xvector.py 76.8 KB
Newer Older
Anthony Larcher's avatar
debug    
Anthony Larcher committed
1
#coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
25
Copyright 2014-2021 Anthony Larcher, Yevhenii Prokopalo
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28

Anthony Larcher's avatar
Anthony Larcher committed
29
import logging
Anthony Larcher's avatar
debug    
Anthony Larcher committed
30
import math
Anthony Larcher's avatar
Anthony Larcher committed
31
import os
Anthony Larcher's avatar
Anthony Larcher committed
32
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
33
import random
Anthony Larcher's avatar
Anthony Larcher committed
34
import pandas
Anthony Larcher's avatar
Anthony Larcher committed
35
import shutil
Anthony Larcher's avatar
Anthony Larcher committed
36
import torch
Anthony Larcher's avatar
Anthony Larcher committed
37
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
38
import yaml
39
#torch.autograd.set_detect_anomaly(True)
Anthony Larcher's avatar
Anthony Larcher committed
40
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
41
42
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
43
from .pooling import MeanStdPooling
44
from .pooling import AttentivePooling, ChannelWiseCorrPooling
Anthony Larcher's avatar
Anthony Larcher committed
45
from .pooling import GruPooling
Anthony Larcher's avatar
Anthony Larcher committed
46
47
48
from .preprocessor import MfccFrontEnd
from .preprocessor import MelSpecFrontEnd
from .preprocessor import RawPreprocessor
Anthony Larcher's avatar
Anthony Larcher committed
49
from .xsets import SideSet
Anthony Larcher's avatar
Anthony Larcher committed
50
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
51
from .xsets import IdMapSetPerSpeaker
Anthony Larcher's avatar
Anthony Larcher committed
52
from .xsets import SideSampler
Anthony Larcher's avatar
Anthony Larcher committed
53
54
55
from .res_net import ResBlockWFMS
from .res_net import ResBlock
from .res_net import PreFastResNet34
Anthony Larcher's avatar
Anthony Larcher committed
56
57
from .res_net import PreHalfResNet34
from .res_net import PreResNet34
Anthony Larcher's avatar
Anthony Larcher committed
58
from ..bosaris import IdMap
Anthony Larcher's avatar
Anthony Larcher committed
59
60
from ..bosaris import Key
from ..bosaris import Ndx
Anthony Larcher's avatar
Anthony Larcher committed
61
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
62
from ..iv_scoring import cosine_scoring
Anthony Larcher's avatar
Anthony Larcher committed
63
from .sincnet import SincNet
Anthony Larcher's avatar
merge    
Anthony Larcher committed
64
from ..bosaris.detplot import rocch, rocch2eer
Anthony Larcher's avatar
Anthony Larcher committed
65
from .loss import SoftmaxAngularProto
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
66
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
67
from .loss import ArcMarginProduct
Anthony Larcher's avatar
Anthony Larcher committed
68
69
from .loss import ArcLinear
from .loss import AngularProximityMagnet
Anthony Larcher's avatar
Anthony Larcher committed
70

Anthony Larcher's avatar
Anthony Larcher committed
71

Anthony Larcher's avatar
Anthony Larcher committed
72
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
73

Anthony Larcher's avatar
Anthony Larcher committed
74
75
#torch.backends.cudnn.benchmark = True

Anthony Larcher's avatar
Anthony Larcher committed
76
77
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
78
__copyright__ = "Copyright 2015-2021 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
79
80
81
82
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
83
84


Anthony Larcher's avatar
debug    
Anthony Larcher committed
85
def seed_worker(seed_val):
Anthony Larcher's avatar
Anthony Larcher committed
86
    """
Anthony Larcher's avatar
Anthony Larcher committed
87

Anthony Larcher's avatar
Anthony Larcher committed
88
89
90
91
92
93
    :param worker_id:
    :return:
    """
    worker_seed = torch.initial_seed() % 2**32
    numpy.random.seed(worker_seed)
    random.seed(worker_seed)
Anthony Larcher's avatar
Anthony Larcher committed
94

Anthony Larcher's avatar
Anthony Larcher committed
95
96

def eer(negatives, positives):
Anthony Larcher's avatar
Anthony Larcher committed
97
    """
Anthony Larcher's avatar
Anthony Larcher committed
98
    Logarithmic complexity EER computation
Anthony Larcher's avatar
Anthony Larcher committed
99

