xvector.py 64.4 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
25
Copyright 2014-2021 Anthony Larcher, Yevhenii Prokopalo
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28

Anthony Larcher's avatar
Anthony Larcher committed
29
import logging
Anthony Larcher's avatar
debug    
Anthony Larcher committed
30
import math
Anthony Larcher's avatar
Anthony Larcher committed
31
import os
Anthony Larcher's avatar
Anthony Larcher committed
32
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
33
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
34
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
35
import shutil
36
import time
Anthony Larcher's avatar
Anthony Larcher committed
37
import torch
Anthony Larcher's avatar
debug    
Anthony Larcher committed
38
import torchaudio
Anthony Larcher's avatar
Anthony Larcher committed
39
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
40
41
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
42
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
43
44
45
46
47
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
from .preprocessor import MfccFrontEnd
from .preprocessor import MelSpecFrontEnd
from .preprocessor import RawPreprocessor
Anthony Larcher's avatar
Anthony Larcher committed
48
from .xsets import SideSet
Anthony Larcher's avatar
Anthony Larcher committed
49
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
50
from .xsets import IdMapSetPerSpeaker
Anthony Larcher's avatar
Anthony Larcher committed
51
from .xsets import SideSampler
Anthony Larcher's avatar
Anthony Larcher committed
52
53
54
55
from .res_net import ResBlockWFMS
from .res_net import ResBlock
from .res_net import PreResNet34
from .res_net import PreFastResNet34
Anthony Larcher's avatar
Anthony Larcher committed
56
from ..bosaris import IdMap
Anthony Larcher's avatar
Anthony Larcher committed
57
58
from ..bosaris import Key
from ..bosaris import Ndx
Anthony Larcher's avatar
Anthony Larcher committed
59
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
60
from ..iv_scoring import cosine_scoring
Anthony Larcher's avatar
Anthony Larcher committed
61
from .sincnet import SincNet
Anthony Larcher's avatar
merge    
Anthony Larcher committed
62
from ..bosaris.detplot import rocch, rocch2eer
Anthony Larcher's avatar
merge    
Anthony Larcher committed
63
from .loss import SoftmaxAngularProto, ArcLinear
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
64
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
65
from .loss import ArcMarginProduct
Anthony Larcher's avatar
Anthony Larcher committed
66

Anthony Larcher's avatar
ddp    
Anthony Larcher committed
67

Anthony Larcher's avatar
Anthony Larcher committed
68
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
69

Anthony Larcher's avatar
Anthony Larcher committed
70
71
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
72
__copyright__ = "Copyright 2015-2021 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
73
74
75
76
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
77
78


Anthony Larcher's avatar
Anthony Larcher committed
79
80
logging.basicConfig(format='%(asctime)s %(message)s')

Anthony Larcher's avatar
Anthony Larcher committed
81
82
83
84
85
86
87
88

# Make PyTorch Deterministic
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
numpy.random.seed(0)


Anthony Larcher's avatar
Anthony Larcher committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

def eer(negatives, positives):
    """Logarithmic complexity EER computation

    Args:
        negative_scores (numpy array): impostor scores
        positive_scores (numpy array): genuine scores

    Returns:
        float: Equal Error Rate (EER)
    """

    positives = numpy.sort(positives)
    negatives = numpy.sort(negatives)[::-1]

    pos_count = positives.shape[0]
    neg_count = negatives.shape[0]

    p_score = positives[0]
    n_score = negatives[0]

    p_index = 0
    n_index = 0

    next_p_jump = pos_count//2
    next_n_jump = neg_count//2

    kdx = 0
    while True:
        kdx += 1
        if p_index < 0 or n_index < 0:
            return 0
        if p_index > pos_count or n_index > neg_count:
            return 100
        if p_score < n_score:
            p_index = p_index + next_p_jump
            n_index = n_index + next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break
        elif p_score >= n_score:
            p_index = p_index - next_p_jump
            n_index = n_index - next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break

