xvector.py 27.4 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# -*- coding: utf-8 -*-
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
Anthony Larcher committed
25
Copyright 2014-2020 Yevhenii Prokopalo, Anthony Larcher
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
import logging
import numpy
Anthony Larcher's avatar
minor    
Anthony Larcher committed
30
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
31
import torch
Anthony Larcher's avatar
Anthony Larcher committed
32
33
import torch.optim as optim
import torch.multiprocessing as mp
Anthony Larcher's avatar
Anthony Larcher committed
34
from torchvision import transforms
Anthony Larcher's avatar
Anthony Larcher committed
35
from collections import OrderedDict
36
from .xsets import XvectorMultiDataset, StatDataset, VoxDataset
Anthony Larcher's avatar
Anthony Larcher committed
37
38
39
from .xsets import FrequencyMask, CMVN, TemporalMask
from ..bosaris import IdMap
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
40
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
41

Anthony Larcher's avatar
Anthony Larcher committed
42
43
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
44
__copyright__ = "Copyright 2015-2020 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
45
46
47
48
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
49
50


Anthony Larcher's avatar
Anthony Larcher committed
51
# logging.basicConfig(stream=sys.stdout, level=logging.INFO)
Anthony Larcher's avatar
Anthony Larcher committed
52
53


54
55
56
57
58
def get_lr(optimizer):
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
59
60
61
62
63
64
65
def split_file_list(batch_files, num_processes):
    # Cut the list of files into args.num_processes lists of files
    batch_sub_lists = [[]] * num_processes
    x = [ii for ii in range(len(batch_files))]
    for ii in range(num_processes):
        batch_sub_lists[ii - 1] = [batch_files[z + ii] for z in x[::num_processes] if (z + ii) < len(batch_files)]
    return batch_sub_lists
Anthony Larcher's avatar
Anthony Larcher committed
66
67
68


class Xtractor(torch.nn.Module):
69
70
71
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
Anthony Larcher committed
72
    def __init__(self, spk_number, dropout):
Anthony Larcher's avatar
Anthony Larcher committed
73
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
74
        self.frame_conv0 = torch.nn.Conv1d(30, 512, 5, dilation=1)
Anthony Larcher's avatar
Anthony Larcher committed
75
76
77
        self.frame_conv1 = torch.nn.Conv1d(512, 512, 3, dilation=2)
        self.frame_conv2 = torch.nn.Conv1d(512, 512, 3, dilation=3)
        self.frame_conv3 = torch.nn.Conv1d(512, 512, 1)
Anthony Larcher's avatar
test    
Anthony Larcher committed
78
79
        self.frame_conv4 = torch.nn.Conv1d(512, 3 * 512, 1)
        self.seg_lin0 = torch.nn.Linear(3 * 512 * 2, 512)
Anthony Larcher's avatar
Anthony Larcher committed
80
        self.dropout_lin0 = torch.nn.Dropout(p=dropout)
Anthony Larcher's avatar
Anthony Larcher committed
81
        self.seg_lin1 = torch.nn.Linear(512, 512)
Anthony Larcher's avatar
Anthony Larcher committed
82
        self.dropout_lin1 = torch.nn.Dropout(p=dropout)
Anthony Larcher's avatar
Anthony Larcher committed
83
84
85
        self.seg_lin2 = torch.nn.Linear(512, spk_number)
        #
        self.norm0 = torch.nn.BatchNorm1d(512)
Anthony Larcher's avatar
Anthony Larcher committed
86
87
88
        self.norm1 = torch.nn.BatchNorm1d(512)
        self.norm2 = torch.nn.BatchNorm1d(512)
        self.norm3 = torch.nn.BatchNorm1d(512)
Anthony Larcher's avatar
test    
Anthony Larcher committed
89
        self.norm4 = torch.nn.BatchNorm1d(3 * 512)
Anthony Larcher's avatar
Anthony Larcher committed
90
        self.norm6 = torch.nn.BatchNorm1d(512)
Anthony Larcher's avatar
Anthony Larcher committed
91
        self.norm7 = torch.nn.BatchNorm1d(512)
Anthony Larcher's avatar
Anthony Larcher committed
92
        #
Anthony Larcher's avatar
Anthony Larcher committed
93
        self.activation = torch.nn.LeakyReLU(0.2)
Anthony Larcher's avatar
Anthony Larcher committed
94

