xvector.py 31.6 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# -*- coding: utf-8 -*-
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
Anthony Larcher committed
25
Copyright 2014-2020 Yevhenii Prokopalo, Anthony Larcher
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
import logging
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
30
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
31
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
32
import shutil
Anthony Larcher's avatar
Anthony Larcher committed
33
import torch
Anthony Larcher's avatar
Anthony Larcher committed
34
35
import torch.optim as optim
import torch.multiprocessing as mp
Anthony Larcher's avatar
Anthony Larcher committed
36
37
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
38
from torchvision import transforms
Anthony Larcher's avatar
Anthony Larcher committed
39
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
40
41
from .xsets import XvectorMultiDataset, StatDataset, VoxDataset, SideSet
from .xsets import FrequencyMask, CMVN, TemporalMask, MFCC
Anthony Larcher's avatar
Anthony Larcher committed
42
43
from ..bosaris import IdMap
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
44
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
45
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
46
from .sincnet import SincNet
Anthony Larcher's avatar
Anthony Larcher committed
47

Anthony Larcher's avatar
Anthony Larcher committed
48
49
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
50
__copyright__ = "Copyright 2015-2020 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
51
52
53
54
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
55
56


Anthony Larcher's avatar
Anthony Larcher committed
57
# logging.basicConfig(stream=sys.stdout, level=logging.INFO)
Anthony Larcher's avatar
Anthony Larcher committed
58
59


60
61
62
63
64
def get_lr(optimizer):
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
65
66
67
68
69
70
71
def split_file_list(batch_files, num_processes):
    # Cut the list of files into args.num_processes lists of files
    batch_sub_lists = [[]] * num_processes
    x = [ii for ii in range(len(batch_files))]
    for ii in range(num_processes):
        batch_sub_lists[ii - 1] = [batch_files[z + ii] for z in x[::num_processes] if (z + ii) < len(batch_files)]
    return batch_sub_lists
Anthony Larcher's avatar
Anthony Larcher committed
72
73
74


class Xtractor(torch.nn.Module):
75
76
77
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
78

Anthony Larcher's avatar
Anthony Larcher committed
79
    def __init__(self, speaker_number, model_archi=None):
Anthony Larcher's avatar
Anthony Larcher committed
80
81
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
82
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
83
        """
Anthony Larcher's avatar
Anthony Larcher committed
84
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
85
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
86
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
87

Anthony Larcher's avatar
Anthony Larcher committed
88
        if model_archi is None:
Anthony Larcher's avatar
Anthony Larcher committed
89
            self.feature_size = 30
Anthony Larcher's avatar
Anthony Larcher committed
90
91
92
            self.activation = torch.nn.LeakyReLU(0.2)

            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
93

Anthony Larcher's avatar
xv    
Anthony Larcher committed
94
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
95
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
96
97
98
99
100
101
102
103
                ("activation1", torch.nn.LeakyReLU(0.2)),
                ("norm1", torch.nn.BatchNorm1d(512)),
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
                ("norm2", torch.nn.BatchNorm1d(512)),
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
                ("norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
104
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
105
106
                ("activation4", torch.nn.LeakyReLU(0.2)),
                ("norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
107
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
108
109
110
111
                ("activation5", torch.nn.LeakyReLU(0.2)),
                ("norm5", torch.nn.BatchNorm1d(1536))
            ]))

Anthony Larcher's avatar
xv    
Anthony Larcher committed
112
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
113
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
114
115
            ]))

Anthony Larcher's avatar
xv    
Anthony Larcher committed
116
            self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
117
118
                ("activation6", torch.nn.LeakyReLU(0.2)),
                ("norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
119
                ("dropout6", torch.nn.Dropout(p=0.05)),
Anthony Larcher's avatar
Anthony Larcher committed
120
                ("linear7", torch.nn.Linear(512, 512)),
Anthony Larcher's avatar
Anthony Larcher committed
121
122
                ("activation7", torch.nn.LeakyReLU(0.2)),
                ("norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
123
                ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
124
125
            ]))

Anthony Larcher's avatar
Anthony Larcher committed
126
127
128
129
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002

Anthony Larcher's avatar
Anthony Larcher committed
130
131
        else:
            # Load Yaml configuration
Anthony Larcher's avatar
Anthony Larcher committed
132
            with open(model_archi, 'r') as fh:
Anthony Larcher's avatar
Anthony Larcher committed
133
134
                cfg = yaml.load(fh, Loader=yaml.FullLoader)