        p_score = positives[p_index]
        n_score = negatives[n_index]
        next_p_jump = next_p_jump//2
        next_n_jump = next_n_jump//2

    eer_predicate = 100

    tfr = (abs(p_index))/pos_count
    tfa = (1+abs(n_index))/neg_count
    if (p_score == n_score and tfr == tfa):
        return tfr

    while positives[p_index] < negatives[n_index]:
        if p_index < pos_count - 1:
            p_index += 1
        elif n_index < neg_count - 1:
            n_index += 1
        else:
            break

    while positives[p_index] > negatives[n_index] and n_index >= 1:
        n_index -= 1

    tfr = (1+p_index)/pos_count
    tfa = (1+n_index)/neg_count

    while tfa > tfr:
        p_index += 1
        while positives[p_index] > negatives[n_index] and n_index >= 1:
            n_index -= 1
        tfr = (1+p_index)/pos_count
        tfa = (1+n_index)/neg_count

    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    tfr = p_index/pos_count
    tfa = (1+n_index)/neg_count
    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    while True:
        while negatives[n_index + 1] <= positives[p_index - 1]:
            p_index -= 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer
        while negatives[n_index + 1] > positives[p_index - 1]:
            n_index += 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer

    return eer


Anthony Larcher's avatar
debug    
Anthony Larcher committed
204
205
def test_metrics(model,
                 device,
Anthony Larcher's avatar
Anthony Larcher committed
206
207
208
209
                 idmap_test_filename,
                 ndx_test_filename,
                 key_test_filename,
                 data_root_name,
Anthony Larcher's avatar
Anthony Larcher committed
210
211
                 num_thread,
                 mixed_precision):
Anthony Larcher's avatar
Anthony Larcher committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
Anthony Larcher's avatar
Anthony Larcher committed
228
229
230
231
    #idmap_test_filename = 'h5f/idmap_test.h5'
    #ndx_test_filename = 'h5f/ndx_test.h5'
    #key_test_filename = 'h5f/key_test.h5'
    #data_root_name='/lium/scratch/larcher/voxceleb1/test/wav'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
232

233
    transform_pipeline = dict()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
234
235
236
237
238

    xv_stat = extract_embeddings(idmap_name=idmap_test_filename,
                                 model_filename=model,
                                 data_root_name=data_root_name,
                                 device=device,
Anthony Larcher's avatar
Anthony Larcher committed
239
                                 loss=model.loss,
Anthony Larcher's avatar
Anthony Larcher committed
240
241
242
                                 transform_pipeline=transform_pipeline,
                                 num_thread=num_thread,
                                 mixed_precision=mixed_precision)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
243

Anthony Larcher's avatar
merge    
Anthony Larcher committed
244
245
246
247
248
249
250
    tar, non = cosine_scoring(xv_stat,
                              xv_stat,
                              Ndx(ndx_test_filename),
                              wccn=None,
                              check_missing=True,
                              device=device
                              ).get_tar_non(Key(key_test_filename))
Anthony Larcher's avatar
debug    
Anthony Larcher committed
251

Anthony Larcher's avatar
merge    
Anthony Larcher committed
252
253
254
255
    #test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))
    pmiss, pfa = rocch(tar, non)

    return rocch2eer(pmiss, pfa)
Anthony Larcher's avatar
Anthony Larcher committed
256

Anthony Larcher's avatar
Anthony Larcher committed
257

Anthony Larcher's avatar
Anthony Larcher committed
258
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
259
260
261
262
263
264
265
266
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
267
268
269
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
270

Anthony Larcher's avatar
Anthony Larcher committed
271

Anthony Larcher's avatar
Anthony Larcher committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
class MeanStdPooling(torch.nn.Module):
    """
    Mean and Standard deviation pooling
    """
    def __init__(self):
        """

        """
        super(MeanStdPooling, self).__init__()
        pass

    def forward(self, x):
        """

        :param x:
        :return:
        """
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        return torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
292