95
    def produce_embeddings(self, x):
Anthony Larcher's avatar
Anthony Larcher committed
96
        """
Anthony Larcher's avatar
Anthony Larcher committed
97

98
99
100
        :param x:
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
101
102
103
104
105
        frame_emb_0 = self.norm0(self.activation(self.frame_conv0(x)))
        frame_emb_1 = self.norm1(self.activation(self.frame_conv1(frame_emb_0)))
        frame_emb_2 = self.norm2(self.activation(self.frame_conv2(frame_emb_1)))
        frame_emb_3 = self.norm3(self.activation(self.frame_conv3(frame_emb_2)))
        frame_emb_4 = self.norm4(self.activation(self.frame_conv4(frame_emb_3)))
Anthony Larcher's avatar
Anthony Larcher committed
106
107
108

        mean = torch.mean(frame_emb_4, dim=2)
        std = torch.std(frame_emb_4, dim=2)
109
        seg_emb = torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
110

111
112
        embedding_a = self.seg_lin0(seg_emb)
        return embedding_a
Anthony Larcher's avatar
Anthony Larcher committed
113
114

    def forward(self, x):
115
116
117
118
119
120
        """

        :param x:
        :return:
        """
        seg_emb_0 = self.produce_embeddings(x)
Anthony Larcher's avatar
Anthony Larcher committed
121
        # batch-normalisation after this layer
122
        seg_emb_1 = self.norm6(self.activation(seg_emb_0))
Anthony Larcher's avatar
Anthony Larcher committed
123
        # new layer with batch Normalization
124
        seg_emb_2 = self.norm7(self.activation(self.seg_lin1(self.dropout_lin1(seg_emb_1))))
Anthony Larcher's avatar
Anthony Larcher committed
125
        # No batch-normalisation after this layer
126
        result = self.activation(self.seg_lin2(seg_emb_2))
Anthony Larcher's avatar
Anthony Larcher committed
127
128
        return result

129
130
131
132
133
134
135
136
137
138
139
    def extract(self, x):
        """
        Extract x-vector given an input sequence of features

        :param x:
        :return:
        """
        embedding_a = self.produce_embeddings(x)
        embedding_b = self.seg_lin1(self.norm6(self.activation(embedding_a)))

        return embedding_a, embedding_b
Anthony Larcher's avatar
Anthony Larcher committed
140
141
142

    def init_weights(self):
        """
143
        Initialize the x-vector extract weights and biaises
Anthony Larcher's avatar
Anthony Larcher committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        """
        torch.nn.init.normal_(self.frame_conv0.weight, mean=-0.5, std=0.1)
        torch.nn.init.normal_(self.frame_conv1.weight, mean=-0.5, std=0.1)
        torch.nn.init.normal_(self.frame_conv2.weight, mean=-0.5, std=0.1)
        torch.nn.init.normal_(self.frame_conv3.weight, mean=-0.5, std=0.1)
        torch.nn.init.normal_(self.frame_conv4.weight, mean=-0.5, std=0.1)
        torch.nn.init.xavier_uniform(self.seg_lin0.weight)
        torch.nn.init.xavier_uniform(self.seg_lin1.weight)
        torch.nn.init.xavier_uniform(self.seg_lin2.weight)

        torch.nn.init.constant(self.frame_conv0.bias, 0.1)
        torch.nn.init.constant(self.frame_conv1.bias, 0.1)
        torch.nn.init.constant(self.frame_conv2.bias, 0.1)
        torch.nn.init.constant(self.frame_conv3.bias, 0.1)
        torch.nn.init.constant(self.frame_conv4.bias, 0.1)
        torch.nn.init.constant(self.seg_lin0.bias, 0.1)
        torch.nn.init.constant(self.seg_lin1.bias, 0.1)
        torch.nn.init.constant(self.seg_lin2.bias, 0.1)

Anthony Larcher's avatar
Anthony Larcher committed
163
164

def xtrain(args):
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    """
    Initialize and train an x-vector on a single GPU

    :param args:
    :return:
    """
    # If we start from an existing model
    if not args.init_model_name == '':
        # Load the model
        logging.critical("*** Load model from = {}/{}".format(args.model_path, args.init_model_name))
        model_file_name = '/'.join([args.model_path, args.init_model_name])
        model = torch.load(model_file_name)
        model.train()
    else:
        # Initialize a first model and save to disk
        model = Xtractor(args.class_number, args.dropout)
        model.train()
Anthony Larcher's avatar
Anthony Larcher committed
182
183
184
185
186

    if torch.cuda.device_count() > 1:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    model.cuda()