Anthony Larcher's avatar
Anthony Larcher committed
135
136
137
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
138
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
139
140
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
141
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
142
143
144
145
146
147
148
149
150
151
152
153
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
154
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
155
156

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
157
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
158
            """
Anthony Larcher's avatar
Anthony Larcher committed
159
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
160
161
162
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
                if k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
179
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
180
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
181
182
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
183
184
185
186
187
188
189
190
                    input_size = cfg["segmental"][k]["output_channels"]

                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

                elif k.startswith('norm'):
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
191
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
192
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
193

Anthony Larcher's avatar
Anthony Larcher committed
194
195
196
            """
            Prepapre last part of the network (after pooling)
            """
Anthony Larcher's avatar
Anthony Larcher committed
197
198
            # Create sequential object for the second part of the network
            input_size = input_size * 2
Anthony Larcher's avatar
xv    
Anthony Larcher committed
199
200
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
201
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
202
203
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
204
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
205
206
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, cfg["before_embedding"][k]["output"])))
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
207
208

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
209
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
210
211

                elif k.startswith('norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
212
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
213
214

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
215
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
216

Anthony Larcher's avatar
Anthony Larcher committed
217
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
218
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
219
220
221
222
223

            # Create sequential object for the second part of the network
            after_embedding_layers = []
            for k in cfg["after_embedding"].keys():
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
224
225
                    if cfg["after_embedding"][k]["output"] == "speaker_number":
                        after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
226
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
227
228
                        after_embedding_layers.append((k, torch.nn.Linear(input_size, cfg["after_embedding"][k]["output"])))
                        input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
229
230
231
232
233
234
235
236

                elif k.startswith("activation"):
                    after_embedding_layers.append((k, self.activation))

                elif k.startswith('norm'):
                    after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
237
                    after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))
Anthony Larcher's avatar
Anthony Larcher committed
238

Anthony Larcher's avatar
Anthony Larcher committed
239
            self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
240
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
241

Anthony Larcher's avatar
Anthony Larcher committed
242
    def forward(self, x, is_eval=False):
243
244
245
246
247
        """

        :param x:
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
248
249
250
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
251
        x = self.sequence_network(x)
252

Anthony Larcher's avatar
Anthony Larcher committed
253
254
255
256
257
258
259
260
        # Mean and Standard deviation pooling
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        x = torch.cat([mean, std], dim=1)

        x = self.before_speaker_embedding(x)
        if is_eval:
            return x
261

Anthony Larcher's avatar
Anthony Larcher committed
262
263
        x = self.after_speaker_embedding(x)
        return x
Anthony Larcher's avatar
Anthony Larcher committed
264

Anthony Larcher's avatar
Anthony Larcher committed
265

Anthony Larcher's avatar
Anthony Larcher committed
266
267
268
269
270
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)

Anthony Larcher's avatar
minor    
Anthony Larcher committed
271

Anthony Larcher's avatar
Anthony Larcher committed
272
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
273
           dataset_yaml,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
274
           epochs=100,
Anthony Larcher's avatar
Anthony Larcher committed
275
           lr=0.01,
Anthony Larcher's avatar
Anthony Larcher committed
276
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
277
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
278
           tmp_model_name=None,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
279
           best_model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
280
           num_thread=1):
281
282
283
284
285
286
    """
    Initialize and train an x-vector on a single GPU

    :param args:
    :return:
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
287
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Anthony Larcher's avatar
Anthony Larcher committed
288

289
    # If we start from an existing model
Anthony Larcher's avatar
Anthony Larcher committed
290
291
292
293
294
295
296
297
    #if model_name is not None:
    #    # Load the model
    #    logging.critical(f"*** Load model from = {model_name}")
    #    checkpoint = torch.load(model_name)
    #    model = Xtractor(speaker_number, model_yaml)
    #    model.load_state_dict(checkpoint["model_state_dict"])
    #else:
    if True:
Anthony Larcher's avatar
Anthony Larcher committed
298
299
        # Initialize a first model
        if model_yaml is None:
Anthony Larcher's avatar
Anthony Larcher committed
300
            model = Xtractor(speaker_number)
Anthony Larcher's avatar
Anthony Larcher committed
301
        else:
Anthony Larcher's avatar
Anthony Larcher committed
302
            model = Xtractor(speaker_number, model_yaml)
Anthony Larcher's avatar
Anthony Larcher committed
303

Anthony Larcher's avatar
Anthony Larcher committed
304
305
306
307
    if torch.cuda.device_count() > 1:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)

Anthony Larcher's avatar
Anthony Larcher committed
308
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
309
310