Anthony Larcher's avatar
Anthony Larcher committed
293

Anthony Larcher's avatar
Anthony Larcher committed
294
295
296
297
298
299
300
301
302
303
304
class GruPooling(torch.nn.Module):
    """

    """
    def __init__(self, input_size, gru_node, nb_gru_layer):
        """

        :param input_size:
        :param gru_node:
        :param nb_gru_layer:
        """
Anthony Larcher's avatar
Anthony Larcher committed
305
        super(GruPooling, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
306
307
308
        self.lrelu_keras = torch.nn.LeakyReLU(negative_slope = 0.3)
        self.bn_before_gru = torch.nn.BatchNorm1d(num_features = input_size)
        self.gru = torch.nn.GRU(input_size = input_size,
Anthony Larcher's avatar
Anthony Larcher committed
309
310
311
                                hidden_size = gru_node,
                                num_layers = nb_gru_layer,
                                batch_first = True)
Anthony Larcher's avatar
Anthony Larcher committed
312
313
314
315
316
317
318
319
320
321
322
323

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = self.bn_before_gru(x)
        x = self.lrelu_keras(x)
        x = x.permute(0, 2, 1)  #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
Anthony Larcher's avatar
Anthony Larcher committed
324
        x = x[:, -1, :]
Anthony Larcher's avatar
Anthony Larcher committed
325
326
327

        return x

Anthony Larcher's avatar
Anthony Larcher committed
328

Anthony Larcher's avatar
Anthony Larcher committed
329
class Xtractor(torch.nn.Module):
330
331
332
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
333

Anthony Larcher's avatar
Anthony Larcher committed
334
335
336
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
337
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
338
                 norm_embedding=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
339
340
                 aam_margin=0.2,
                 aam_s=30):
Anthony Larcher's avatar
Anthony Larcher committed
341
342
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
343
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
344
        """
Anthony Larcher's avatar
Anthony Larcher committed
345
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
346
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
347
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
348
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
349

Anthony Larcher's avatar
Anthony Larcher committed
350
351
        print(f"Speaker number : {self.speaker_number}")

Anthony Larcher's avatar
Anthony Larcher committed
352
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
353

Anthony Larcher's avatar
Anthony Larcher committed
354
355
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
356
357
358
359
360
            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
361
362
            self.activation = torch.nn.LeakyReLU(0.2)

Anthony Larcher's avatar
Anthony Larcher committed
363
            self.preprocessor = MfccFrontEnd()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
364
            self.feature_size = self.preprocessor.n_mfcc
Anthony Larcher's avatar
Anthony Larcher committed
365

Anthony Larcher's avatar
xv    
Anthony Larcher committed
366
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
367
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
368
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
369
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
370
371
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
372
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
373
374
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
375
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
376
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
377
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
378
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
379
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
380
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
381
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
382
383
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
384
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
385
            self.stat_pooling_weight_decay = 0
Anthony Larcher's avatar
xv    
Anthony Larcher committed
386
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
387
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
388
389
            ]))

390
391
            self.embedding_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
392
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
393
394
395
396
397
                self.after_speaker_embedding = ArcMarginProduct(512,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)
Anthony Larcher's avatar
Anthony Larcher committed
398
399
400
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
401
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
402
403
404
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
405
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
406
407
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
408

409
            self.preprocessor_weight_decay = 0.0002
Anthony Larcher's avatar
debug    
Anthony Larcher committed
410
411
412
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002
413
            self.embedding_size = 512
Anthony Larcher's avatar
Anthony Larcher committed
414

Anthony Larcher's avatar
Anthony Larcher committed
415
        elif model_archi == "resnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
416

Anthony Larcher's avatar
Anthony Larcher committed
417
            self.preprocessor = MelSpecFrontEnd(n_mels=80)
Anthony Larcher's avatar
Anthony Larcher committed
418
            self.sequence_network = PreResNet34()
Anthony Larcher's avatar
Anthony Larcher committed
419
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
420

Anthony Larcher's avatar
Anthony Larcher committed
421
422
            self.before_speaker_embedding = torch.nn.Linear(in_features=5120,
                                                            out_features=self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
423
424
425
426