    # Split the training data in train and cv
    total_seg_df = pickle.load(open(args.batch_training_list, "rb"))

    speaker_dict = {}
    tmp = total_seg_df.speaker_id.unique()
    tmp.sort()
    for idx, spk in enumerate(tmp):
        speaker_dict[spk] = idx
    pickle.dump(speaker_dict, open("spk_dictionary.pkl", "wb"))

    cv_portion = 0.007
    idx = numpy.arange(len(total_seg_df))
    numpy.random.shuffle(idx)
    train_seg_df = total_seg_df.iloc[idx[:int((1 - cv_portion) * len(idx))]].reset_index()
    cv_seg_df = total_seg_df.iloc[idx[int((1 - cv_portion) * len(idx)):]].reset_index()

    current_model_file_name = "initial_model"
    torch.save(model.state_dict(), current_model_file_name)

    optimizer = torch.optim.SGD([
        {'params': model.module.frame_conv0.parameters(), 'weight_decay': args.l2_frame},
        {'params': model.module.frame_conv1.parameters(), 'weight_decay': args.l2_frame},
        {'params': model.module.frame_conv2.parameters(), 'weight_decay': args.l2_frame},
        {'params': model.module.frame_conv3.parameters(), 'weight_decay': args.l2_frame},
        {'params': model.module.frame_conv4.parameters(), 'weight_decay': args.l2_frame},
        {'params': model.module.seg_lin0.parameters(), 'weight_decay': args.l2_seg},
        {'params': model.module.seg_lin1.parameters(), 'weight_decay': args.l2_seg},
        {'params': model.module.seg_lin2.parameters(), 'weight_decay': args.l2_seg}
    ],
        lr=args.lr, momentum=0.9)

    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min')

    for epoch in range(1, args.epochs + 1):
        # Process one epoch and return the current model
        model = train_epoch(model, epoch, train_seg_df, speaker_dict, optimizer, args)

        # Add the cross validation here
        accuracy, val_loss = cross_validation(args, model, cv_seg_df, speaker_dict)
        logging.critical("*** Cross validation accuracy = {} %".format(accuracy))

        # Decrease learning rate according to the scheduler policy
        scheduler.step(val_loss)

        # return the file name of the new model
        base_name = "model"
        if not args.init_model_name == "":
            base_name = args.init_model_name
        current_model_file_name = "{}/{}_{}_epoch_{}".format(args.model_path, base_name, args.expe_id, epoch)
        torch.save(model, current_model_file_name)


def train_epoch(model, epoch, train_seg_df, speaker_dict, optimizer, args):
    """

    :param model:
    :param epoch:
    :param train_seg_df:
    :param speaker_dict:
    :param optimizer:
    :param args:
    :return:
    """
    device = torch.device("cuda:0")

    torch.manual_seed(args.seed)

    train_transform = []
    if not args.train_transformation == '':
        trans = args.train_transformation.split(',')
        for t in trans:
            if "CMVN" in t:
                train_transform.append(CMVN())
            if "FrequencyMask" in t:
                a = int(t.split("-")[0].split("(")[1])
                b = int(t.split("-")[1].split(")")[0])
                train_transform.append(FrequencyMask(a, b))
            if "TemporalMask" in t:
                a = int(t.split("(")[1].split(")")[0])
                train_transform.append(TemporalMask(a))
Anthony Larcher's avatar
Anthony Larcher committed
269
    train_set = VoxDataset(train_seg_df, speaker_dict, args.duration, transform=transforms.Compose(train_transform),
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
                           spec_aug_ratio=args.spec_aug, temp_aug_ratio=args.temp_aug)
    train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=15)

    criterion = torch.nn.CrossEntropyLoss()

    accuracy = 0.0
    for batch_idx, (data, target, _, __) in enumerate(train_loader):
        target = target.squeeze()
        optimizer.zero_grad()
        output = model(data.to(device))
        loss = criterion(output, target.to(device))
        loss.backward()
        optimizer.step()
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()

        if batch_idx % args.log_interval == 0:
            logging.critical('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                epoch, batch_idx + 1, train_loader.__len__(),
                       100. * batch_idx / train_loader.__len__(), loss.item(),
                       100.0 * accuracy.item() / ((batch_idx + 1) * args.batch_size)))
    return model


