xvector.py 63 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
25
Copyright 2014-2021 Anthony Larcher, Yevhenii Prokopalo
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28

Anthony Larcher's avatar
Anthony Larcher committed
29
import logging
Anthony Larcher's avatar
debug    
Anthony Larcher committed
30
import math
Anthony Larcher's avatar
Anthony Larcher committed
31
import os
Anthony Larcher's avatar
Anthony Larcher committed
32
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
33
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
34
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
35
import shutil
36
import time
Anthony Larcher's avatar
Anthony Larcher committed
37
import torch
Anthony Larcher's avatar
debug    
Anthony Larcher committed
38
import torchaudio
Anthony Larcher's avatar
Anthony Larcher committed
39
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
40
41
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
42
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
43
44
45
46
47
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
from .preprocessor import MfccFrontEnd
from .preprocessor import MelSpecFrontEnd
from .preprocessor import RawPreprocessor
Anthony Larcher's avatar
Anthony Larcher committed
48
from .xsets import SideSet
Anthony Larcher's avatar
Anthony Larcher committed
49
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
50
from .xsets import IdMapSetPerSpeaker
Anthony Larcher's avatar
Anthony Larcher committed
51
from .xsets import SideSampler
Anthony Larcher's avatar
Anthony Larcher committed
52
53
54
55
from .res_net import ResBlockWFMS
from .res_net import ResBlock
from .res_net import PreResNet34
from .res_net import PreFastResNet34
Anthony Larcher's avatar
Anthony Larcher committed
56
from ..bosaris import IdMap
Anthony Larcher's avatar
Anthony Larcher committed
57
58
from ..bosaris import Key
from ..bosaris import Ndx
Anthony Larcher's avatar
Anthony Larcher committed
59
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
60
from ..iv_scoring import cosine_scoring
Anthony Larcher's avatar
Anthony Larcher committed
61
from .sincnet import SincNet
Anthony Larcher's avatar
merge    
Anthony Larcher committed
62
from .loss import SoftmaxAngularProto, ArcLinear
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
63
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
64
from .loss import ArcMarginProduct
Anthony Larcher's avatar
Anthony Larcher committed
65

Anthony Larcher's avatar
ddp    
Anthony Larcher committed
66

Anthony Larcher's avatar
Anthony Larcher committed
67
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
68

Anthony Larcher's avatar
Anthony Larcher committed
69
70
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
71
__copyright__ = "Copyright 2015-2021 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
72
73
74
75
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
76
77


Anthony Larcher's avatar
Anthony Larcher committed
78
79
logging.basicConfig(format='%(asctime)s %(message)s')

Anthony Larcher's avatar
Anthony Larcher committed
80
81
82
83
84
85
86
87

# Make PyTorch Deterministic
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
numpy.random.seed(0)


Anthony Larcher's avatar
Anthony Larcher committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

def eer(negatives, positives):
    """Logarithmic complexity EER computation

    Args:
        negative_scores (numpy array): impostor scores
        positive_scores (numpy array): genuine scores

    Returns:
        float: Equal Error Rate (EER)
    """

    positives = numpy.sort(positives)
    negatives = numpy.sort(negatives)[::-1]

    pos_count = positives.shape[0]
    neg_count = negatives.shape[0]

    p_score = positives[0]
    n_score = negatives[0]

    p_index = 0
    n_index = 0

    next_p_jump = pos_count//2
    next_n_jump = neg_count//2

    kdx = 0
    while True:
        kdx += 1
        if p_index < 0 or n_index < 0:
            return 0
        if p_index > pos_count or n_index > neg_count:
            return 100
        if p_score < n_score:
            p_index = p_index + next_p_jump
            n_index = n_index + next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break
        elif p_score >= n_score:
            p_index = p_index - next_p_jump
            n_index = n_index - next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break

        p_score = positives[p_index]
        n_score = negatives[n_index]
        next_p_jump = next_p_jump//2
        next_n_jump = next_n_jump//2