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

427
            self.loss = "aam"
Anthony Larcher's avatar
Anthony Larcher committed
428
            self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
Anthony Larcher's avatar
Anthony Larcher committed
429
430
                                                            int(self.speaker_number),
                                                            s = 30.0,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
431
                                                            m = 0.20,
Anthony Larcher's avatar
Anthony Larcher committed
432
                                                            easy_margin = False)
Anthony Larcher's avatar
Anthony Larcher committed
433
434
435
436
437
438
439

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
440
        elif model_archi == "fastresnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
441

Anthony Larcher's avatar
Anthony Larcher committed
442
            self.preprocessor = MelSpecFrontEnd(n_mels=80)
Anthony Larcher's avatar
Anthony Larcher committed
443
            self.sequence_network = PreFastResNet34()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
444
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
445

Anthony Larcher's avatar
Anthony Larcher committed
446
            self.before_speaker_embedding = torch.nn.Linear(in_features = 2560,
Anthony Larcher's avatar
Anthony Larcher committed
447
                                                            out_features = self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
448
449
450
451

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

Anthony Larcher's avatar
merge    
Anthony Larcher committed
452
453
454
455
            self.loss = loss
            if self.loss == "aam":
                self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
                                                                int(self.speaker_number),
Anthony Larcher's avatar
merge    
Anthony Larcher committed
456
457
                                                                s = 30,
                                                                m = 0.2,
Anthony Larcher's avatar
merge    
Anthony Larcher committed
458
459
460
461
                                                                easy_margin = False)

            elif self.loss == 'aps':
                self.after_speaker_embedding = SoftmaxAngularProto(int(self.speaker_number))
Anthony Larcher's avatar
Anthony Larcher committed
462
463
464
465
466
467

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00
Anthony Larcher's avatar
Anthony Larcher committed
468

Anthony Larcher's avatar
Anthony Larcher committed
469
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
470
471
472
473
474
475

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
476
477
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
478
479
480
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
481
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
482
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
483
484
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
502
503
504
505
506
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
507
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
508
509
510
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
511

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
512
513
514
515
516
517
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
518
        else:
Anthony Larcher's avatar
Anthony Larcher committed
519
520
            is_first_resblock = True

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
521
522
523
524
525
526
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
527

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
528
            self.loss = cfg["training"]["loss"]
Anthony Larcher's avatar
Anthony Larcher committed
529
            if self.loss == "aam":
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
530
531
                self.aam_margin = cfg["training"]["aam_margin"]
                self.aam_s = cfg["training"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
532

Anthony Larcher's avatar
Anthony Larcher committed
533
534
535
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
536
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
537
538
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
539
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
540
541
542
543
544
545
546
547
548
549
550
551
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
552
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
553
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
554
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
555
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
556
557
558
559
560
561
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
562
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
563
564

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
565
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
566
            """
Anthony Larcher's avatar
Anthony Larcher committed
567
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
568
569
570
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
586
587
588
589
590
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

Anthony Larcher's avatar
Anthony Larcher committed
591
592
593
594
595
                elif k.startswith("conv2D"):
                    segmental_layers.append((k, torch.nn.Conv2d(in_channels=1,
                                                                out_channels=entry_conv_out_channels,
                                                                kernel_size=entry_conv_kernel_size,
                                                                padding=3,
Anthony Larcher's avatar
Anthony Larcher committed
596
                                                                stride=1)))
Anthony Larcher's avatar
Anthony Larcher committed
597

Anthony Larcher's avatar
Anthony Larcher committed
598
                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
599
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
600
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
601
602
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
603
604
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
605
606
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
607
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
608
609
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
610
611
612
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
613
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
614
615
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
616
617
618
619
620
621
                elif k.startswith('resblock'):
                    segmental_layers.append((ResBlock(cfg["segmental"][k]["input_channel"],
                                                      cfg["segmental"][k]["output_channel"],
                                                      is_first_resblock)))
                    is_first_resblock = False