# def cross_validation(args, model):
#
#     with open(args.cross_validation_list, 'r') as fh:
#         cross_validation_list = [l.rstrip() for l in fh]
#     cv_loader = XvectorMultiDataset(cross_validation_list, args.batch_path)
#
#     model.eval()
#     device = torch.device("cuda:0")
#     model.to(device)
#
#     accuracy = 0.0
#     bi = 0
#     for batch_idx, (data, target) in enumerate(cv_loader):
#         output = model(data.to(device))
#         accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
#         bi = batch_idx
#     return 100. * accuracy.cpu().numpy() / ((bi + 1) * args.batch_size)


def cross_validation(args, model, cv_seg_df, speaker_dict):
    """

    :param args:
    :param model:
    :param cv_seg_df:
    :return:
    """
    cv_transform = []
    if not args.cv_transformation == '':
        trans = args.cv_transformation.split(',')
        for t in trans:
            if "CMVN" in t:
                cv_transform.append(CMVN())
            if "FrequencyMask" in t:
                a = t.split(",")[0].split("(")[1]
                b = t.split(",")[1].split("(")[0]
                cv_transform.append(FrequencyMask(a, b))
            if "TemporalMask" in t:
                a = t.split(",")[0].split("(")[1]
                cv_transform.append(TemporalMask(a, b))
    cv_set = VoxDataset(cv_seg_df, speaker_dict, 500, transform=transforms.Compose(cv_transform),
                        spec_aug_ratio=args.spec_aug, temp_aug_ratio=args.temp_aug)
    cv_loader = DataLoader(cv_set, batch_size=args.batch_size, shuffle=False, num_workers=15)
    model.eval()
    device = torch.device("cuda:0")
    model.to(device)

    accuracy = 0.0
    criterion = torch.nn.CrossEntropyLoss()

    for batch_idx, (data, target, _, __) in enumerate(cv_loader):
        target = target.squeeze()
        output = model(data.to(device))
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()

    loss = criterion(output, target.to(device))

    return 100. * accuracy.cpu().numpy() / ((batch_idx + 1) * args.batch_size), loss


def xtrain_asynchronous(args):
354
355
356
357
358
359
    """
    Initialize and train an x-vector in asynchronous manner

    :param args:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
360
    # Initialize a first model and save to disk
Anthony Larcher's avatar
Anthony Larcher committed
361
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
362
363
364
365
    current_model_file_name = "initial_model"
    torch.save(model.state_dict(), current_model_file_name)

    for epoch in range(1, args.epochs + 1):
366
        current_model_file_name = train_asynchronous_epoch(epoch, args, current_model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
367
368

        # Add the cross validation here
369
        accuracy = cross_asynchronous_validation(args, current_model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
370
        print("*** Cross validation accuracy = {} %".format(accuracy))
Anthony Larcher's avatar
Anthony Larcher committed
371

Anthony Larcher's avatar
Anthony Larcher committed
372
        # Decrease learning rate after every epoch
Anthony Larcher's avatar
sad    
Anthony Larcher committed
373
374
        args.lr = args.lr * 0.9
        print("        Decrease learning rate: {}".format(args.lr))
Anthony Larcher's avatar
Anthony Larcher committed
375

Anthony Larcher's avatar
Anthony Larcher committed
376

377
def train_asynchronous_epoch(epoch, args, initial_model_file_name):
378
379
380
381
382
383
384
385
    """
    Process one training epoch using an asynchronous implementation of the training

    :param epoch:
    :param args:
    :param initial_model_file_name:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
    # Compute the megabatch number
    with open(args.batch_training_list, 'r') as fh:
        batch_file_list = [l.rstrip() for l in fh]

    # Shorten the batch_file_list to be a multiple of

    megabatch_number = len(batch_file_list) // (args.averaging_step * args.num_processes)
    megabatch_size = args.averaging_step * args.num_processes
    print("Epoch {}, number of megabatches = {}".format(epoch, megabatch_number))

    current_model = initial_model_file_name

    # For each sublist: run an asynchronous training and averaging of the model
    for ii in range(megabatch_number):
        print('Process megabatch [{} / {}]'.format(ii + 1, megabatch_number))
        current_model = train_asynchronous(epoch,
                                           args,
                                           current_model,
                                           batch_file_list[megabatch_size * ii: megabatch_size * (ii + 1)],
                                           ii,
406
                                           megabatch_number)  # function that split train, fuse and write the new model
Anthony Larcher's avatar
Anthony Larcher committed
407
408
409
    return current_model


