anthony Larcher committed
940
941
942
943
944
945
946
947
        if model.module.preprocessor is not None:
            param_list.append({'params': model.module.preprocessor.parameters(), 'weight_decay': model.module.preprocessor_weight_decay})
        param_list.append({'params': model.module.sequence_network.parameters(), 'weight_decay': model.module.sequence_network_weight_decay})
        param_list.append({'params': model.module.stat_pooling.parameters(), 'weight_decay': model.module.stat_pooling_weight_decay})
        param_list.append({'params': model.module.before_speaker_embedding.parameters(), 'weight_decay': model.module.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.module.after_speaker_embedding.parameters(), 'weight_decay': model.module.after_speaker_embedding_weight_decay})

    optimizer = _optimizer(param_list, **_options)
Anthony Larcher's avatar
Anthony Larcher committed
948
    scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
Anthony Larcher's avatar
Anthony Larcher committed
949
                                                     milestones=numpy.arange(50000,160000,10000),
Anthony Larcher's avatar
Anthony Larcher committed
950
951
                                                     gamma=0.1,
                                                     last_epoch=-1,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
952
                                                     verbose=False)
953

Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
954
    best_accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
955
    best_accuracy_epoch = 1
Anthony Larcher's avatar
spkset    
Anthony Larcher committed
956
    best_eer = 100
Anthony Larcher's avatar
Anthony Larcher committed
957
    curr_patience = patience
Anthony Larcher's avatar
eer    
Anthony Larcher committed
958
959
    
    logging.critical("Compute EER before starting")
Anthony Larcher's avatar
debug    
Anthony Larcher committed
960
961
962
963
964
    val_acc, val_loss, val_eer = cross_validation(model,
                                                  validation_loader,
                                                  device,
                                                  [validation_set.__len__(),
                                                   embedding_size])
Anthony Larcher's avatar
Anthony Larcher committed
965

Anthony Larcher's avatar
debug    
Anthony Larcher committed
966
    test_eer = test_metrics(model, device, speaker_number)
Anthony Larcher's avatar
Anthony Larcher committed
967

Anthony Larcher's avatar
debug    
Anthony Larcher committed
968
969
    logging.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Initial metrics - Cross validation accuracy = {val_acc} %, EER = {val_eer * 100} %")
    logging.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Initial metrics - Test EER = {test_eer * 100} %")
Anthony Larcher's avatar
Anthony Larcher committed
970

Anthony Larcher's avatar
Anthony Larcher committed
971
    for epoch in range(1, epochs + 1):
972
        # Process one epoch and return the current model
Anthony Larcher's avatar
Anthony Larcher committed
973
974
975
        if curr_patience == 0:
            print(f"Stopping at epoch {epoch} for cause of patience")
            break
Anthony Larcher's avatar
Anthony Larcher committed
976
977
978
979
        model = train_epoch(model,
                            epoch,
                            training_loader,
                            optimizer,
Anthony Larcher's avatar
Anthony Larcher committed
980
                            scheduler,
Anthony Larcher's avatar
Anthony Larcher committed
981
982
                            dataset_params["log_interval"],
                            device=device,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
983
                            clipping=clipping)
984
985

        # Add the cross validation here
Anthony Larcher's avatar
debug    
Anthony Larcher committed
986
987
        if math.fmod(epoch, 136) == 0:
            val_acc, val_loss, val_eer = cross_validation(model, validation_loader, device, [validation_set.__len__(), embedding_size])
Anthony Larcher's avatar
Anthony Larcher committed
988

Anthony Larcher's avatar
debug    
Anthony Larcher committed
989
            test_eer = test_metrics(model, device, speaker_number)
990

Anthony Larcher's avatar
debug    
Anthony Larcher committed
991
992
            logging.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Training metrics - Cross validation accuracy = {val_acc} %, EER = {val_eer * 100} %")
            logging.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Training metrics - Test EER = {test_eer * 100} %")
Anthony Larcher's avatar
Anthony Larcher committed
993

Anthony Larcher's avatar
debug    
Anthony Larcher committed
994
995
            # Decrease learning rate according to the scheduler policy
            #scheduler.step(val_loss)
996

Anthony Larcher's avatar
debug    
Anthony Larcher committed
997
998
999
            # remember best accuracy and save checkpoint
            is_best = val_acc > best_accuracy
            best_accuracy = max(val_acc, best_accuracy)
Anthony Larcher's avatar
Anthony Larcher committed
1000

For faster browsing, not all history is shown. View entire blame