Anthony Larcher's avatar
Anthony Larcher committed
622
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
623
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
624

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
625
626
627
628
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
629
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
630
631
632
633
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
634
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
635

Anthony Larcher's avatar
Anthony Larcher committed
636
637
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
638
            """
Anthony Larcher's avatar
Anthony Larcher committed
639
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
640
            """
Anthony Larcher's avatar
Anthony Larcher committed
641
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
642
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
643
644
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
645
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
646
647
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
648
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
649
650
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
651
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
652
653

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
654
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
655

Anthony Larcher's avatar
Anthony Larcher committed
656
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
657
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
658
659

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
660
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
661

Anthony Larcher's avatar
Anthony Larcher committed
662
            self.embedding_size = input_size
Anthony Larcher's avatar
Anthony Larcher committed
663
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
664
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
665

Anthony Larcher's avatar
Anthony Larcher committed
666
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
667
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
668
669
670
671
672
673
674
675
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
676
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
677
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
678

Anthony Larcher's avatar
Anthony Larcher committed
679
680
681
682
683
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
684

Anthony Larcher's avatar
Anthony Larcher committed
685
686
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
687

Anthony Larcher's avatar
Anthony Larcher committed
688
689
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
690

Anthony Larcher's avatar
Anthony Larcher committed
691
692
693
694
695
696
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
697
698
699
700
701
702
703
                self.norm_embedding = True
                self.after_speaker_embedding = ArcMarginProduct(input_size,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)

Anthony Larcher's avatar
arcface    
Anthony Larcher committed
704
705
706
707
                #self.after_speaker_embedding = ArcLinear(input_size,
                #                                         self.speaker_number,
                #                                         margin=self.aam_margin,
                #                                         s=self.aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
708
709
710
711
                #self.after_speaker_embedding = ArcFace(embedding_size=input_size,
                #                                       classnum=self.speaker_number,
                #                                       s=64.,
                #                                       m=0.5)
Anthony Larcher's avatar
Anthony Larcher committed
712

Anthony Larcher's avatar
Anthony Larcher committed
713
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
714

Anthony Larcher's avatar
Anthony Larcher committed
715

716
    def forward(self, x, is_eval=False, target=None, extract_after_pooling=False):
717
718
719
        """

        :param x:
720
        :param is_eval: False for training
721
722
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
723
724
725
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
726
        x = self.sequence_network(x)
727

Anthony Larcher's avatar
Anthony Larcher committed
728
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
729
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
730

731
732
733
        if extract_after_pooling:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
734
        x = self.before_speaker_embedding(x)
735

Anthony Larcher's avatar
Anthony Larcher committed
736
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
737
            #x_norm = x.norm(p=2,dim=1, keepdim=True) / 10. # Why  10. ?
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
738
739
740
            #x_norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True, out=None, dtype=None)
            #x = torch.div(x, x_norm)
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
741

Anthony Larcher's avatar
Anthony Larcher committed
742
        if self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
743
            if is_eval:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
744
                return x
Anthony Larcher's avatar
debug    
Anthony Larcher committed
745
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
746
                return self.after_speaker_embedding(x), x
Anthony Larcher's avatar
Anthony Larcher committed
747

Anthony Larcher's avatar
merge    
Anthony Larcher committed
748
        elif self.loss in ['aam', 'aps']:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
749
750
            if is_eval:
                x = torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
751
            else:
Anthony Larcher's avatar
merge    
Anthony Larcher committed
752
                x = self.after_speaker_embedding(x, target=target), torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
753

Anthony Larcher's avatar
Anthony Larcher committed
754
        return x
Anthony Larcher's avatar
Anthony Larcher committed
755

756
757
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
758
759
760
761
762
763
764
765
766
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
767