410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
def train_asynchronous(epoch, args, initial_model_file_name, batch_file_list, megabatch_idx, megabatch_number):
    """
    Process one mega-batch of data asynchronously, average the model parameters across
    subrocesses and return the updated version of the model

    :param epoch:
    :param args:
    :param initial_model_file_name:
    :param batch_file_list:
    :param megabatch_idx:
    :param megabatch_number:
    :return:
    """
    # Split the list of files for each process
    sub_lists = split_file_list(batch_file_list, args.num_processes)

    #
    output_queue = mp.Queue()
    # output_queue = multiprocessing.Queue()

    processes = []
    for rank in range(args.num_processes):
432
        p = mp.Process(target=train_asynchronous_worker,
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
                       args=(rank, epoch, args, initial_model_file_name, sub_lists[rank], output_queue)
                       )
        # We first train the model across `num_processes` processes
        p.start()
        processes.append(p)

    # Average the models and write the new one to disk
    asynchronous_model = []
    for ii in range(args.num_processes):
        asynchronous_model.append(dict(output_queue.get()))

    for p in processes:
        p.join()

    av_model = Xtractor(args.class_number, args.dropout)
    tmp = av_model.state_dict()

    average_param = dict()
    for k in list(asynchronous_model[0].keys()):
        average_param[k] = asynchronous_model[0][k]

        for mod in asynchronous_model[1:]:
            average_param[k] += mod[k]

        if 'num_batches_tracked' not in k:
            tmp[k] = torch.FloatTensor(average_param[k] / len(asynchronous_model))

    # return the file name of the new model
    current_model_file_name = "{}/model_{}_epoch_{}_batch_{}".format(args.model_path, args.expe_id, epoch,
                                                                     megabatch_idx)
    torch.save(tmp, current_model_file_name)
    if megabatch_idx == megabatch_number:
        torch.save(tmp, "{}/model_{}_epoch_{}".format(args.model_path, args.expe_id, epoch))

    return current_model_file_name


470
def train_asynchronous_worker(rank, epoch, args, initial_model_file_name, batch_list, output_queue):
471
472
473
474
475
476
477
478
479
480
481
    """


    :param rank:
    :param epoch:
    :param args:
    :param initial_model_file_name:
    :param batch_list:
    :param output_queue:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
482
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
483
484
485
486
    model.load_state_dict(torch.load(initial_model_file_name))
    model.train()

    torch.manual_seed(args.seed + rank)
Anthony Larcher's avatar
Anthony Larcher committed
487
    train_loader = XvectorMultiDataset(batch_list, args.batch_path)
Anthony Larcher's avatar
Anthony Larcher committed
488
489
490
491
492
493
494
495
496
497
498
499

    device = torch.device("cuda:{}".format(rank))
    model.to(device)

    optimizer = optim.Adam([{'params': model.frame_conv0.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv1.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv2.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv3.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv4.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.seg_lin0.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin1.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin2.parameters(), 'weight_decay': args.l2_seg}
Anthony Larcher's avatar
Anthony Larcher committed
500
                            ], lr=args.lr)
Anthony Larcher's avatar
Anthony Larcher committed
501

Anthony Larcher's avatar
Anthony Larcher committed
502
    criterion = torch.nn.CrossEntropyLoss()
Anthony Larcher's avatar
Anthony Larcher committed
503
504
505
506
507
508
509
510

    accuracy = 0.0
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = model(data.to(device))
        loss = criterion(output, target.to(device))
        loss.backward()
        optimizer.step()
Anthony Larcher's avatar
Anthony Larcher committed
511

Anthony Larcher's avatar
Anthony Larcher committed
512
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
Anthony Larcher's avatar
Anthony Larcher committed
513

Anthony Larcher's avatar
Anthony Larcher committed
514
515
516
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                epoch, batch_idx + 1, train_loader.__len__(),
517
518
                100. * batch_idx / train_loader.__len__(), loss.item(),
                100.0 * accuracy.item() / ((batch_idx + 1) * args.batch_size)))
Anthony Larcher's avatar
Anthony Larcher committed
519

Anthony Larcher's avatar
Anthony Larcher committed
520
521
    model_param = OrderedDict()
    params = model.state_dict()
Anthony Larcher's avatar
Anthony Larcher committed
522