    """
Anthony Larcher's avatar
Anthony Larcher committed
311
312
313
314
    Set the dataloaders according to the dataset_yaml
    
    First we load the dataframe from CSV file in order to split it for training and validation purpose
    Then we provide those two 
Anthony Larcher's avatar
Anthony Larcher committed
315
    """
Anthony Larcher's avatar
Anthony Larcher committed
316
317
318
319
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])
    training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"])
320

Anthony Larcher's avatar
Anthony Larcher committed
321
    torch.manual_seed(dataset_params['seed'])
Anthony Larcher's avatar
Anthony Larcher committed
322
323
324
325
    training_set = SideSet(dataset_yaml, set_type="train", dataset_df=training_df)
    training_loader = DataLoader(training_set,
                                 batch_size=dataset_params["batch_size"],
                                 shuffle=True,
Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
326
                                 drop_last=True,
Anthony Larcher's avatar
Anthony Larcher committed
327
                                 num_workers=num_thread)
328

Anthony Larcher's avatar
Anthony Larcher committed
329
330
331
    validation_set = SideSet(dataset_yaml, set_type="validation", dataset_df=validation_df)
    validation_loader = DataLoader(validation_set,
                                   batch_size=dataset_params["batch_size"],
Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
332
                                   drop_last=True,
Anthony Larcher's avatar
Anthony Larcher committed
333
                                   num_workers=num_thread)
Anthony Larcher's avatar
Anthony Larcher committed
334
335
336
337
338

    """
    Set the training options
    """
    if type(model) is Xtractor:
Anthony Larcher's avatar
Anthony Larcher committed
339
        optimizer = torch.optim.SGD([
Anthony Larcher's avatar
Anthony Larcher committed
340
341
342
343
344
345
            {'params': model.sequence_network.parameters(),
             'weight_decay': model.sequence_network_weight_decay},
            {'params': model.before_speaker_embedding.parameters(),
             'weight_decay': model.before_speaker_embedding_weight_decay},
            {'params': model.after_speaker_embedding.parameters(),
             'weight_decay': model.after_speaker_embedding_weight_decay}],
Anthony Larcher's avatar
Anthony Larcher committed
346
            lr=lr, momentum=0.9
Anthony Larcher's avatar
Anthony Larcher committed
347
348
        )
    else:
Anthony Larcher's avatar
Anthony Larcher committed
349
        optimizer = torch.optim.SGD([
Anthony Larcher's avatar
Anthony Larcher committed
350
351
352
353
354
355
            {'params': model.module.sequence_network.parameters(),
             'weight_decay': model.module.sequence_network_weight_decay},
            {'params': model.module.before_speaker_embedding.parameters(),
             'weight_decay': model.module.before_speaker_embedding_weight_decay},
            {'params': model.module.after_speaker_embedding.parameters(),
             'weight_decay': model.module.after_speaker_embedding_weight_decay}],
Anthony Larcher's avatar
Anthony Larcher committed
356
            lr=lr, momentum=0.9
Anthony Larcher's avatar
Anthony Larcher committed
357
        )
Anthony Larcher's avatar
Anthony Larcher committed
358
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', verbose=True)
359

Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
360
    best_accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
361
    for epoch in range(1, epochs + 1):
362
        # Process one epoch and return the current model
Anthony Larcher's avatar
Anthony Larcher committed
363
        model = train_epoch(model, epoch, training_loader, optimizer, dataset_params["log_interval"], device=device)
364
365

        # Add the cross validation here
Anthony Larcher's avatar
Anthony Larcher committed
366
        accuracy, val_loss = cross_validation(model, validation_loader, device=device)
367
368
369
370
        logging.critical("*** Cross validation accuracy = {} %".format(accuracy))

        # Decrease learning rate according to the scheduler policy
        scheduler.step(val_loss)
Anthony Larcher's avatar
Anthony Larcher committed
371
        print(f"Learning rate is {optimizer.param_groups[0]['lr']}")
372

Anthony Larcher's avatar
Anthony Larcher committed
373
374
375
376
377
378
379
380
381
382
        # remember best accuracy and save checkpoint
        is_best = accuracy > best_accuracy
        best_accuracy = max(accuracy, best_accuracy)

        save_checkpoint({
            'epoch': epoch,
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'accuracy': best_accuracy,
            'scheduler': scheduler
Anthony Larcher's avatar
minor    
Anthony Larcher committed
383
        }, is_best, filename = tmp_model_name+".pt", best_filename=best_model_name+'.pt')
Anthony Larcher's avatar
Anthony Larcher committed
384
385
386

        if is_best:
            best_accuracy_epoch = epoch
387

Anthony Larcher's avatar
Anthony Larcher committed
388
    logging.critical(f"Best accuracy {best_accuracy * 100.} obtained at epoch {best_accuracy_epoch}")
389