Anthony Larcher's avatar
Anthony Larcher committed
100
101
102
103
    :param negatives: negative_scores (numpy array): impostor scores
    :param positives: positive_scores (numpy array): genuine scores
    :return: float: Equal Error Rate (EER)
    """
Anthony Larcher's avatar
Anthony Larcher committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    positives = numpy.sort(positives)
    negatives = numpy.sort(negatives)[::-1]

    pos_count = positives.shape[0]
    neg_count = negatives.shape[0]

    p_score = positives[0]
    n_score = negatives[0]

    p_index = 0
    n_index = 0

    next_p_jump = pos_count//2
    next_n_jump = neg_count//2

    kdx = 0
    while True:
        kdx += 1
        if p_index < 0 or n_index < 0:
            return 0
        if p_index > pos_count or n_index > neg_count:
            return 100
        if p_score < n_score:
            p_index = p_index + next_p_jump
            n_index = n_index + next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break
        elif p_score >= n_score:
            p_index = p_index - next_p_jump
            n_index = n_index - next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break

        p_score = positives[p_index]
        n_score = negatives[n_index]
        next_p_jump = next_p_jump//2
        next_n_jump = next_n_jump//2

    eer_predicate = 100

    tfr = (abs(p_index))/pos_count
    tfa = (1+abs(n_index))/neg_count
    if (p_score == n_score and tfr == tfa):
        return tfr

    while positives[p_index] < negatives[n_index]:
        if p_index < pos_count - 1:
            p_index += 1
        elif n_index < neg_count - 1:
            n_index += 1
        else:
            break

    while positives[p_index] > negatives[n_index] and n_index >= 1:
        n_index -= 1

    tfr = (1+p_index)/pos_count
    tfa = (1+n_index)/neg_count

    while tfa > tfr:
        p_index += 1
        while positives[p_index] > negatives[n_index] and n_index >= 1:
            n_index -= 1
        tfr = (1+p_index)/pos_count
        tfa = (1+n_index)/neg_count

    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    tfr = p_index/pos_count
    tfa = (1+n_index)/neg_count
    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    while True:
        while negatives[n_index + 1] <= positives[p_index - 1]:
            p_index -= 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer
        while negatives[n_index + 1] > positives[p_index - 1]:
            n_index += 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer

    return eer


Anthony Larcher's avatar
debug    
Anthony Larcher committed
207
208
def test_metrics(model,
                 device,
Anthony Larcher's avatar
Anthony Larcher committed
209
210
211
                 model_opts,
                 data_opts,
                 train_opts):
Anthony Larcher's avatar
Anthony Larcher committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
    transform_pipeline = dict()

Anthony Larcher's avatar
Anthony Larcher committed
230
    xv_stat = extract_embeddings(idmap_name=data_opts["test"]["idmap"],
Anthony Larcher's avatar
Anthony Larcher committed
231
                                 model_filename=model,
Anthony Larcher's avatar
Anthony Larcher committed
232
                                 data_root_name=data_opts["test"]["data_path"],
Anthony Larcher's avatar
Anthony Larcher committed
233
234
                                 device=device,
                                 transform_pipeline=transform_pipeline,
Anthony Larcher's avatar
Anthony Larcher committed
235
                                 num_thread=train_opts["num_cpu"],
Anthony Larcher's avatar
Anthony Larcher committed
236
237
238
239
                                 mixed_precision=train_opts["mixed_precision"])

    tar, non = cosine_scoring(xv_stat,
                              xv_stat,
Anthony Larcher's avatar
Anthony Larcher committed
240
                              Ndx(data_opts["test"]["ndx"]),
Anthony Larcher's avatar
Anthony Larcher committed
241
242
243
                              wccn=None,
                              check_missing=True,
                              device=device
Anthony Larcher's avatar
Anthony Larcher committed
244
                              ).get_tar_non(Key(data_opts["test"]["key"]))
Anthony Larcher's avatar
Anthony Larcher committed
245
246
247
248
249

    pmiss, pfa = rocch(tar, non)

    return rocch2eer(pmiss, pfa)

Anthony Larcher's avatar
Anthony Larcher committed
250

Anthony Larcher's avatar
Anthony Larcher committed
251
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
252
253
254
255
256
257
258
259
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
260
261
262
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
263

Anthony Larcher's avatar
Anthony Larcher committed
264

Anthony Larcher's avatar
Anthony Larcher committed
265
class TrainingMonitor():
Anthony Larcher's avatar
Anthony Larcher committed
266
    """
Anthony Larcher's avatar
Anthony Larcher committed
267

Anthony Larcher's avatar
Anthony Larcher committed
268
    """
Anthony Larcher's avatar
Anthony Larcher committed
269
    def __init__(self,
Anthony Larcher's avatar
Anthony Larcher committed
270
                 output_file,
Anthony Larcher's avatar
Anthony Larcher committed
271
                 log_interval=10,
Anthony Larcher's avatar
Anthony Larcher committed
272
273
                 patience=numpy.inf,
                 best_accuracy=0.0,
Anthony Larcher's avatar
Anthony Larcher committed
274
                 best_eer_epoch=1,
Anthony Larcher's avatar
Anthony Larcher committed
275
276
277
                 best_eer=100,
                 compute_test_eer=False
                 ):
Anthony Larcher's avatar
Anthony Larcher committed
278