Anthony Larcher's avatar
Anthony Larcher committed
523
524
525
    for k in list(params.keys()):
        model_param[k] = params[k].cpu().detach().numpy()
    output_queue.put(model_param)
Anthony Larcher's avatar
Anthony Larcher committed
526
527


528
def cross_asynchronous_validation(args, current_model_file_name):
Anthony Larcher's avatar
Anthony Larcher committed
529
530
    """

Anthony Larcher's avatar
Anthony Larcher committed
531
532
    :param args:
    :param current_model_file_name:
Anthony Larcher's avatar
Anthony Larcher committed
533
534
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
535
    with open(args.cross_validation_list, 'r') as fh:
Anthony Larcher's avatar
Anthony Larcher committed
536
        cross_validation_list = [l.rstrip() for l in fh]
Anthony Larcher's avatar
Anthony Larcher committed
537
        sub_lists = split_file_list(cross_validation_list, args.num_processes)
Anthony Larcher's avatar
Anthony Larcher committed
538

Anthony Larcher's avatar
Anthony Larcher committed
539
540
    #
    output_queue = mp.Queue()
Anthony Larcher's avatar
Anthony Larcher committed
541

Anthony Larcher's avatar
Anthony Larcher committed
542
543
    processes = []
    for rank in range(args.num_processes):
544
        p = mp.Process(target=cv_asynchronous_worker,
Anthony Larcher's avatar
Anthony Larcher committed
545
546
547
548
549
                       args=(rank, args, current_model_file_name, sub_lists[rank], output_queue)
                       )
        # We first evaluate the model across `num_processes` processes
        p.start()
        processes.append(p)
Anthony Larcher's avatar
Anthony Larcher committed
550

Anthony Larcher's avatar
Anthony Larcher committed
551
552
553
554
    # Average the models and write the new one to disk
    result = []
    for ii in range(args.num_processes):
        result.append(output_queue.get())
Anthony Larcher's avatar
Anthony Larcher committed
555

Anthony Larcher's avatar
Anthony Larcher committed
556
557
    for p in processes:
        p.join()
Anthony Larcher's avatar
Anthony Larcher committed
558

Anthony Larcher's avatar
Anthony Larcher committed
559
560
561
    # Compute the global accuracy
    accuracy = 0.0
    total_batch_number = 0
Anthony Larcher's avatar
Anthony Larcher committed
562
    for bn, acc in result:
Anthony Larcher's avatar
Anthony Larcher committed
563
        accuracy += acc
Anthony Larcher's avatar
Anthony Larcher committed
564
565
        total_batch_number += bn
    
Anthony Larcher's avatar
Anthony Larcher committed
566
    return 100. * accuracy / (total_batch_number * args.batch_size)
Anthony Larcher's avatar
Anthony Larcher committed
567
568


569
def cv_asynchronous_worker(rank, args, current_model_file_name, batch_list, output_queue):
Anthony Larcher's avatar
Anthony Larcher committed
570
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
571
572
    model.load_state_dict(torch.load(current_model_file_name))
    model.eval()
Anthony Larcher's avatar
Anthony Larcher committed
573

Anthony Larcher's avatar
Anthony Larcher committed
574
    cv_loader = XvectorMultiDataset(batch_list, args.batch_path)
Anthony Larcher's avatar
Anthony Larcher committed
575

Anthony Larcher's avatar
Anthony Larcher committed
576
577
    device = torch.device("cuda:{}".format(rank))
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
578

Anthony Larcher's avatar
Anthony Larcher committed
579
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
580
    for batch_idx, (data, target) in enumerate(cv_loader):
Anthony Larcher's avatar
Anthony Larcher committed
581
582
        output = model(data.to(device))
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
Anthony Larcher's avatar
Anthony Larcher committed
583
    output_queue.put((cv_loader.__len__(), accuracy.cpu().numpy()))
Anthony Larcher's avatar
Anthony Larcher committed
584

Anthony Larcher's avatar
hot    
Anthony Larcher committed
585

586
def extract_idmap(args, device_id, segment_indices, fs_params, idmap_name, output_queue):
Anthony Larcher's avatar
Anthony Larcher committed
587
    """
Anthony Larcher's avatar
Anthony Larcher committed
588
589
    Function that takes a model and an idmap and extract all x-vectors based on this model
    and return a StatServer containing the x-vectors
Anthony Larcher's avatar
Anthony Larcher committed
590
    """
591
    # device = torch.device("cuda:{}".format(device_ID))
Anthony Larcher's avatar
Anthony Larcher committed
592
    device = torch.device('cpu')
Anthony Larcher's avatar
Anthony Larcher committed
593
594
595
596
597
598
599
600
601
602
603
604
605