    eer_predicate = 100

    tfr = (abs(p_index))/pos_count
    tfa = (1+abs(n_index))/neg_count
    if (p_score == n_score and tfr == tfa):
        return tfr

    while positives[p_index] < negatives[n_index]:
        if p_index < pos_count - 1:
            p_index += 1
        elif n_index < neg_count - 1:
            n_index += 1
        else:
            break

    while positives[p_index] > negatives[n_index] and n_index >= 1:
        n_index -= 1

    tfr = (1+p_index)/pos_count
    tfa = (1+n_index)/neg_count

    while tfa > tfr:
        p_index += 1
        while positives[p_index] > negatives[n_index] and n_index >= 1:
            n_index -= 1
        tfr = (1+p_index)/pos_count
        tfa = (1+n_index)/neg_count

    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    tfr = p_index/pos_count
    tfa = (1+n_index)/neg_count
    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    while True:
        while negatives[n_index + 1] <= positives[p_index - 1]:
            p_index -= 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer
        while negatives[n_index + 1] > positives[p_index - 1]:
            n_index += 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer

    return eer


Anthony Larcher's avatar
debug    
Anthony Larcher committed
203
204
def test_metrics(model,
                 device,
Anthony Larcher's avatar
Anthony Larcher committed
205
206
207
208
                 idmap_test_filename,
                 ndx_test_filename,
                 key_test_filename,
                 data_root_name,
Anthony Larcher's avatar
Anthony Larcher committed
209
210
                 num_thread,
                 mixed_precision):
Anthony Larcher's avatar
Anthony Larcher committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
Anthony Larcher's avatar
Anthony Larcher committed
227
228
229
230
    #idmap_test_filename = 'h5f/idmap_test.h5'
    #ndx_test_filename = 'h5f/ndx_test.h5'
    #key_test_filename = 'h5f/key_test.h5'
    #data_root_name='/lium/scratch/larcher/voxceleb1/test/wav'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
231

232
    transform_pipeline = dict()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
233
234
235
236
237

    xv_stat = extract_embeddings(idmap_name=idmap_test_filename,
                                 model_filename=model,
                                 data_root_name=data_root_name,
                                 device=device,
Anthony Larcher's avatar
Anthony Larcher committed
238
239
240
                                 transform_pipeline=transform_pipeline,
                                 num_thread=num_thread,
                                 mixed_precision=mixed_precision)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
241
242
243
244
245

    scores = cosine_scoring(xv_stat,
                            xv_stat,
                            Ndx(ndx_test_filename),
                            wccn=None,
Anthony Larcher's avatar
merge    
Anthony Larcher committed
246
247
                            check_missing=True,
                            device=device)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
248
249
250
251

    tar, non = scores.get_tar_non(Key(key_test_filename))
    test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))
    return test_eer
Anthony Larcher's avatar
Anthony Larcher committed
252

Anthony Larcher's avatar
Anthony Larcher committed
253

Anthony Larcher's avatar
Anthony Larcher committed
254
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
255
256
257
258
259
260
261
262
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
263
264
265
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
266

Anthony Larcher's avatar
Anthony Larcher committed
267

Anthony Larcher's avatar
Anthony Larcher committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
class MeanStdPooling(torch.nn.Module):
    """
    Mean and Standard deviation pooling
    """
    def __init__(self):
        """

        """
        super(MeanStdPooling, self).__init__()
        pass

    def forward(self, x):
        """

        :param x:
        :return:
        """
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        return torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
288

Anthony Larcher's avatar
Anthony Larcher committed
289

Anthony Larcher's avatar
Anthony Larcher committed
290
291
292
293
294
295
296
297
298
299
300
class GruPooling(torch.nn.Module):
    """

    """
    def __init__(self, input_size, gru_node, nb_gru_layer):
        """