Anthony Larcher's avatar
Anthony Larcher committed
279
        self.current_epoch = 0
Anthony Larcher's avatar
Anthony Larcher committed
280
        self.log_interval = log_interval
Anthony Larcher's avatar
Anthony Larcher committed
281
282
283
        self.init_patience = patience
        self.current_patience = patience
        self.best_accuracy = best_accuracy
Anthony Larcher's avatar
Anthony Larcher committed
284
        self.best_eer_epoch = best_eer_epoch
Anthony Larcher's avatar
Anthony Larcher committed
285
        self.best_eer = best_eer
Anthony Larcher's avatar
Anthony Larcher committed
286
        self.compute_test_eer = compute_test_eer
Anthony Larcher's avatar
Anthony Larcher committed
287
        self.test_eer = []
Anthony Larcher's avatar
Anthony Larcher committed
288
289
290
291

        self.training_loss = []
        self.training_acc = []

Anthony Larcher's avatar
Anthony Larcher committed
292
293
        self.val_loss = []
        self.val_acc = []
Anthony Larcher's avatar
Anthony Larcher committed
294
295
        self.val_eer = []

Anthony Larcher's avatar
Anthony Larcher committed
296
297
        self.is_best = True

Anthony Larcher's avatar
Anthony Larcher committed
298
        # Initialize the logger
Anthony Larcher's avatar
Anthony Larcher committed
299
        logging_format = '%(asctime)-15s %(message)s'
Anthony Larcher's avatar
Anthony Larcher committed
300
        logging.basicConfig(level=logging.DEBUG, format=logging_format, datefmt='%m-%d %H:%M')
Anthony Larcher's avatar
Anthony Larcher committed
301
302
        self.logger = logging.getLogger('Monitoring')
        self.logger.setLevel(logging.DEBUG)
Anthony Larcher's avatar
Anthony Larcher committed
303
304
        # create file handler which logs even debug messages
        fh = logging.FileHandler(output_file)
Anthony Larcher's avatar
Anthony Larcher committed
305
306
        formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
        fh.setFormatter(formatter)
Anthony Larcher's avatar
Anthony Larcher committed
307
        fh.setLevel(logging.DEBUG)
Anthony Larcher's avatar
Anthony Larcher committed
308
        self.logger.addHandler(fh)
Anthony Larcher's avatar
Anthony Larcher committed
309

Anthony Larcher's avatar
Anthony Larcher committed
310
311
312
313
314
315
    def display(self):
        """

        :return:
        """
        # TODO
Anthony Larcher's avatar
Anthony Larcher committed
316
        self.logger.critical(f"***Validation metrics - Cross validation accuracy = {self.val_acc[-1]} %, EER = {self.val_eer[-1] * 100} %")
Anthony Larcher's avatar
Anthony Larcher committed
317
        self.logger.critical(f"***Test metrics - Test EER = {self.test_eer[-1] * 100} %")
Anthony Larcher's avatar
Anthony Larcher committed
318
319
320
321
322
323

    def display_final(self):
        """

        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
324
        self.logger.critical(f"Best accuracy {self.best_accuracy * 100.} obtained at epoch {self.best_accuracy_epoch}")
Anthony Larcher's avatar
Anthony Larcher committed
325
326

    def update(self,
Anthony Larcher's avatar
Anthony Larcher committed
327
               epoch=None,
Anthony Larcher's avatar
Anthony Larcher committed
328
329
               training_acc=None,
               training_loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
330
331
332
333
334
               test_eer=None,
               val_eer=None,
               val_loss=None,
               val_acc=None):

Anthony Larcher's avatar
Anthony Larcher committed
335
336
337
        if epoch is not None:
            self.current_epoch = epoch
        if training_acc is not None:
Anthony Larcher's avatar
Anthony Larcher committed
338
            self.training_acc.append(training_acc)
Anthony Larcher's avatar
Anthony Larcher committed
339
        if training_loss is not None:
Anthony Larcher's avatar
Anthony Larcher committed
340
            self.training_loss.append(training_loss)
Anthony Larcher's avatar
Anthony Larcher committed
341
        if val_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
342
            self.val_eer.append(val_eer)
Anthony Larcher's avatar
Anthony Larcher committed
343
        if val_loss is not None:
Anthony Larcher's avatar
Anthony Larcher committed
344
            self.val_loss.append(val_loss)
Anthony Larcher's avatar
Anthony Larcher committed
345
        if val_acc is not None:
Anthony Larcher's avatar
Anthony Larcher committed
346
            self.val_acc.append(val_acc)
Anthony Larcher's avatar
Anthony Larcher committed
347
348