Anthony Larcher's avatar
Anthony Larcher committed
390
def train_epoch(model, epoch, training_loader, optimizer, log_interval, device):
391
392
393
394
395
396
397
398
399
400
    """

    :param model:
    :param epoch:
    :param train_seg_df:
    :param speaker_dict:
    :param optimizer:
    :param args:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
401
    model.train()
402
403
404
    criterion = torch.nn.CrossEntropyLoss()

    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
405
    for batch_idx, (data, target) in enumerate(training_loader):
406
407
408
409
410
411
412
413
        target = target.squeeze()
        optimizer.zero_grad()
        output = model(data.to(device))
        loss = criterion(output, target.to(device))
        loss.backward()
        optimizer.step()
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()

Anthony Larcher's avatar
Anthony Larcher committed
414
        if batch_idx % log_interval == 0:
Anthony Larcher's avatar
Anthony Larcher committed
415
            batch_size = target.shape[0]
416
            logging.critical('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
Anthony Larcher's avatar
Anthony Larcher committed
417
418
                epoch, batch_idx + 1, training_loader.__len__(),
                       100. * batch_idx / training_loader.__len__(), loss.item(),
Anthony Larcher's avatar
Anthony Larcher committed
419
                       100.0 * accuracy.item() / ((batch_idx + 1) * batch_size)))
420
421
422
    return model


Anthony Larcher's avatar
Anthony Larcher committed
423
def cross_validation(model, validation_loader, device):
424
425
426
    """

    :param model:
Anthony Larcher's avatar
Anthony Larcher committed
427
428
    :param validation_loader:
    :param device:
429
430
431
432
433
434
435
436
    :return:
    """
    model.eval()
    model.to(device)

    accuracy = 0.0
    criterion = torch.nn.CrossEntropyLoss()

Anthony Larcher's avatar
Anthony Larcher committed
437
    for batch_idx, (data, target) in enumerate(validation_loader):
Anthony Larcher's avatar
Anthony Larcher committed
438
        batch_size = target.shape[0]
439
440
441
442
443
        target = target.squeeze()
        output = model(data.to(device))
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()

    loss = criterion(output, target.to(device))
Anthony Larcher's avatar
Anthony Larcher committed
444
    return 100. * accuracy.cpu().numpy() / ((batch_idx + 1) * batch_size), loss
445
446
447


def xtrain_asynchronous(args):
448
449
450
451
452
453
    """
    Initialize and train an x-vector in asynchronous manner

    :param args:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
454
    # Initialize a first model and save to disk
Anthony Larcher's avatar
Anthony Larcher committed
455
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
456
457
458
459
    current_model_file_name = "initial_model"
    torch.save(model.state_dict(), current_model_file_name)

    for epoch in range(1, args.epochs + 1):
460
        current_model_file_name = train_asynchronous_epoch(epoch, args, current_model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
461
462

        # Add the cross validation here
463
        accuracy = cross_asynchronous_validation(args, current_model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
464
        print("*** Cross validation accuracy = {} %".format(accuracy))
Anthony Larcher's avatar
Anthony Larcher committed
465

Anthony Larcher's avatar
Anthony Larcher committed
466
        # Decrease learning rate after every epoch
Anthony Larcher's avatar
sad    
Anthony Larcher committed
467
468
        args.lr = args.lr * 0.9
        print("        Decrease learning rate: {}".format(args.lr))
Anthony Larcher's avatar
Anthony Larcher committed
469

Anthony Larcher's avatar
Anthony Larcher committed
470

471
def train_asynchronous_epoch(epoch, args, initial_model_file_name):
472
473
474
475
476
477
478
479
    """
    Process one training epoch using an asynchronous implementation of the training

    :param epoch:
    :param args:
    :param initial_model_file_name:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
    # Compute the megabatch number
    with open(args.batch_training_list, 'r') as fh:
        batch_file_list = [l.rstrip() for l in fh]