        :param input_size:
        :param gru_node:
        :param nb_gru_layer:
        """
Anthony Larcher's avatar
Anthony Larcher committed
301
        super(GruPooling, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
302
303
304
        self.lrelu_keras = torch.nn.LeakyReLU(negative_slope = 0.3)
        self.bn_before_gru = torch.nn.BatchNorm1d(num_features = input_size)
        self.gru = torch.nn.GRU(input_size = input_size,
Anthony Larcher's avatar
Anthony Larcher committed
305
306
307
                                hidden_size = gru_node,
                                num_layers = nb_gru_layer,
                                batch_first = True)
Anthony Larcher's avatar
Anthony Larcher committed
308
309
310
311
312
313
314
315
316
317
318
319

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = self.bn_before_gru(x)
        x = self.lrelu_keras(x)
        x = x.permute(0, 2, 1)  #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
Anthony Larcher's avatar
Anthony Larcher committed
320
        x = x[:, -1, :]
Anthony Larcher's avatar
Anthony Larcher committed
321
322
323

        return x

Anthony Larcher's avatar
Anthony Larcher committed
324

Anthony Larcher's avatar
Anthony Larcher committed
325
class Xtractor(torch.nn.Module):
326
327
328
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
329

Anthony Larcher's avatar
Anthony Larcher committed
330
331
332
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
333
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
334
                 norm_embedding=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
335
336
                 aam_margin=0.2,
                 aam_s=30):
Anthony Larcher's avatar
Anthony Larcher committed
337
338
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
339
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
340
        """
Anthony Larcher's avatar
Anthony Larcher committed
341
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
342
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
343
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
344
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
345

Anthony Larcher's avatar
Anthony Larcher committed
346
347
        print(f"Speaker number : {self.speaker_number}")

Anthony Larcher's avatar
Anthony Larcher committed
348
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
349

Anthony Larcher's avatar
Anthony Larcher committed
350
351
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
352
353
354
355
356
            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
357
358
            self.activation = torch.nn.LeakyReLU(0.2)

Anthony Larcher's avatar
Anthony Larcher committed
359
            self.preprocessor = MfccFrontEnd()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
360
            self.feature_size = self.preprocessor.n_mfcc
Anthony Larcher's avatar
Anthony Larcher committed
361

Anthony Larcher's avatar
xv    
Anthony Larcher committed
362
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
363
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
364
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
365
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
366
367
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
368
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
369
370
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
371
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
372
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
373
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
374
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
375
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
376
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
377
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
378
379
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
380
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
381
            self.stat_pooling_weight_decay = 0
Anthony Larcher's avatar
xv    
Anthony Larcher committed
382
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
383
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
384
385
            ]))

386
387
            self.embedding_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
388
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
389
390
391
392
393
                self.after_speaker_embedding = ArcMarginProduct(512,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)
Anthony Larcher's avatar
Anthony Larcher committed
394
395
396
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
397
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
398
399
400
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
401
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
402
403
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
404

405
            self.preprocessor_weight_decay = 0.0002
Anthony Larcher's avatar
debug    
Anthony Larcher committed
406
407
408
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002
409
            self.embedding_size = 512
Anthony Larcher's avatar
Anthony Larcher committed
410

Anthony Larcher's avatar
Anthony Larcher committed
411
        elif model_archi == "resnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
412

Anthony Larcher's avatar
Anthony Larcher committed
413
            self.preprocessor = MelSpecFrontEnd(n_mels=80)
Anthony Larcher's avatar
Anthony Larcher committed
414
            self.sequence_network = PreResNet34()
Anthony Larcher's avatar
Anthony Larcher committed
415
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
416

Anthony Larcher's avatar
Anthony Larcher committed
417
418
            self.before_speaker_embedding = torch.nn.Linear(in_features=5120,
                                                            out_features=self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
419
420
421
422

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

423
            self.loss = "aam"
Anthony Larcher's avatar
Anthony Larcher committed
424
            self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
Anthony Larcher's avatar
Anthony Larcher committed
425
426
                                                            int(self.speaker_number),
                                                            s = 30.0,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
427
                                                            m = 0.20,
Anthony Larcher's avatar
Anthony Larcher committed
428
                                                            easy_margin = False)
Anthony Larcher's avatar
Anthony Larcher committed
429
430
431
432
433
434
435