Anthony Larcher's avatar
Anthony Larcher committed
768
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
769
           dataset_yaml,
Anthony Larcher's avatar
Anthony Larcher committed
770
771
           epochs=None,
           lr=None,
Anthony Larcher's avatar
Anthony Larcher committed
772
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
773
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
774
775
776
           loss=None,
           aam_margin=None,
           aam_s=None,
Anthony Larcher's avatar
Anthony Larcher committed
777
778
           scheduler_type="ReduceLROnPlateau",
           scheduler_params={},
Anthony Larcher's avatar
Anthony Larcher committed
779
           patience=None,
Anthony Larcher's avatar
Anthony Larcher committed
780
           tmp_model_name=None,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
781
           best_model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
782
           multi_gpu=True,
Anthony Larcher's avatar
Anthony Larcher committed
783
           mixed_precision=False,
784
           clipping=False,
Anthony Larcher's avatar
Anthony Larcher committed
785
           opt=None,
Anthony Larcher's avatar
Anthony Larcher committed
786
787
           reset_parts=[],
           freeze_parts=[],
Anthony Larcher's avatar
Anthony Larcher committed
788
           num_thread=None,
Anthony Larcher's avatar
Anthony Larcher committed
789
           compute_test_eer=True):
790
791
    """

Anthony Larcher's avatar
Anthony Larcher committed
792
793
794
795
796
797
    :param speaker_number:
    :param dataset_yaml:
    :param epochs:
    :param lr:
    :param model_yaml:
    :param model_name:
Anthony Larcher's avatar
Anthony Larcher committed
798
799
800
801
    :param loss:
    :param aam_margin:
    :param aam_s:
    :param patience:
Anthony Larcher's avatar
Anthony Larcher committed
802
803
804
    :param tmp_model_name:
    :param best_model_name:
    :param multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
805
    :param mixed_precision:
Anthony Larcher's avatar
Anthony Larcher committed
806
    :param clipping:
Anthony Larcher's avatar
Anthony Larcher committed
807
808
809
    :param opt:
    :param reset_parts:
    :param freeze_parts:
Anthony Larcher's avatar
Anthony Larcher committed
810
    :param num_thread:
Anthony Larcher's avatar
Anthony Larcher committed
811
    :param compute_test_eer:
812
813
    :return:
    """
Anthony Larcher's avatar
debug    
Anthony Larcher committed
814
815
816
    # Test to optimize
    torch.autograd.profiler.emit_nvtx(enabled=False)

Anthony Larcher's avatar
Anthony Larcher committed
817
    if num_thread is None:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
818
        import multiprocessing
Anthony Larcher's avatar
Anthony Larcher committed
819
820
        num_thread = multiprocessing.cpu_count()

Anthony Larcher's avatar
Anthony Larcher committed
821
    logging.critical(f"Use {num_thread} cpus")
Anthony Larcher's avatar
Anthony Larcher committed
822
    logging.critical(f"Start process at {time.strftime('%H:%M:%S', time.localtime())}")
823

Anthony Larcher's avatar
debug    
Anthony Larcher committed
824
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
825
826
827
828
829

    # Use a predefined architecture
    if model_yaml in ["xvector", "rawnet2", "resnet34", "fastresnet34"]:

        if model_name is None:
Anthony Larcher's avatar
merge    
Anthony Larcher committed
830
            model = Xtractor(speaker_number, model_yaml, loss=loss)
831
832
833
834

        else:
            logging.critical(f"*** Load model from = {model_name}")
            checkpoint = torch.load(model_name)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
835
            model = Xtractor(speaker_number, model_yaml, loss=loss)
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853

            """
            Here we remove all layers that we don't want to reload

            """
            pretrained_dict = checkpoint["model_state_dict"]
            for part in reset_parts:
                pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

            new_model_dict = model.state_dict()
            new_model_dict.update(pretrained_dict)
            model.load_state_dict(new_model_dict)

        # Freeze required layers
        for name, param in model.named_parameters():
            if name.split(".")[0] in freeze_parts:
                param.requires_grad = False

Anthony Larcher's avatar
Anthony Larcher committed
854
        model_archi = model_yaml
855
856