    # Shorten the batch_file_list to be a multiple of

    megabatch_number = len(batch_file_list) // (args.averaging_step * args.num_processes)
    megabatch_size = args.averaging_step * args.num_processes
    print("Epoch {}, number of megabatches = {}".format(epoch, megabatch_number))

    current_model = initial_model_file_name

    # For each sublist: run an asynchronous training and averaging of the model
    for ii in range(megabatch_number):
        print('Process megabatch [{} / {}]'.format(ii + 1, megabatch_number))
        current_model = train_asynchronous(epoch,
                                           args,
                                           current_model,
                                           batch_file_list[megabatch_size * ii: megabatch_size * (ii + 1)],
                                           ii,
500
                                           megabatch_number)  # function that split train, fuse and write the new model
Anthony Larcher's avatar
Anthony Larcher committed
501
502
503
    return current_model


504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
def train_asynchronous(epoch, args, initial_model_file_name, batch_file_list, megabatch_idx, megabatch_number):
    """
    Process one mega-batch of data asynchronously, average the model parameters across
    subrocesses and return the updated version of the model

    :param epoch:
    :param args:
    :param initial_model_file_name:
    :param batch_file_list:
    :param megabatch_idx:
    :param megabatch_number:
    :return:
    """
    # Split the list of files for each process
    sub_lists = split_file_list(batch_file_list, args.num_processes)

    #
    output_queue = mp.Queue()
    # output_queue = multiprocessing.Queue()

    processes = []
    for rank in range(args.num_processes):
526
        p = mp.Process(target=train_asynchronous_worker,
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
                       args=(rank, epoch, args, initial_model_file_name, sub_lists[rank], output_queue)
                       )
        # We first train the model across `num_processes` processes
        p.start()
        processes.append(p)

    # Average the models and write the new one to disk
    asynchronous_model = []
    for ii in range(args.num_processes):
        asynchronous_model.append(dict(output_queue.get()))

    for p in processes:
        p.join()

    av_model = Xtractor(args.class_number, args.dropout)
    tmp = av_model.state_dict()

    average_param = dict()
    for k in list(asynchronous_model[0].keys()):
        average_param[k] = asynchronous_model[0][k]

        for mod in asynchronous_model[1:]:
            average_param[k] += mod[k]

        if 'num_batches_tracked' not in k:
            tmp[k] = torch.FloatTensor(average_param[k] / len(asynchronous_model))

    # return the file name of the new model
    current_model_file_name = "{}/model_{}_epoch_{}_batch_{}".format(args.model_path, args.expe_id, epoch,
                                                                     megabatch_idx)
    torch.save(tmp, current_model_file_name)
    if megabatch_idx == megabatch_number:
        torch.save(tmp, "{}/model_{}_epoch_{}".format(args.model_path, args.expe_id, epoch))

    return current_model_file_name


564
def train_asynchronous_worker(rank, epoch, args, initial_model_file_name, batch_list, output_queue):
565
566
567
568
569
570
571
572
573
574
575
    """


    :param rank:
    :param epoch:
    :param args:
    :param initial_model_file_name:
    :param batch_list:
    :param output_queue:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
576
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
577
578
579
580
    model.load_state_dict(torch.load(initial_model_file_name))
    model.train()

    torch.manual_seed(args.seed + rank)
Anthony Larcher's avatar
Anthony Larcher committed
581
    train_loader = XvectorMultiDataset(batch_list, args.batch_path)
Anthony Larcher's avatar
Anthony Larcher committed
582
583
584
585
586
587
588
589
590
591
592
593

    device = torch.device("cuda:{}".format(rank))
    model.to(device)

    optimizer = optim.Adam([{'params': model.frame_conv0.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv1.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv2.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv3.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv4.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.seg_lin0.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin1.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin2.parameters(), 'weight_decay': args.l2_seg}
Anthony Larcher's avatar
Anthony Larcher committed
594
                            ], lr=args.lr)
Anthony Larcher's avatar
Anthony Larcher committed
595

Anthony Larcher's avatar
Anthony Larcher committed
596
    criterion = torch.nn.CrossEntropyLoss()
Anthony Larcher's avatar
Anthony Larcher committed
597
598
599
600
601
602
603
604

    accuracy = 0.0
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = model(data.to(device))
        loss = criterion(output, target.to(device))
        loss.backward()
        optimizer.step()
Anthony Larcher's avatar
Anthony Larcher committed
605

Anthony Larcher's avatar
Anthony Larcher committed
606
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
Anthony Larcher's avatar
Anthony Larcher committed
607

Anthony Larcher's avatar
Anthony Larcher committed
608
609
610
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                epoch, batch_idx + 1, train_loader.__len__(),
611
612
                100. * batch_idx / train_loader.__len__(), loss.item(),
                100.0 * accuracy.item() / ((batch_idx + 1) * args.batch_size)))
Anthony Larcher's avatar
Anthony Larcher committed
613