        # remember best accuracy and save checkpoint
Anthony Larcher's avatar
Anthony Larcher committed
349
        if self.compute_test_eer and test_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
350
351
352
            self.test_eer.append(test_eer)
            self.is_best = test_eer < self.best_eer
            self.best_eer = min(test_eer, self.best_eer)
Anthony Larcher's avatar
Anthony Larcher committed
353
354
355
356
357
            if self.is_best:
                self.best_eer_epoch = epoch
                self.current_patience = self.init_patience
            else:
                self.current_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
358
        elif val_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
359
360
            self.is_best = val_eer < self.best_eer
            self.best_eer = min(val_eer, self.best_eer)
Anthony Larcher's avatar
Anthony Larcher committed
361
362
363
364
365
            if self.is_best:
                self.best_eer_epoch = epoch
                self.current_patience = self.init_patience
            else:
                self.current_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
366
367


Anthony Larcher's avatar
Anthony Larcher committed
368
class Xtractor(torch.nn.Module):
369
370
371
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
372

Anthony Larcher's avatar
Anthony Larcher committed
373
374
375
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
376
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
377
                 norm_embedding=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
378
                 aam_margin=0.2,
Anthony Larcher's avatar
Anthony Larcher committed
379
380
                 aam_s=30,
                 embedding_size=256):
Anthony Larcher's avatar
Anthony Larcher committed
381
382
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
383
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
384
        """
Anthony Larcher's avatar
Anthony Larcher committed
385
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
386
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
387
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
388
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
389

Anthony Larcher's avatar
Anthony Larcher committed
390
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
391

Anthony Larcher's avatar
Anthony Larcher committed
392
393
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
394
395
396
397
398
            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
399
400
            self.activation = torch.nn.LeakyReLU(0.2)

Anthony Larcher's avatar
Anthony Larcher committed
401
            self.preprocessor = MfccFrontEnd()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
402
            self.feature_size = self.preprocessor.n_mfcc
Anthony Larcher's avatar
Anthony Larcher committed
403

Anthony Larcher's avatar
xv    
Anthony Larcher committed
404
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
405
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
406
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
407
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
408
409
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
410
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
411
412
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
413
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
414
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
415
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
416
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
417
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
418
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
419
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
420
421
            ]))

Anthony Larcher's avatar
Anthony Larcher committed
422
            self.embedding_size = embedding_size
Anthony Larcher's avatar
Anthony Larcher committed
423

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
424
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
425
            self.stat_pooling_weight_decay = 0
Anthony Larcher's avatar
xv    
Anthony Larcher committed
426
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
427
                ("linear6", torch.nn.Linear(3072, self.embedding_size))
Anthony Larcher's avatar
Anthony Larcher committed
428
429
            ]))

Anthony Larcher's avatar
Anthony Larcher committed
430
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
431
                self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
Anthony Larcher's avatar
Anthony Larcher committed
432
433
434
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
Anthony Larcher's avatar
Anthony Larcher committed
435
                                                                easy_margin=False)
Anthony Larcher's avatar
Anthony Larcher committed
436
437
438
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
439
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
440
441
442
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
443
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
444
445
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
446

447
            self.preprocessor_weight_decay = 0.0002
Anthony Larcher's avatar
debug    
Anthony Larcher committed
448
449
450
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002
Anthony Larcher's avatar
Anthony Larcher committed
451

Anthony Larcher's avatar
Anthony Larcher committed
452
        elif model_archi == "resnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
453

Anthony Larcher's avatar
Anthony Larcher committed
454
            self.preprocessor = MelSpecFrontEnd(n_mels=80)
Anthony Larcher's avatar
Anthony Larcher committed
455
            self.sequence_network = PreResNet34()
Anthony Larcher's avatar
Anthony Larcher committed
456
            self.embedding_size = embedding_size
Anthony Larcher's avatar
Anthony Larcher committed
457

Anthony Larcher's avatar
Anthony Larcher committed
458
459
            self.before_speaker_embedding = torch.nn.Linear(in_features=5120,
                                                            out_features=self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
460

Anthony Larcher's avatar
Anthony Larcher committed
461
            self.stat_pooling = AttentivePooling(256, 80, global_context=True)
Anthony Larcher's avatar
Anthony Larcher committed
462

463
            self.loss = "aam"
Anthony Larcher's avatar
Anthony Larcher committed
464
            self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
Anthony Larcher's avatar
Anthony Larcher committed
465
466
                                                            int(self.speaker_number),
                                                            s = 30.0,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
467
                                                            m = 0.20,
Anthony Larcher's avatar
Anthony Larcher committed
468
                                                            easy_margin = False)
Anthony Larcher's avatar
Anthony Larcher committed
469

Anthony Larcher's avatar
Anthony Larcher committed
470
471
472
473
474
            self.preprocessor_weight_decay = 0.00002
            self.sequence_network_weight_decay = 0.00002
            self.stat_pooling_weight_decay = 0.00002
            self.before_speaker_embedding_weight_decay = 0.00002
            self.after_speaker_embedding_weight_decay = 0.0002
Anthony Larcher's avatar
Anthony Larcher committed
475