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
436
        elif model_archi == "fastresnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
437

Anthony Larcher's avatar
Anthony Larcher committed
438
            self.preprocessor = MelSpecFrontEnd(n_mels=80)
Anthony Larcher's avatar
Anthony Larcher committed
439
            self.sequence_network = PreFastResNet34()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
440
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
441

Anthony Larcher's avatar
Anthony Larcher committed
442
            self.before_speaker_embedding = torch.nn.Linear(in_features = 2560,
Anthony Larcher's avatar
Anthony Larcher committed
443
                                                            out_features = self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
444
445
446
447

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

Anthony Larcher's avatar
merge    
Anthony Larcher committed
448
449
450
451
            self.loss = loss
            if self.loss == "aam":
                self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
                                                                int(self.speaker_number),
Anthony Larcher's avatar
Anthony Larcher committed
452
453
                                                                s = 20,
                                                                m = 0.3,
Anthony Larcher's avatar
merge    
Anthony Larcher committed
454
455
456
457
                                                                easy_margin = False)

            elif self.loss == 'aps':
                self.after_speaker_embedding = SoftmaxAngularProto(int(self.speaker_number))
Anthony Larcher's avatar
Anthony Larcher committed
458
459
460
461
462
463

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00
Anthony Larcher's avatar
Anthony Larcher committed
464

Anthony Larcher's avatar
Anthony Larcher committed
465
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
466
467
468
469
470
471

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
472
473
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
474
475
476
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
477
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
478
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
479
480
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
498
499
500
501
502
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
503
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
504
505
506
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
507

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
508
509
510
511
512
513
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
514
        else:
Anthony Larcher's avatar
Anthony Larcher committed
515
516
            is_first_resblock = True

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
517
518
519
520
521
522
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
523

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
524
            self.loss = cfg["training"]["loss"]
Anthony Larcher's avatar
Anthony Larcher committed
525
            if self.loss == "aam":
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
526
527
                self.aam_margin = cfg["training"]["aam_margin"]
                self.aam_s = cfg["training"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
528

Anthony Larcher's avatar
Anthony Larcher committed
529
530
531
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
532
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
533
534
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
535
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
536
537
538
539
540
541
542
543
544
545
546
547
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
548
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
549
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
550
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
551
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
552
553
554
555
556
557
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
558
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
559
560

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
561
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
562
            """
Anthony Larcher's avatar
Anthony Larcher committed
563
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
564
565
566
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
582
583
584
585
586
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

Anthony Larcher's avatar
Anthony Larcher committed
587
588
589
590
591
                elif k.startswith("conv2D"):
                    segmental_layers.append((k, torch.nn.Conv2d(in_channels=1,
                                                                out_channels=entry_conv_out_channels,
                                                                kernel_size=entry_conv_kernel_size,
                                                                padding=3,
Anthony Larcher's avatar
Anthony Larcher committed
592
                                                                stride=1)))
Anthony Larcher's avatar
Anthony Larcher committed
593

Anthony Larcher's avatar
Anthony Larcher committed
594
                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
595
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
596
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
597
598
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
599
600
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
601
602
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
603
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
604
605
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
606
607
608
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
609
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
610
611
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
612
613
614
615
616
617
                elif k.startswith('resblock'):
                    segmental_layers.append((ResBlock(cfg["segmental"][k]["input_channel"],
                                                      cfg["segmental"][k]["output_channel"],
                                                      is_first_resblock)))
                    is_first_resblock = False

Anthony Larcher's avatar
Anthony Larcher committed
618
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
619
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
620

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
621
622
623
624
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
625
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
626
627
628
629
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
630
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
631