Anthony Larcher's avatar
Anthony Larcher committed
614
615
    model_param = OrderedDict()
    params = model.state_dict()
Anthony Larcher's avatar
Anthony Larcher committed
616

Anthony Larcher's avatar
Anthony Larcher committed
617
618
619
    for k in list(params.keys()):
        model_param[k] = params[k].cpu().detach().numpy()
    output_queue.put(model_param)
Anthony Larcher's avatar
Anthony Larcher committed
620
621


622
def cross_asynchronous_validation(args, current_model_file_name):
Anthony Larcher's avatar
Anthony Larcher committed
623
624
    """

Anthony Larcher's avatar
Anthony Larcher committed
625
626
    :param args:
    :param current_model_file_name:
Anthony Larcher's avatar
Anthony Larcher committed
627
628
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
629
    with open(args.cross_validation_list, 'r') as fh:
Anthony Larcher's avatar
Anthony Larcher committed
630
        cross_validation_list = [l.rstrip() for l in fh]
Anthony Larcher's avatar
Anthony Larcher committed
631
        sub_lists = split_file_list(cross_validation_list, args.num_processes)
Anthony Larcher's avatar
Anthony Larcher committed
632

Anthony Larcher's avatar
Anthony Larcher committed
633
634
    #
    output_queue = mp.Queue()
Anthony Larcher's avatar
Anthony Larcher committed
635

Anthony Larcher's avatar
Anthony Larcher committed
636
637
    processes = []
    for rank in range(args.num_processes):
638
        p = mp.Process(target=cv_asynchronous_worker,
Anthony Larcher's avatar
Anthony Larcher committed
639
640
641
642
643
                       args=(rank, args, current_model_file_name, sub_lists[rank], output_queue)
                       )
        # We first evaluate the model across `num_processes` processes
        p.start()
        processes.append(p)
Anthony Larcher's avatar
Anthony Larcher committed
644

Anthony Larcher's avatar
Anthony Larcher committed
645
646
647
648
    # Average the models and write the new one to disk
    result = []
    for ii in range(args.num_processes):
        result.append(output_queue.get())
Anthony Larcher's avatar
Anthony Larcher committed
649

Anthony Larcher's avatar
Anthony Larcher committed
650
651
    for p in processes:
        p.join()
Anthony Larcher's avatar
Anthony Larcher committed
652

Anthony Larcher's avatar
Anthony Larcher committed
653
654
655
    # Compute the global accuracy
    accuracy = 0.0
    total_batch_number = 0
Anthony Larcher's avatar
Anthony Larcher committed
656
    for bn, acc in result:
Anthony Larcher's avatar
Anthony Larcher committed
657
        accuracy += acc
Anthony Larcher's avatar
Anthony Larcher committed
658
659
        total_batch_number += bn
    
Anthony Larcher's avatar
Anthony Larcher committed
660
    return 100. * accuracy / (total_batch_number * args.batch_size)
Anthony Larcher's avatar
Anthony Larcher committed
661
662


663
def cv_asynchronous_worker(rank, args, current_model_file_name, batch_list, output_queue):
Anthony Larcher's avatar
Anthony Larcher committed
664
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
665
666
    model.load_state_dict(torch.load(current_model_file_name))
    model.eval()
Anthony Larcher's avatar
Anthony Larcher committed
667

Anthony Larcher's avatar
Anthony Larcher committed
668
    cv_loader = XvectorMultiDataset(batch_list, args.batch_path)
Anthony Larcher's avatar
Anthony Larcher committed
669

Anthony Larcher's avatar
Anthony Larcher committed
670
671
    device = torch.device("cuda:{}".format(rank))
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
672

Anthony Larcher's avatar
Anthony Larcher committed
673
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
674
    for batch_idx, (data, target) in enumerate(cv_loader):
Anthony Larcher's avatar
Anthony Larcher committed
675
676
        output = model(data.to(device))
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
Anthony Larcher's avatar
Anthony Larcher committed
677
    output_queue.put((cv_loader.__len__(), accuracy.cpu().numpy()))
Anthony Larcher's avatar
Anthony Larcher committed
678