Anthony Larcher's avatar
Anthony Larcher committed
476
        elif model_archi == "fastresnet34":
Anthony Larcher's avatar
Anthony Larcher committed
477
            self.preprocessor = MelSpecFrontEnd()
Anthony Larcher's avatar
Anthony Larcher committed
478
            self.sequence_network = PreFastResNet34()
Anthony Larcher's avatar
Anthony Larcher committed
479
            self.embedding_size = embedding_size
Anthony Larcher's avatar
Anthony Larcher committed
480

Anthony Larcher's avatar
Anthony Larcher committed
481
            self.before_speaker_embedding = torch.nn.Linear(in_features = 2560,
Anthony Larcher's avatar
Anthony Larcher committed
482
                                                            out_features = self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
483

Anthony Larcher's avatar
Anthony Larcher committed
484
            self.stat_pooling = AttentivePooling(128, 80, global_context=False)
Anthony Larcher's avatar
Anthony Larcher committed
485
486
            self.stat_pooling_weight_decay = 0

Anthony Larcher's avatar
merge    
Anthony Larcher committed
487
488
489
490
            self.loss = loss
            if self.loss == "aam":
                self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
                                                                int(self.speaker_number),
Anthony Larcher's avatar
merge    
Anthony Larcher committed
491
492
                                                                s = 30,
                                                                m = 0.2,
Anthony Larcher's avatar
merge    
Anthony Larcher committed
493
494
495
496
                                                                easy_margin = False)

            elif self.loss == 'aps':
                self.after_speaker_embedding = SoftmaxAngularProto(int(self.speaker_number))
Anthony Larcher's avatar
Anthony Larcher committed
497
498
            elif self.loss == 'smn':
                self.after_speaker_embedding = AngularProximityMagnet(int(self.speaker_number))
Anthony Larcher's avatar
Anthony Larcher committed
499

Anthony Larcher's avatar
Anthony Larcher committed
500
501
502
503
504
            self.preprocessor_weight_decay = 0.00002
            self.sequence_network_weight_decay = 0.00002
            self.stat_pooling_weight_decay = 0.00002
            self.before_speaker_embedding_weight_decay = 0.00002
            self.after_speaker_embedding_weight_decay = 0.0002
Anthony Larcher's avatar
Anthony Larcher committed
505

Anthony Larcher's avatar
Anthony Larcher committed
506
507
        elif model_archi == "halfresnet34":
            self.preprocessor = MelSpecFrontEnd(n_fft=1024,
Anthony Larcher's avatar
Anthony Larcher committed
508
509
                                                win_length=400,
                                                hop_length=160,
Anthony Larcher's avatar
Anthony Larcher committed
510
511
                                                n_mels=80)
            self.sequence_network = PreHalfResNet34()
Anthony Larcher's avatar
Anthony Larcher committed
512
513
514

            self.embedding_size = embedding_size
            #self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
515
516
517
518
519
520
521
522
            #self.before_speaker_embedding = torch.nn.Linear(in_features = 5120,
            #                                                out_features = self.embedding_size)

            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
                ("lin_be", torch.nn.Linear(in_features = 5120, out_features = self.embedding_size, bias=False)),
                ("bn_be", torch.nn.BatchNorm1d(self.embedding_size))
                ]))

Anthony Larcher's avatar
debug    
Anthony Larcher committed
523
            self.stat_pooling = AttentivePooling(256, 80, global_context=True)
Anthony Larcher's avatar
Anthony Larcher committed
524
525
526
527
528
529
530
531
532

            self.loss = loss
            if self.loss == "aam":
                self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
                                                                int(self.speaker_number),
                                                                s = 30,
                                                                m = 0.2,
                                                                easy_margin = False)
            elif self.loss == 'aps':
Le Lan Gaël's avatar
Le Lan Gaël committed
533
534
                self.after_speaker_embedding = SoftmaxAngularProto(int(self.speaker_number),
                                                                   emb_dim=self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
535
536
537
538
            self.preprocessor_weight_decay = 0.00002
            self.sequence_network_weight_decay = 0.00002
            self.stat_pooling_weight_decay = 0.00002
            self.before_speaker_embedding_weight_decay = 0.00002
Anthony Larcher's avatar
debug    
Anthony Larcher committed
539
            self.after_speaker_embedding_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
540

541
542
543
544
545
546
547
548
        elif model_archi == "experimental":
            self.preprocessor = MelSpecFrontEnd()
            self.sequence_network = PreHalfResNet34()

            self.embedding_size = embedding_size
            #self.embedding_size = 256
            #self.before_speaker_embedding = torch.nn.Linear(in_features = 5120,
            #                                                out_features = self.embedding_size)
Le Lan Gaël's avatar
Le Lan Gaël committed
549
            self.before_speaker_embedding = torch.nn.Linear(in_features = int(64*63*5/2),
550
551
                                                            out_features = self.embedding_size)