Anthony Larcher's avatar
Anthony Larcher committed
632
633
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
634
            """
Anthony Larcher's avatar
Anthony Larcher committed
635
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
636
            """
Anthony Larcher's avatar
Anthony Larcher committed
637
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
638
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
639
640
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
641
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
642
643
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
644
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
645
646
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
647
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
648
649

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
650
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
651

Anthony Larcher's avatar
Anthony Larcher committed
652
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
653
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
654
655

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
656
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
657

Anthony Larcher's avatar
Anthony Larcher committed
658
            self.embedding_size = input_size
Anthony Larcher's avatar
Anthony Larcher committed
659
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
660
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
661

Anthony Larcher's avatar
Anthony Larcher committed
662
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
663
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
664
665
666
667
668
669
670
671
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
672
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
673
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
674

Anthony Larcher's avatar
Anthony Larcher committed
675
676
677
678
679
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
680

Anthony Larcher's avatar
Anthony Larcher committed
681
682
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
683

Anthony Larcher's avatar
Anthony Larcher committed
684
685
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
686

Anthony Larcher's avatar
Anthony Larcher committed
687
688
689
690
691
692
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
693
694
695
696
697
698
699
                self.norm_embedding = True
                self.after_speaker_embedding = ArcMarginProduct(input_size,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)

Anthony Larcher's avatar
arcface    
Anthony Larcher committed
700
701
702
703
                #self.after_speaker_embedding = ArcLinear(input_size,
                #                                         self.speaker_number,
                #                                         margin=self.aam_margin,
                #                                         s=self.aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
704
705
706
707
                #self.after_speaker_embedding = ArcFace(embedding_size=input_size,
                #                                       classnum=self.speaker_number,
                #                                       s=64.,
                #                                       m=0.5)
Anthony Larcher's avatar
Anthony Larcher committed
708

Anthony Larcher's avatar
Anthony Larcher committed
709
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
710

Anthony Larcher's avatar
Anthony Larcher committed
711

712
    def forward(self, x, is_eval=False, target=None, extract_after_pooling=False):
713
714
715
        """

        :param x:
716
        :param is_eval: False for training
717
718
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
719
720
721
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
722
        x = self.sequence_network(x)
723

Anthony Larcher's avatar
Anthony Larcher committed
724
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
725
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
726

727
728
729
        if extract_after_pooling:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
730
        x = self.before_speaker_embedding(x)
731

Anthony Larcher's avatar
Anthony Larcher committed
732
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
733
            #x_norm = x.norm(p=2,dim=1, keepdim=True) / 10. # Why  10. ?
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
734
735
736
            #x_norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True, out=None, dtype=None)
            #x = torch.div(x, x_norm)
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
737

Anthony Larcher's avatar
Anthony Larcher committed
738
        if self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
739
            if is_eval:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
740
                return x
Anthony Larcher's avatar
debug    
Anthony Larcher committed
741
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
742
                return self.after_speaker_embedding(x), x
Anthony Larcher's avatar
Anthony Larcher committed
743

Anthony Larcher's avatar
merge    
Anthony Larcher committed
744
        elif self.loss in ['aam', 'aps']:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
745
746
            if is_eval:
                x = torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
747
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
748
                x = self.after_speaker_embedding(torch.nn.functional.normalize(x, dim=1), target=target), torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
749

Anthony Larcher's avatar
Anthony Larcher committed
750
        return x
Anthony Larcher's avatar
Anthony Larcher committed
751

752
753
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
754
755
756
757
758
759
760
761
762
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
763

Anthony Larcher's avatar
Anthony Larcher committed
764
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
765
           dataset_yaml,
Anthony Larcher's avatar
Anthony Larcher committed
766
767
           epochs=None,
           lr=None,
Anthony Larcher's avatar
Anthony Larcher committed
768
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
769
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
770
771
772
773
           loss=None,
           aam_margin=None,
           aam_s=None,
           patience=None,
Anthony Larcher's avatar
Anthony Larcher committed
774
           tmp_model_name=None,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
775
           best_model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
776
           multi_gpu=True,
Anthony Larcher's avatar
Anthony Larcher committed
777
           mixed_precision=False,
778
           clipping=False,
Anthony Larcher's avatar
Anthony Larcher committed
779
           opt=None,
Anthony Larcher's avatar
Anthony Larcher committed
780
781
           reset_parts=[],
           freeze_parts=[],
Anthony Larcher's avatar
Anthony Larcher committed
782
           num_thread=None,
Anthony Larcher's avatar
Anthony Larcher committed
783
           compute_test_eer=True):
784
785
    """