    # Create the dataset
    tmp_idmap = IdMap(idmap_name)
    idmap = IdMap()
    idmap.leftids = tmp_idmap.leftids[segment_indices]
    idmap.rightids = tmp_idmap.rightids[segment_indices]
    idmap.start = tmp_idmap.start[segment_indices]
    idmap.stop = tmp_idmap.stop[segment_indices]

    segment_loader = StatDataset(idmap, fs_params)

    # Load the model
    model_file_name = '/'.join([args.model_path, args.model_name])
Anthony Larcher's avatar
Anthony Larcher committed
606
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
607
608
609
610
611
612
613
614
    model.load_state_dict(torch.load(model_file_name))
    model.eval()

    # Get the size of embeddings
    emb_a_size = model.seg_lin0.weight.data.shape[0]
    emb_b_size = model.seg_lin1.weight.data.shape[0]

    # Create a Tensor to store all x-vectors on the GPU
Anthony Larcher's avatar
Anthony Larcher committed
615
616
617
618
619
620
    emb_1 = numpy.zeros((idmap.leftids.shape[0], emb_a_size)).astype(numpy.float32)
    emb_2 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_3 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_4 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_5 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_6 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
Anthony Larcher's avatar
Anthony Larcher committed
621
622
623
624
625
626

    # Send on selected device
    model.to(device)

    # Loop to extract all x-vectors
    for idx, (model_id, segment_id, data) in enumerate(segment_loader):
Anthony Larcher's avatar
Anthony Larcher committed
627
        logging.critical('Process file {}, [{} / {}]'.format(segment_id, idx, segment_loader.__len__()))
Anthony Larcher's avatar
Anthony Larcher committed
628

Anthony Larcher's avatar
Anthony Larcher committed
629
630
631
        if list(data.shape)[2] < 20:
            pass
        else:
Anthony Larcher's avatar
Anthony Larcher committed
632
633
634
635
636
637
638
            seg_1, seg_2, seg_3, seg_4, seg_5, seg_6 = model.extract(data.to(device))
            emb_1[idx, :] = seg_1.detach().cpu()
            emb_2[idx, :] = seg_2.detach().cpu()
            emb_3[idx, :] = seg_3.detach().cpu()
            emb_4[idx, :] = seg_4.detach().cpu()
            emb_5[idx, :] = seg_5.detach().cpu()
            emb_6[idx, :] = seg_6.detach().cpu()
Anthony Larcher's avatar
Anthony Larcher committed
639

Anthony Larcher's avatar
Anthony Larcher committed
640
    output_queue.put((segment_indices, emb_1, emb_2, emb_3, emb_4, emb_5, emb_6))
Anthony Larcher's avatar
Anthony Larcher committed
641
642


Anthony Larcher's avatar
Anthony Larcher committed
643
def extract_parallel(args, fs_params):
644
645
646
647
648
649
    """

    :param args:
    :param fs_params:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
650
651
652
    emb_a_size = 512
    emb_b_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
653
    idmap = IdMap(args.idmap)
Anthony Larcher's avatar
Anthony Larcher committed
654

Anthony Larcher's avatar
Anthony Larcher committed
655
656
657
658
659
660
661
662
663
664
665
666
667
    x_server_1 = StatServer(idmap, 1, emb_a_size)
    x_server_2 = StatServer(idmap, 1, emb_b_size)
    x_server_3 = StatServer(idmap, 1, emb_b_size)
    x_server_4 = StatServer(idmap, 1, emb_b_size)
    x_server_5 = StatServer(idmap, 1, emb_b_size)
    x_server_6 = StatServer(idmap, 1, emb_b_size)

    x_server_1.stat0 = numpy.ones(x_server_1.stat0.shape)
    x_server_2.stat0 = numpy.ones(x_server_2.stat0.shape)
    x_server_3.stat0 = numpy.ones(x_server_3.stat0.shape)
    x_server_4.stat0 = numpy.ones(x_server_4.stat0.shape)
    x_server_5.stat0 = numpy.ones(x_server_5.stat0.shape)
    x_server_6.stat0 = numpy.ones(x_server_6.stat0.shape)
Anthony Larcher's avatar
Anthony Larcher committed
668
669
670