Le Lan Gaël's avatar
Le Lan Gaël committed
552
            self.stat_pooling = ChannelWiseCorrPooling(in_channels=256, out_channels=64)
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

            self.loss = loss
            if self.loss == "aam":
                self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
                                                                int(self.speaker_number),
                                                                s = 30,
                                                                m = 0.2,
                                                                easy_margin = False)
            elif self.loss == 'aps':
                self.after_speaker_embedding = SoftmaxAngularProto(int(self.speaker_number))
            self.preprocessor_weight_decay = 0.00002
            self.sequence_network_weight_decay = 0.00002
            self.stat_pooling_weight_decay = 0.00002
            self.before_speaker_embedding_weight_decay = 0.00002
            self.after_speaker_embedding_weight_decay = 0.0002

Anthony Larcher's avatar
Anthony Larcher committed
569
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
570
571
572
573
574
575

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
576
577
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
578
579
580
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
581
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
582
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
583
584
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
602
603
604
605
606
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
607
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
608
609
610
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
611

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
612
613
614
615
616
617
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
618
        else:
Anthony Larcher's avatar
Anthony Larcher committed
619
620
            is_first_resblock = True

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
621
622
623
624
625
626
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
627

Anthony Larcher's avatar
Anthony Larcher committed
628
            self.loss = cfg["loss"]["type"]
Anthony Larcher's avatar
Anthony Larcher committed
629
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
630
631
                self.aam_margin = cfg["loss"]["aam_margin"]
                self.aam_s = cfg["loss"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
632

Anthony Larcher's avatar
Anthony Larcher committed
633
634
635
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
636
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
637
638
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
639
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
640
641
642
643
644
645
646
647
648
649
650
651
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
652
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
653
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
654
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
655
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
656
657
658
659
660
661
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
662
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
663
664

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
665
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
666
            """
Anthony Larcher's avatar
Anthony Larcher committed
667
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
668
            if self.feature_size is None:
Anthony Larcher's avatar
Anthony Larcher committed
669
                self.feature_size = cfg["preprocessor"]["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
670

Anthony Larcher's avatar
Anthony Larcher committed
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
686
687
688
689
690
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

Anthony Larcher's avatar
Anthony Larcher committed
691
692
693
694
695
                elif k.startswith("conv2D"):
                    segmental_layers.append((k, torch.nn.Conv2d(in_channels=1,
                                                                out_channels=entry_conv_out_channels,
                                                                kernel_size=entry_conv_kernel_size,
                                                                padding=3,
Anthony Larcher's avatar
Anthony Larcher committed
696
                                                                stride=1)))
Anthony Larcher's avatar
Anthony Larcher committed
697

Anthony Larcher's avatar
Anthony Larcher committed
698
                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
699
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
700
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
701
702
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
703
704
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
705
706
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
707
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
708
709
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
710
711
712
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
713
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
714
715
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
716
717
718
719
720
721
                elif k.startswith('resblock'):
                    segmental_layers.append((ResBlock(cfg["segmental"][k]["input_channel"],
                                                      cfg["segmental"][k]["output_channel"],
                                                      is_first_resblock)))
                    is_first_resblock = False

Anthony Larcher's avatar
Anthony Larcher committed
722
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
723
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
724

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
725
726
727
728
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
729
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
730
731
732
733
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
734
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
735

Anthony Larcher's avatar
Anthony Larcher committed
736
737
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
738
            """
Anthony Larcher's avatar
Anthony Larcher committed
739
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
740
            """
Anthony Larcher's avatar
Anthony Larcher committed
741
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
742
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
743
744
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
745
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
746
747
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
748
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
749
750
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
751
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
752
753

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
754
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
755

Anthony Larcher's avatar
Anthony Larcher committed
756
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
757
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
758
759

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
760
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
761

Anthony Larcher's avatar
Anthony Larcher committed
762
            self.embedding_size = input_size
Anthony Larcher's avatar
Anthony Larcher committed
763
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
764
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
765

Anthony Larcher's avatar
Anthony Larcher committed
766
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
767
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
768
769
770
771
772
773
774
775
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
776
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
777
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
778

Anthony Larcher's avatar
Anthony Larcher committed
779
780
781
782
783
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
784

Anthony Larcher's avatar
Anthony Larcher committed
785
786
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
787

Anthony Larcher's avatar
Anthony Larcher committed
788
789
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
790

Anthony Larcher's avatar
Anthony Larcher committed
791
792
793
794
795
796
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
797
798
799
800
801
802
803
                self.norm_embedding = True
                self.after_speaker_embedding = ArcMarginProduct(input_size,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)

Anthony Larcher's avatar
Anthony Larcher committed
804
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
805

Anthony Larcher's avatar
Anthony Larcher committed
806
    def forward(self, x, is_eval=False, target=None, norm_embedding=True):
807
808
809
        """

        :param x:
810
        :param is_eval: False for training
811
812
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
813
        if self.preprocessor is not None:
Anthony Larcher's avatar
merge    
Anthony Larcher committed
814
            x = self.preprocessor(x, is_eval)
Anthony Larcher's avatar
Anthony Larcher committed
815