Anthony Larcher's avatar
Anthony Larcher committed
786
787
788
789
790
791
    :param speaker_number:
    :param dataset_yaml:
    :param epochs:
    :param lr:
    :param model_yaml:
    :param model_name:
Anthony Larcher's avatar
Anthony Larcher committed
792
793
794
795
    :param loss:
    :param aam_margin:
    :param aam_s:
    :param patience:
Anthony Larcher's avatar
Anthony Larcher committed
796
797
798
    :param tmp_model_name:
    :param best_model_name:
    :param multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
799
    :param mixed_precision:
Anthony Larcher's avatar
Anthony Larcher committed
800
    :param clipping:
Anthony Larcher's avatar
Anthony Larcher committed
801
802
803
    :param opt:
    :param reset_parts:
    :param freeze_parts:
Anthony Larcher's avatar
Anthony Larcher committed
804
    :param num_thread:
Anthony Larcher's avatar
Anthony Larcher committed
805
    :param compute_test_eer:
806
807
    :return:
    """
Anthony Larcher's avatar
debug    
Anthony Larcher committed
808
809
810
    # Test to optimize
    torch.autograd.profiler.emit_nvtx(enabled=False)

Anthony Larcher's avatar
Anthony Larcher committed
811
    if num_thread is None:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
812
        import multiprocessing
Anthony Larcher's avatar
Anthony Larcher committed
813
814
        num_thread = multiprocessing.cpu_count()

Anthony Larcher's avatar
Anthony Larcher committed
815
    logging.critical(f"Use {num_thread} cpus")
Anthony Larcher's avatar
Anthony Larcher committed
816
    logging.critical(f"Start process at {time.strftime('%H:%M:%S', time.localtime())}")
817

Anthony Larcher's avatar
debug    
Anthony Larcher committed
818
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
819
820
821
822
823

    # Use a predefined architecture
    if model_yaml in ["xvector", "rawnet2", "resnet34", "fastresnet34"]:

        if model_name is None:
Anthony Larcher's avatar
merge    
Anthony Larcher committed
824
            model = Xtractor(speaker_number, model_yaml, loss=loss)
825
826
827
828

        else:
            logging.critical(f"*** Load model from = {model_name}")
            checkpoint = torch.load(model_name)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
829
            model = Xtractor(speaker_number, model_yaml, loss=loss)
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847

            """
            Here we remove all layers that we don't want to reload

            """
            pretrained_dict = checkpoint["model_state_dict"]
            for part in reset_parts:
                pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

            new_model_dict = model.state_dict()
            new_model_dict.update(pretrained_dict)
            model.load_state_dict(new_model_dict)

        # Freeze required layers
        for name, param in model.named_parameters():
            if name.split(".")[0] in freeze_parts:
                param.requires_grad = False

Anthony Larcher's avatar
Anthony Larcher committed
848
        model_archi = model_yaml
849
850