Anthony Larcher's avatar
hot    
Anthony Larcher committed
679

680
def extract_idmap(args, device_id, segment_indices, fs_params, idmap_name, output_queue):
Anthony Larcher's avatar
Anthony Larcher committed
681
    """
Anthony Larcher's avatar
Anthony Larcher committed
682
683
    Function that takes a model and an idmap and extract all x-vectors based on this model
    and return a StatServer containing the x-vectors
Anthony Larcher's avatar
Anthony Larcher committed
684
    """
685
    # device = torch.device("cuda:{}".format(device_ID))
Anthony Larcher's avatar
Anthony Larcher committed
686
    device = torch.device('cpu')
Anthony Larcher's avatar
Anthony Larcher committed
687
688
689
690
691
692
693
694
695
696
697
698
699

    # Create the dataset
    tmp_idmap = IdMap(idmap_name)
    idmap = IdMap()
    idmap.leftids = tmp_idmap.leftids[segment_indices]
    idmap.rightids = tmp_idmap.rightids[segment_indices]
    idmap.start = tmp_idmap.start[segment_indices]
    idmap.stop = tmp_idmap.stop[segment_indices]

    segment_loader = StatDataset(idmap, fs_params)

    # Load the model
    model_file_name = '/'.join([args.model_path, args.model_name])
Anthony Larcher's avatar
Anthony Larcher committed
700
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
701
702
703
704
705
706
707
708
    model.load_state_dict(torch.load(model_file_name))
    model.eval()

    # Get the size of embeddings
    emb_a_size = model.seg_lin0.weight.data.shape[0]
    emb_b_size = model.seg_lin1.weight.data.shape[0]

    # Create a Tensor to store all x-vectors on the GPU
Anthony Larcher's avatar
Anthony Larcher committed
709
710
711
712
713
714
    emb_1 = numpy.zeros((idmap.leftids.shape[0], emb_a_size)).astype(numpy.float32)
    emb_2 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_3 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_4 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_5 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_6 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
Anthony Larcher's avatar
Anthony Larcher committed
715
716
717
718
719
720

    # Send on selected device
    model.to(device)

    # Loop to extract all x-vectors
    for idx, (model_id, segment_id, data) in enumerate(segment_loader):
Anthony Larcher's avatar
Anthony Larcher committed
721
        logging.critical('Process file {}, [{} / {}]'.format(segment_id, idx, segment_loader.__len__()))
Anthony Larcher's avatar
Anthony Larcher committed
722

Anthony Larcher's avatar
Anthony Larcher committed
723
724
725
        if list(data.shape)[2] < 20:
            pass
        else:
Anthony Larcher's avatar
Anthony Larcher committed
726
727
728
729
730
731
732
            seg_1, seg_2, seg_3, seg_4, seg_5, seg_6 = model.extract(data.to(device))
            emb_1[idx, :] = seg_1.detach().cpu()
            emb_2[idx, :] = seg_2.detach().cpu()
            emb_3[idx, :] = seg_3.detach().cpu()
            emb_4[idx, :] = seg_4.detach().cpu()
            emb_5[idx, :] = seg_5.detach().cpu()
            emb_6[idx, :] = seg_6.detach().cpu()
Anthony Larcher's avatar
Anthony Larcher committed
733

Anthony Larcher's avatar
Anthony Larcher committed
734
    output_queue.put((segment_indices, emb_1, emb_2, emb_3, emb_4, emb_5, emb_6))
Anthony Larcher's avatar
Anthony Larcher committed
735
736


Anthony Larcher's avatar
Anthony Larcher committed
737
def extract_parallel(args, fs_params):
738
739
740
741
742
743
    """

    :param args:
    :param fs_params:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
744
745
746
    emb_a_size = 512
    emb_b_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
747
    idmap = IdMap(args.idmap)
Anthony Larcher's avatar
Anthony Larcher committed
748

Anthony Larcher's avatar
Anthony Larcher committed
749
750
751
752
753
754
755
756
757
758
759
760
761
    x_server_1 = StatServer(idmap, 1, emb_a_size)
    x_server_2 = StatServer(idmap, 1, emb_b_size)
    x_server_3 = StatServer(idmap, 1, emb_b_size)
    x_server_4 = StatServer(idmap, 1, emb_b_size)
    x_server_5 = StatServer(idmap, 1, emb_b_size)
    x_server_6 = StatServer(idmap, 1, emb_b_size)

    x_server_1.stat0 = numpy.ones(x_server_1.stat0.shape)
    x_server_2.stat0 = numpy.ones(x_server_2.stat0.shape)
    x_server_3.stat0 = numpy.ones(x_server_3.stat0.shape)
    x_server_4.stat0 = numpy.ones(x_server_4.stat0.shape)
    x_server_5.stat0 = numpy.ones(x_server_5.stat0.shape)
    x_server_6.stat0 = numpy.ones(x_server_6.stat0.shape)
Anthony Larcher's avatar
Anthony Larcher committed
762
763
764