816
817
818
819
        x = x.unsqueeze(1)
        # Does not work for FastResNet34 !
        x = x.permute(0, 1, 3, 2)
        x = x.to(memory_format=torch.channels_last)
Anthony Larcher's avatar
Anthony Larcher committed
820
        x = self.sequence_network(x)
821
822
823
824
        #x = x.to(memory_format=torch.contiguous_format)
        #print(x.shape)
        #x = torch.flatten(x, start_dim=1, end_dim=2)
        #print(x.shape)
Anthony Larcher's avatar
Anthony Larcher committed
825
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
826
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
827
        x = self.before_speaker_embedding(x)
828

Anthony Larcher's avatar
Anthony Larcher committed
829
        if norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
830
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
831

Anthony Larcher's avatar
Anthony Larcher committed
832
        if self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
833
            if is_eval:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
834
                return x
Anthony Larcher's avatar
debug    
Anthony Larcher committed
835
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
836
                return self.after_speaker_embedding(x), x
Anthony Larcher's avatar
Anthony Larcher committed
837

Anthony Larcher's avatar
merge    
Anthony Larcher committed
838
        elif self.loss in ['aam', 'aps']:
Anthony Larcher's avatar
merge    
Anthony Larcher committed
839
840
841
842
843
            x = self.after_speaker_embedding(x, target=target), torch.nn.functional.normalize(x, dim=1)
        elif self.loss == 'smn':
            if not is_eval:
                x = self.after_speaker_embedding(x, target=target), x

Anthony Larcher's avatar
Anthony Larcher committed
844

Anthony Larcher's avatar
Anthony Larcher committed
845
        return x
Anthony Larcher's avatar
Anthony Larcher committed
846

847
848
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
849
850
851
852
853
854
855
856
857
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
858

Anthony Larcher's avatar
Anthony Larcher committed
859

Anthony Larcher's avatar
Anthony Larcher committed
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
def fill_dict(target_dict, source_dict, prefix = ""):
    """
    Recursively Fill a dictionary target_dict by taking values from source_dict

    :param target_dict: output dictionary that is initialized with default values
    :param source_dict: input dictionary
    :return:
    """
    for k1, v1 in target_dict.items():

        if isinstance(v1, dict):
            if k1 in source_dict and isinstance(source_dict[k1], dict):
                fill_dict(v1, source_dict[k1], prefix + "\t")
            else:
                pass
        else:
            if k1 in source_dict and source_dict[k1] is not None:
                target_dict[k1] = source_dict[k1]
            else:
                pass


Anthony Larcher's avatar
Anthony Larcher committed
882
883
def update_training_dictionary(dataset_description,
                               model_description,
Anthony Larcher's avatar
Anthony Larcher committed
884
885
                               training_description,
                               kwargs=None):
Anthony Larcher's avatar
Anthony Larcher committed
886
887
    """

Anthony Larcher's avatar
Anthony Larcher committed
888
889
890
891
    :param dataset_description:
    :param model_description:
    :param training_description:
    :param kwargs:
Anthony Larcher's avatar
Anthony Larcher committed
892
893
894
895
896
897
    :return:
    """
    dataset_opts=dict()
    model_opts=dict()
    training_opts=dict()

Anthony Larcher's avatar
Anthony Larcher committed
898
899
900
901
902
    if isinstance(dataset_description, str) and os.path.isfile(dataset_description):
        with open(dataset_description, 'r') as fh:
            tmp_data_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_data_dict = dataset_description
Anthony Larcher's avatar
Anthony Larcher committed
903

Anthony Larcher's avatar
Anthony Larcher committed
904
905
906
907
908
    if isinstance(model_description, str) and os.path.isfile(model_description):
        with open(model_description, 'r') as fh:
            tmp_model_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_model_dict = model_description
Anthony Larcher's avatar
Anthony Larcher committed
909

Anthony Larcher's avatar
Anthony Larcher committed
910
911
912
913
914
915
916
917
918
    if isinstance(training_description, str) and os.path.isfile(training_description):
        with open(training_description, 'r') as fh:
            tmp_train_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_train_dict = training_description