    # Here use a config file to build the architecture
Anthony Larcher's avatar
Anthony Larcher committed
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
    else:
        with open(model_yaml, 'r') as fh:
            model_archi = yaml.load(fh, Loader=yaml.FullLoader)
            if epochs is None:
                epochs = model_archi["training"]["epochs"]
            if patience is None:
                patience = model_archi["training"]["patience"]
            if opt is None:
                opt = model_archi["training"]["opt"]
            if lr is None:
                lr = model_archi["training"]["lr"]
            if loss is None:
                loss = model_archi["training"]["loss"]
            if aam_margin is None and model_archi["training"]["loss"] == "aam":
                aam_margin = model_archi["training"]["aam_margin"]
            if aam_s is None and model_archi["training"]["loss"] == "aam":
                aam_s = model_archi["training"]["aam_s"]
            if tmp_model_name is None:
                tmp_model_name = model_archi["training"]["tmp_model_name"]
            if best_model_name is None:
                best_model_name = model_archi["training"]["best_model_name"]
            if multi_gpu is None:
                multi_gpu = model_archi["training"]["multi_gpu"]
            if clipping is None:
                clipping = model_archi["training"]["clipping"]

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
877
        if model_name is None:
Anthony Larcher's avatar
Anthony Larcher committed
878
879
880
            model = Xtractor(speaker_number, model_yaml)

         # If we start from an existing model
Anthony Larcher's avatar
Anthony Larcher committed
881
        else:
Anthony Larcher's avatar
Anthony Larcher committed
882
883
            # Load the model
            logging.critical(f"*** Load model from = {model_name}")
Anthony Larcher's avatar
merge    
Anthony Larcher committed
884
885
            checkpoint = torch.load(model_name, map_location=device)
            model = Xtractor(speaker_number, model_yaml, loss=loss)
Anthony Larcher's avatar
Anthony Larcher committed
886

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
887
888
            """
            Here we remove all layers that we don't want to reload
Anthony Larcher's avatar
Anthony Larcher committed
889
        
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
890
891
892
893
894
895
896
897
898
899
900
901
902
            """
            pretrained_dict = checkpoint["model_state_dict"]
            for part in reset_parts:
                pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

            new_model_dict = model.state_dict()
            new_model_dict.update(pretrained_dict)
            model.load_state_dict(new_model_dict)

        # Freeze required layers
        for name, param in model.named_parameters():
            if name.split(".")[0] in freeze_parts:
                param.requires_grad = False
Anthony Larcher's avatar
Anthony Larcher committed
903

Anthony Larcher's avatar
Anthony Larcher committed
904
905
906
907
    logging.critical(model)

    logging.critical("model_parameters_count: {:d}".format(
        sum(p.numel()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
908
909
910
911
            for p in model.sequence_network.parameters()
            if p.requires_grad) + \
        sum(p.numel()
            for p in model.before_speaker_embedding.parameters()
Anthony Larcher's avatar
merge    
Anthony Larcher committed
912
913
914
            if p.requires_grad) + \
        sum(p.numel()
            for p in model.stat_pooling.parameters()
Anthony Larcher's avatar
Anthony Larcher committed
915
916
            if p.requires_grad)))

Anthony Larcher's avatar
Anthony Larcher committed
917
    embedding_size = model.embedding_size
Anthony Larcher's avatar
Anthony Larcher committed
918

Anthony Larcher's avatar
Anthony Larcher committed
919
    if torch.cuda.device_count() > 1 and multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
920
921
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)
Anthony Larcher's avatar
Anthony Larcher committed
922

Anthony Larcher's avatar
Anthony Larcher committed
923
924
    else:
        print("Train on a single GPU")
Anthony Larcher's avatar
Anthony Larcher committed
925
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
926

Anthony Larcher's avatar
debug    
Anthony Larcher committed
927
928
929
930
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])

Anthony Larcher's avatar
Anthony Larcher committed
931
932
933
934
935
936
937
    """
    Set the dataloaders according to the dataset_yaml
    
    First we load the dataframe from CSV file in order to split it for training and validation purpose
    Then we provide those two 
    """
    training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"], stratify=df["speaker_idx"])
938

Anthony Larcher's avatar
Anthony Larcher committed
939
    torch.manual_seed(dataset_params['seed'])
Anthony Larcher's avatar
Anthony Larcher committed
940