    # Here use a config file to build the architecture
Anthony Larcher's avatar
Anthony Larcher committed
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
    else:
        with open(model_yaml, 'r') as fh:
            model_archi = yaml.load(fh, Loader=yaml.FullLoader)
            if epochs is None:
                epochs = model_archi["training"]["epochs"]
            if patience is None:
                patience = model_archi["training"]["patience"]
            if opt is None:
                opt = model_archi["training"]["opt"]
            if lr is None:
                lr = model_archi["training"]["lr"]
            if loss is None:
                loss = model_archi["training"]["loss"]
            if aam_margin is None and model_archi["training"]["loss"] == "aam":
                aam_margin = model_archi["training"]["aam_margin"]
            if aam_s is None and model_archi["training"]["loss"] == "aam":
                aam_s = model_archi["training"]["aam_s"]
            if tmp_model_name is None:
                tmp_model_name = model_archi["training"]["tmp_model_name"]
            if best_model_name is None:
                best_model_name = model_archi["training"]["best_model_name"]
            if multi_gpu is None:
                multi_gpu = model_archi["training"]["multi_gpu"]
            if clipping is None:
                clipping = model_archi["training"]["clipping"]

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
883
        if model_name is None:
Anthony Larcher's avatar
Anthony Larcher committed
884
885
886
            model = Xtractor(speaker_number, model_yaml)

         # If we start from an existing model
Anthony Larcher's avatar
Anthony Larcher committed
887
        else:
Anthony Larcher's avatar
Anthony Larcher committed
888
889
            # Load the model
            logging.critical(f"*** Load model from = {model_name}")
Anthony Larcher's avatar
merge    
Anthony Larcher committed
890
891
            checkpoint = torch.load(model_name, map_location=device)
            model = Xtractor(speaker_number, model_yaml, loss=loss)
Anthony Larcher's avatar
Anthony Larcher committed
892

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
893
894
            """
            Here we remove all layers that we don't want to reload
Anthony Larcher's avatar
Anthony Larcher committed
895
        
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
896
897
898
899
900
901
902
903
904
905
906
907
908
            """
            pretrained_dict = checkpoint["model_state_dict"]
            for part in reset_parts:
                pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

            new_model_dict = model.state_dict()
            new_model_dict.update(pretrained_dict)
            model.load_state_dict(new_model_dict)

        # Freeze required layers
        for name, param in model.named_parameters():
            if name.split(".")[0] in freeze_parts:
                param.requires_grad = False
Anthony Larcher's avatar
Anthony Larcher committed
909

Anthony Larcher's avatar
Anthony Larcher committed
910
911
912
913
    logging.critical(model)

    logging.critical("model_parameters_count: {:d}".format(
        sum(p.numel()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
914
915
916
917
            for p in model.sequence_network.parameters()
            if p.requires_grad) + \
        sum(p.numel()
            for p in model.before_speaker_embedding.parameters()
Anthony Larcher's avatar
merge    
Anthony Larcher committed
918
919
920
            if p.requires_grad) + \
        sum(p.numel()
            for p in model.stat_pooling.parameters()
Anthony Larcher's avatar
Anthony Larcher committed
921
922
            if p.requires_grad)))

Anthony Larcher's avatar
Anthony Larcher committed
923
    embedding_size = model.embedding_size
Anthony Larcher's avatar
Anthony Larcher committed
924

Anthony Larcher's avatar
Anthony Larcher committed
925
    if torch.cuda.device_count() > 1 and multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
926
927
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)
Anthony Larcher's avatar
Anthony Larcher committed
928

Anthony Larcher's avatar
Anthony Larcher committed
929
930
    else:
        print("Train on a single GPU")
Anthony Larcher's avatar
Anthony Larcher committed
931
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
932

Anthony Larcher's avatar
debug    
Anthony Larcher committed
933
934
935
936
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])

Anthony Larcher's avatar
Anthony Larcher committed
937
938
939
940
941
942
    """
    Set the dataloaders according to the dataset_yaml
    