    # Initialize default dictionaries
    dataset_opts["data_path"] = None
    dataset_opts["dataset_csv"] = None
Anthony Larcher's avatar
Anthony Larcher committed
919
    dataset_opts["stratify"] = False
Anthony Larcher's avatar
Anthony Larcher committed
920
921
922
923
924
925
926
    dataset_opts["data_file_extension"] = ".wav"
    dataset_opts["sample_rate"] = 16000

    dataset_opts["validation_ratio"] = 0.1
    dataset_opts["batch_size"] = 64

    dataset_opts["train"] = dict()
Anthony Larcher's avatar
Anthony Larcher committed
927
    dataset_opts["train"]["duration"] = 4.
Anthony Larcher's avatar
Anthony Larcher committed
928
    dataset_opts["train"]["chunk_per_segment"] = -1
Anthony Larcher's avatar
Anthony Larcher committed
929
    dataset_opts["train"]["overlap"] = 3.9
Anthony Larcher's avatar
Anthony Larcher committed
930
931
932
    dataset_opts["train"]["sampler"] = dict()
    dataset_opts["train"]["sampler"]["examples_per_speaker"] = 1
    dataset_opts["train"]["sampler"]["samples_per_speaker"] = 100
Anthony Larcher's avatar
debug    
Anthony Larcher committed
933
    dataset_opts["train"]["sampler"]["augmentation_replica"] = 1
Anthony Larcher's avatar
Anthony Larcher committed
934
    dataset_opts["train"]["transform_number"] = 2
Anthony Larcher's avatar
Anthony Larcher committed
935
936
937
938
939
940
    dataset_opts["train"]["transformation"] = dict()
    dataset_opts["train"]["transformation"]["pipeline"] = ""
    dataset_opts["train"]["transformation"]["add_noise"] = dict()
    dataset_opts["train"]["transformation"]["add_noise"]["noise_db_csv"] = ""
    dataset_opts["train"]["transformation"]["add_noise"]["data_path"] = ""
    dataset_opts["train"]["transformation"]["add_reverb"] = dict()
Anthony Larcher's avatar
Anthony Larcher committed
941
    dataset_opts["train"]["transformation"]["add_reverb"]["rir_db_csv"] = ""
Anthony Larcher's avatar
Anthony Larcher committed
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
    dataset_opts["train"]["transformation"]["add_reverb"]["data_path"] = ""

    dataset_opts["valid"] = dict()
    dataset_opts["valid"]["duration"] = 2.
    dataset_opts["valid"]["transformation"] = dict()
    dataset_opts["valid"]["transformation"]["pipeline"] = ""
    dataset_opts["valid"]["transformation"]["add_noise"] = dict()
    dataset_opts["valid"]["transformation"]["add_noise"]["noise_db_csv"] = ""
    dataset_opts["valid"]["transformation"]["add_noise"]["data_path"] = ""
    dataset_opts["valid"]["transformation"]["add_reverb"] = dict()
    dataset_opts["valid"]["transformation"]["add_reverb"]["noise_db_csv"] = ""
    dataset_opts["valid"]["transformation"]["add_reverb"]["data_path"] = ""

    dataset_opts["test"] = dict()
    dataset_opts["test"]["idmap"] = ""
    dataset_opts["test"]["ndx"] = ""
    dataset_opts["test"]["key"] = ""
    dataset_opts["test"]["data_path"] =""

    # Initialize model options
    model_opts["speaker_number"] = None
Anthony Larcher's avatar
Anthony Larcher committed
963
    model_opts["embedding_size"] = 256
Anthony Larcher's avatar
Anthony Larcher committed
964
965
966
967
968
969
970
971
972
973
974
    model_opts["loss"] = dict()
    model_opts["loss"]["type"] ="aam"
    model_opts["loss"]["aam_margin"] = 0.2
    model_opts["loss"]["aam_s"] = 30

    model_opts["initial_model_name"] = None
    model_opts["reset_parts"] = []
    model_opts["freeze_parts"] = []

    model_opts["model_type"] = "fastresnet"

Anthony Larcher's avatar
Anthony Larcher committed
975
976
977
    model_opts["preprocessor"] = dict()
    model_opts["preprocessor"]["type"] =  "mel_spec"
    model_opts["preprocessor"]["feature_size"] = 80
Anthony Larcher's avatar
Anthony Larcher committed
978
979
980

    # Initialize training options
    training_opts["log_file"] = "sidekit.log"
Anthony Larcher's avatar
Anthony Larcher committed
981
982
983
    training_opts["numpy_seed"] = 0
    training_opts["torch_seed"] = 0
    training_opts["random_seed"] = 0
Anthony Larcher's avatar
Anthony Larcher committed
984
    training_opts["deterministic"] = False
Anthony Larcher's avatar
Anthony Larcher committed
985
986
987
988
989
990
991
992
993
994
995
996
997
998
    training_opts["epochs"] = 100
    training_opts["lr"] = 1e-3
    training_opts["patience"] = 50
    training_opts["multi_gpu"] = False
    training_opts["num_cpu"] = 5
    training_opts["mixed_precision"] = False
    training_opts["clipping"] = False

    training_opts["optimizer"] = dict()
    training_opts["optimizer"]["type"] = "sgd"
    training_opts["optimizer"]["options"] = None

    training_opts["scheduler"] = dict()
    training_opts["scheduler"]["type"] = "ReduceLROnPlateau"
Anthony Larcher's avatar
Anthony Larcher committed
999
1000
    training_opts["scheduler"]["step_size_up"] = 10
    training_opts["scheduler"]["base_lr"] = 1e-8