Anthony Larcher's avatar
Anthony Larcher committed
941
942
943
944
945
946
947
948
949
950
951
952
    training_set = SideSet(dataset_yaml,
                           set_type="train",
                           chunk_per_segment=-1,
                           overlap=dataset_params['train']['overlap'],
                           dataset_df=training_df,
                           output_format="pytorch",
                           )

    validation_set = SideSet(dataset_yaml,
                             set_type="validation",
                             dataset_df=validation_df,
                             output_format="pytorch")
Anthony Larcher's avatar
debug    
Anthony Larcher committed
953

Anthony Larcher's avatar
Anthony Larcher committed
954
955
956
957
    side_sampler = SideSampler(training_set.sessions['speaker_idx'],
                               speaker_number,
                               1,
                               100,
Anthony Larcher's avatar
Anthony Larcher committed
958
                               dataset_params["batch_size"])
Anthony Larcher's avatar
Anthony Larcher committed
959

Anthony Larcher's avatar
debug    
Anthony Larcher committed
960
    training_loader = DataLoader(training_set,
Anthony Larcher's avatar
Anthony Larcher committed
961
                                 batch_size=dataset_params["batch_size"],
Anthony Larcher's avatar
Anthony Larcher committed
962
                                 shuffle=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
963
964
                                 drop_last=True,
                                 pin_memory=True,
Anthony Larcher's avatar
Anthony Larcher committed
965
                                 sampler=side_sampler,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
966
                                 num_workers=num_thread,
Anthony Larcher's avatar
Anthony Larcher committed
967
                                 persistent_workers=True)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
968
969

    validation_loader = DataLoader(validation_set,
Anthony Larcher's avatar
Anthony Larcher committed
970
                                   batch_size=dataset_params["batch_size"],
Anthony Larcher's avatar
Anthony Larcher committed
971
                                   drop_last=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
972
                                   pin_memory=True,
Anthony Larcher's avatar
spkset    
Anthony Larcher committed
973
                                   num_workers=num_thread,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
974
                                   persistent_workers=False)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
975

Anthony Larcher's avatar
Anthony Larcher committed
976
977
978
    """
    Set the training options
    """
Anthony Larcher's avatar
Anthony Larcher committed
979
    if opt == 'adam':
Anthony Larcher's avatar
Anthony Larcher committed
980
        _optimizer = torch.optim.Adam
Anthony Larcher's avatar
Anthony Larcher committed
981
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
982
983
    elif opt == 'rmsprop':
        _optimizer = torch.optim.RMSprop
Anthony Larcher's avatar
Anthony Larcher committed
984
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
985
    else:  # opt == 'sgd'
Anthony Larcher's avatar
Anthony Larcher committed
986
987
        _optimizer = torch.optim.SGD
        _options = {'lr': lr, 'momentum': 0.9}
Anthony Larcher's avatar
Anthony Larcher committed
988

Anthony Larcher's avatar
Anthony Larcher committed
989
    param_list = []
Anthony Larcher's avatar
Anthony Larcher committed
990
    if type(model) is Xtractor:
Anthony Larcher's avatar
Anthony Larcher committed
991
992
993
994
995
996
997
        if model.preprocessor is not None:
            param_list.append({'params': model.preprocessor.parameters(), 'weight_decay': model.preprocessor_weight_decay})
        param_list.append({'params': model.sequence_network.parameters(), 'weight_decay': model.sequence_network_weight_decay})
        param_list.append({'params': model.stat_pooling.parameters(), 'weight_decay': model.stat_pooling_weight_decay})
        param_list.append({'params': model.before_speaker_embedding.parameters(), 'weight_decay': model.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.after_speaker_embedding.parameters(), 'weight_decay': model.after_speaker_embedding_weight_decay})

Anthony Larcher's avatar
Anthony Larcher committed
998
    else:
Anthony Larcher's avatar
Anthony Larcher committed
999
1000
        if model.module.preprocessor is not None:
            param_list.append({'params': model.module.preprocessor.parameters(), 'weight_decay': model.module.preprocessor_weight_decay})
For faster browsing, not all history is shown. View entire blame