    # Split the indices
    mega_batch_size = idmap.leftids.shape[0] // args.num_processes
Anthony Larcher's avatar
Anthony Larcher committed
765
766
767

    logging.critical("Number of sessions to process: {}".format(idmap.leftids.shape[0]))

Anthony Larcher's avatar
Anthony Larcher committed
768
769
770
    segment_idx = []
    for ii in range(args.num_processes):
        segment_idx.append(
Anthony Larcher's avatar
Anthony Larcher committed
771
772
773
774
            numpy.arange(ii * mega_batch_size, numpy.min([(ii + 1) * mega_batch_size, idmap.leftids.shape[0]])))

    for idx, si in enumerate(segment_idx):
        logging.critical("Number of session on process {}: {}".format(idx, len(si)))
Anthony Larcher's avatar
Anthony Larcher committed
775
776
777
778
779
780
781

    # Extract x-vectors in parallel
    output_queue = mp.Queue()

    processes = []
    for rank in range(args.num_processes):
        p = mp.Process(target=extract_idmap,
Anthony Larcher's avatar
Anthony Larcher committed
782
                       args=(args, rank, segment_idx[rank], fs_params, args.idmap, output_queue)
Anthony Larcher's avatar
Anthony Larcher committed
783
784
785
786
787
788
789
                       )
        # We first train the model across `num_processes` processes
        p.start()
        processes.append(p)

    # Get the x-vectors and fill the StatServer
    for ii in range(args.num_processes):
Anthony Larcher's avatar
Anthony Larcher committed
790
791
792
793
794
795
796
        indices, seg_1, seg_2, seg_3, seg_4, seg_5, seg_6 = output_queue.get()
        x_server_1.stat1[indices, :] = seg_1
        x_server_2.stat1[indices, :] = seg_2
        x_server_3.stat1[indices, :] = seg_3
        x_server_4.stat1[indices, :] = seg_4
        x_server_5.stat1[indices, :] = seg_5
        x_server_6.stat1[indices, :] = seg_6
Anthony Larcher's avatar
Anthony Larcher committed
797
798
799
800

    for p in processes:
        p.join()

Anthony Larcher's avatar
Anthony Larcher committed
801
    return x_server_1, x_server_2, x_server_3, x_server_4, x_server_5, x_server_6
Anthony Larcher's avatar
Anthony Larcher committed
802
803


Anthony Larcher's avatar
Anthony Larcher committed
804
def extract_embeddings(args):
805
806
807
808
809
810
811
812
813
814
815
816
817
    """

    :param args:
    :param device_id:
    :param fs_params:
    :return:
    """
    device = torch.device("cuda:0")

    # Load the model
    logging.critical("*** Load model from = {}/{}".format(args.model_path, args.init_model_name))
    model_file_name = '/'.join([args.model_path, args.init_model_name])
    model = torch.load(model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
818
    model = torch.nn.DataParallel(model)
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
    model.eval()
    model.to(device)

    # Get the list of files
    total_seg_df = pickle.load(open(args.batch_training_list, "rb"))

    speaker_dict = {}
    tmp = total_seg_df.speaker_id.unique()
    tmp.sort()
    for idx, spk in enumerate(tmp):
        speaker_dict[spk] = idx

    extract_transform = [CMVN(), ]
    extract_set = VoxDataset(total_seg_df, speaker_dict, None, transform=transforms.Compose(extract_transform),
                             spec_aug_ratio=args.spec_aug, temp_aug_ratio=args.temp_aug)
    extract_loader = DataLoader(extract_set, batch_size=1, shuffle=False, num_workers=5)
Anthony Larcher's avatar
Anthony Larcher committed
835

836
    #CREER UN TENSEUR DE LA BONNE TAILLE POUR STOCKER LES X-VECTEURS
Anthony Larcher's avatar
Anthony Larcher committed
837

838
839
840
841
    for batch_idx, (data, target, _, __) in enumerate(extract_loader):
        print("extrait x-vecteur numero {}".format(batch_idx))
        embedding = model.produce_embeddings(data.to(device))
        #REMPLIR LE TENSEUR AVEC LE NOUVEAU X-VECTEUR
Anthony Larcher's avatar
Anthony Larcher committed
842

843
844
    #FAIRE CORRESPONDRE LES SPK_ID AVEC LES X-VECTEURS
    #RENVOYER LE TENSEUR DE X-VECTEURS SUR LE CPU OU L ECRTIRE SUR LE DISQUE