    # Split the indices
    mega_batch_size = idmap.leftids.shape[0] // args.num_processes
Anthony Larcher's avatar
Anthony Larcher committed
671
672
673

    logging.critical("Number of sessions to process: {}".format(idmap.leftids.shape[0]))

Anthony Larcher's avatar
Anthony Larcher committed
674
675
676
    segment_idx = []
    for ii in range(args.num_processes):
        segment_idx.append(
Anthony Larcher's avatar
Anthony Larcher committed
677
678
679
680
            numpy.arange(ii * mega_batch_size, numpy.min([(ii + 1) * mega_batch_size, idmap.leftids.shape[0]])))

    for idx, si in enumerate(segment_idx):
        logging.critical("Number of session on process {}: {}".format(idx, len(si)))
Anthony Larcher's avatar
Anthony Larcher committed
681
682
683
684
685
686
687

    # Extract x-vectors in parallel
    output_queue = mp.Queue()

    processes = []
    for rank in range(args.num_processes):
        p = mp.Process(target=extract_idmap,
Anthony Larcher's avatar
Anthony Larcher committed
688
                       args=(args, rank, segment_idx[rank], fs_params, args.idmap, output_queue)
Anthony Larcher's avatar
Anthony Larcher committed
689
690
691
692
693
694
695
                       )
        # We first train the model across `num_processes` processes
        p.start()
        processes.append(p)

    # Get the x-vectors and fill the StatServer
    for ii in range(args.num_processes):
Anthony Larcher's avatar
Anthony Larcher committed
696
697
698
699
700
701
702
        indices, seg_1, seg_2, seg_3, seg_4, seg_5, seg_6 = output_queue.get()
        x_server_1.stat1[indices, :] = seg_1
        x_server_2.stat1[indices, :] = seg_2
        x_server_3.stat1[indices, :] = seg_3
        x_server_4.stat1[indices, :] = seg_4
        x_server_5.stat1[indices, :] = seg_5
        x_server_6.stat1[indices, :] = seg_6
Anthony Larcher's avatar
Anthony Larcher committed
703
704
705
706

    for p in processes:
        p.join()

Anthony Larcher's avatar
Anthony Larcher committed
707
    return x_server_1, x_server_2, x_server_3, x_server_4, x_server_5, x_server_6
Anthony Larcher's avatar
Anthony Larcher committed
708
709


Anthony Larcher's avatar
Anthony Larcher committed
710
def extract_embeddings(args):
711
712
713
714
715
716
717
718
719
720
721
722
723
    """

    :param args:
    :param device_id:
    :param fs_params:
    :return:
    """
    device = torch.device("cuda:0")

    # Load the model
    logging.critical("*** Load model from = {}/{}".format(args.model_path, args.init_model_name))
    model_file_name = '/'.join([args.model_path, args.init_model_name])
    model = torch.load(model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
724
    model = torch.nn.DataParallel(model)
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
    model.eval()
    model.to(device)

    # Get the list of files
    total_seg_df = pickle.load(open(args.batch_training_list, "rb"))

    speaker_dict = {}
    tmp = total_seg_df.speaker_id.unique()
    tmp.sort()
    for idx, spk in enumerate(tmp):
        speaker_dict[spk] = idx

    extract_transform = [CMVN(), ]
    extract_set = VoxDataset(total_seg_df, speaker_dict, None, transform=transforms.Compose(extract_transform),
                             spec_aug_ratio=args.spec_aug, temp_aug_ratio=args.temp_aug)
    extract_loader = DataLoader(extract_set, batch_size=1, shuffle=False, num_workers=5)
Anthony Larcher's avatar
Anthony Larcher committed
741

742
    #CREER UN TENSEUR DE LA BONNE TAILLE POUR STOCKER LES X-VECTEURS
Anthony Larcher's avatar
Anthony Larcher committed
743

744
745
746
747
    for batch_idx, (data, target, _, __) in enumerate(extract_loader):
        print("extrait x-vecteur numero {}".format(batch_idx))
        embedding = model.produce_embeddings(data.to(device))
        #REMPLIR LE TENSEUR AVEC LE NOUVEAU X-VECTEUR
Anthony Larcher's avatar
Anthony Larcher committed
748

749
750
    #FAIRE CORRESPONDRE LES SPK_ID AVEC LES X-VECTEURS
    #RENVOYER LE TENSEUR DE X-VECTEURS SUR LE CPU OU L ECRTIRE SUR LE DISQUE