    First we load the dataframe from CSV file in order to split it for training and validation purpose
    Then we provide those two 
    """
Anthony Larcher's avatar
merge    
Anthony Larcher committed
943
    training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"]) #, stratify=df["speaker_idx"])
944

Anthony Larcher's avatar
Anthony Larcher committed
945
    torch.manual_seed(dataset_params['seed'])
Anthony Larcher's avatar
Anthony Larcher committed
946

Anthony Larcher's avatar
Anthony Larcher committed
947
948
949
950
951
952
953
954
955
956
957
958
    training_set = SideSet(dataset_yaml,
                           set_type="train",
                           chunk_per_segment=-1,
                           overlap=dataset_params['train']['overlap'],
                           dataset_df=training_df,
                           output_format="pytorch",
                           )

    validation_set = SideSet(dataset_yaml,
                             set_type="validation",
                             dataset_df=validation_df,
                             output_format="pytorch")
Anthony Larcher's avatar
debug    
Anthony Larcher committed
959

Anthony Larcher's avatar
Anthony Larcher committed
960
961
962
963
    side_sampler = SideSampler(training_set.sessions['speaker_idx'],
                               speaker_number,
                               1,
                               100,
Anthony Larcher's avatar
Anthony Larcher committed
964
                               dataset_params["batch_size"])
Anthony Larcher's avatar
Anthony Larcher committed
965

Anthony Larcher's avatar
debug    
Anthony Larcher committed
966
    training_loader = DataLoader(training_set,
Anthony Larcher's avatar
Anthony Larcher committed
967
                                 batch_size=dataset_params["batch_size"],
Anthony Larcher's avatar
Anthony Larcher committed
968
                                 shuffle=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
969
970
                                 drop_last=True,
                                 pin_memory=True,
Anthony Larcher's avatar
Anthony Larcher committed
971
                                 sampler=side_sampler,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
972
                                 num_workers=num_thread,
Anthony Larcher's avatar
Anthony Larcher committed
973
                                 persistent_workers=True)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
974
975

    validation_loader = DataLoader(validation_set,
Anthony Larcher's avatar
Anthony Larcher committed
976
                                   batch_size=dataset_params["batch_size"],
Anthony Larcher's avatar
Anthony Larcher committed
977
                                   drop_last=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
978
                                   pin_memory=True,
Anthony Larcher's avatar
spkset    
Anthony Larcher committed
979
                                   num_workers=num_thread,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
980
                                   persistent_workers=False)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
981

Anthony Larcher's avatar
Anthony Larcher committed
982
983
984
    """
    Set the training options
    """
Anthony Larcher's avatar
Anthony Larcher committed
985
    if opt == 'adam':
Anthony Larcher's avatar
Anthony Larcher committed
986
        _optimizer = torch.optim.Adam
Anthony Larcher's avatar
Anthony Larcher committed
987
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
988
989
    elif opt == 'rmsprop':
        _optimizer = torch.optim.RMSprop
Anthony Larcher's avatar
Anthony Larcher committed
990
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
991
    else:  # opt == 'sgd'
Anthony Larcher's avatar
Anthony Larcher committed
992
993
        _optimizer = torch.optim.SGD
        _options = {'lr': lr, 'momentum': 0.9}
Anthony Larcher's avatar
Anthony Larcher committed
994

Anthony Larcher's avatar
Anthony Larcher committed
995
    param_list = []
Anthony Larcher's avatar
Anthony Larcher committed
996
    if type(model) is Xtractor:
Anthony Larcher's avatar
Anthony Larcher committed
997
998
999
1000
        if model.preprocessor is not None:
            param_list.append({'params': model.preprocessor.parameters(), 'weight_decay': model.preprocessor_weight_decay})
        param_list.append({'params': model.sequence_network.parameters(), 'weight_decay': model.sequence_network_weight_decay})
        param_list.append({'params': model.stat_pooling.parameters(), 'weight_decay': model.stat_pooling_weight_decay})
For faster browsing, not all history is shown. View entire blame