xvector.py 87.2 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
25
Copyright 2014-2021 Anthony Larcher, Yevhenii Prokopalo
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28

Anthony Larcher's avatar
Anthony Larcher committed
29
import logging
Anthony Larcher's avatar
debug    
Anthony Larcher committed
30
import math
Anthony Larcher's avatar
Anthony Larcher committed
31
import os
Anthony Larcher's avatar
Anthony Larcher committed
32
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
33
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
34
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
35
import shutil
Anthony Larcher's avatar
Anthony Larcher committed
36
import tabulate
37
import time
Anthony Larcher's avatar
Anthony Larcher committed
38
import torch
Anthony Larcher's avatar
debug    
Anthony Larcher committed
39
import torchaudio
Anthony Larcher's avatar
Anthony Larcher committed
40
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
41
42
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
43
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
44
45
46
47
48
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
from .preprocessor import MfccFrontEnd
from .preprocessor import MelSpecFrontEnd
from .preprocessor import RawPreprocessor
Anthony Larcher's avatar
Anthony Larcher committed
49
from .xsets import SideSet
Anthony Larcher's avatar
Anthony Larcher committed
50
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
51
from .xsets import IdMapSetPerSpeaker
Anthony Larcher's avatar
Anthony Larcher committed
52
from .xsets import SideSampler
Anthony Larcher's avatar
Anthony Larcher committed
53
54
55
56
from .res_net import ResBlockWFMS
from .res_net import ResBlock
from .res_net import PreResNet34
from .res_net import PreFastResNet34
Anthony Larcher's avatar
Anthony Larcher committed
57
from ..bosaris import IdMap
Anthony Larcher's avatar
Anthony Larcher committed
58
59
from ..bosaris import Key
from ..bosaris import Ndx
Anthony Larcher's avatar
Anthony Larcher committed
60
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
61
from ..iv_scoring import cosine_scoring
Anthony Larcher's avatar
Anthony Larcher committed
62
from .sincnet import SincNet
Anthony Larcher's avatar
merge    
Anthony Larcher committed
63
from ..bosaris.detplot import rocch, rocch2eer
Anthony Larcher's avatar
merge    
Anthony Larcher committed
64
from .loss import SoftmaxAngularProto, ArcLinear
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
65
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
66
from .loss import ArcMarginProduct
Anthony Larcher's avatar
Anthony Larcher committed
67

Anthony Larcher's avatar
Anthony Larcher committed
68
from ..sidekit_io import init_logging
Anthony Larcher's avatar
ddp    
Anthony Larcher committed
69

Anthony Larcher's avatar
Anthony Larcher committed
70
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
71

Anthony Larcher's avatar
Anthony Larcher committed
72
73
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
74
__copyright__ = "Copyright 2015-2021 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
75
76
77
78
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
79
80


Anthony Larcher's avatar
Anthony Larcher committed
81
#logging.basicConfig(format='%(asctime)s %(message)s')
Anthony Larcher's avatar
Anthony Larcher committed
82

Anthony Larcher's avatar
Anthony Larcher committed
83
84
85

# Make PyTorch Deterministic
torch.manual_seed(0)
Anthony Larcher's avatar
Anthony Larcher committed
86
87
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
Anthony Larcher's avatar
Anthony Larcher committed
88
89
90
numpy.random.seed(0)


Anthony Larcher's avatar
Anthony Larcher committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

def eer(negatives, positives):
    """Logarithmic complexity EER computation

    Args:
        negative_scores (numpy array): impostor scores
        positive_scores (numpy array): genuine scores

    Returns:
        float: Equal Error Rate (EER)
    """

    positives = numpy.sort(positives)
    negatives = numpy.sort(negatives)[::-1]

    pos_count = positives.shape[0]
    neg_count = negatives.shape[0]

    p_score = positives[0]
    n_score = negatives[0]

    p_index = 0
    n_index = 0

    next_p_jump = pos_count//2
    next_n_jump = neg_count//2

    kdx = 0
    while True:
        kdx += 1
        if p_index < 0 or n_index < 0:
            return 0
        if p_index > pos_count or n_index > neg_count:
            return 100
        if p_score < n_score:
            p_index = p_index + next_p_jump
            n_index = n_index + next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break
        elif p_score >= n_score:
            p_index = p_index - next_p_jump
            n_index = n_index - next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break

        p_score = positives[p_index]
        n_score = negatives[n_index]
        next_p_jump = next_p_jump//2
        next_n_jump = next_n_jump//2

    eer_predicate = 100

    tfr = (abs(p_index))/pos_count
    tfa = (1+abs(n_index))/neg_count
    if (p_score == n_score and tfr == tfa):
        return tfr

    while positives[p_index] < negatives[n_index]:
        if p_index < pos_count - 1:
            p_index += 1
        elif n_index < neg_count - 1:
            n_index += 1
        else:
            break

    while positives[p_index] > negatives[n_index] and n_index >= 1:
        n_index -= 1

    tfr = (1+p_index)/pos_count
    tfa = (1+n_index)/neg_count

    while tfa > tfr:
        p_index += 1
        while positives[p_index] > negatives[n_index] and n_index >= 1:
            n_index -= 1
        tfr = (1+p_index)/pos_count
        tfa = (1+n_index)/neg_count

    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    tfr = p_index/pos_count
    tfa = (1+n_index)/neg_count
    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    while True:
        while negatives[n_index + 1] <= positives[p_index - 1]:
            p_index -= 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer
        while negatives[n_index + 1] > positives[p_index - 1]:
            n_index += 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer

    return eer


Anthony Larcher's avatar
debug    
Anthony Larcher committed
206
207
def test_metrics(model,
                 device,
Anthony Larcher's avatar
Anthony Larcher committed
208
                 speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
209
210
                 num_thread,
                 mixed_precision):
Anthony Larcher's avatar
Anthony Larcher committed
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
Anthony Larcher's avatar
Anthony Larcher committed
227

Anthony Larcher's avatar
Anthony Larcher committed
228
229
230
231
    idmap_test_filename = '/lium/raid01_c/larcher/data/allies_dev_verif_idmap.h5'
    ndx_test_filename = '/lium/raid01_c/larcher/data/allies_dev_verif_ndx.h5'
    key_test_filename = '/lium/raid01_c/larcher/data/allies_dev_verif_key.h5'
    data_root_name='/lium/corpus/base/ALLIES/wav'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
232

233
    transform_pipeline = dict()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
234
235
236
237
238

    xv_stat = extract_embeddings(idmap_name=idmap_test_filename,
                                 model_filename=model,
                                 data_root_name=data_root_name,
                                 device=device,
Anthony Larcher's avatar
Anthony Larcher committed
239
                                 loss="aam",
Anthony Larcher's avatar
Anthony Larcher committed
240
241
                                 transform_pipeline=transform_pipeline,
                                 num_thread=num_thread,
Anthony Larcher's avatar
Anthony Larcher committed
242
                                 mixed_precision=mixed_precision)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
243

Anthony Larcher's avatar
merge    
Anthony Larcher committed
244
245
246
247
248
249
250
    tar, non = cosine_scoring(xv_stat,
                              xv_stat,
                              Ndx(ndx_test_filename),
                              wccn=None,
                              check_missing=True,
                              device=device
                              ).get_tar_non(Key(key_test_filename))
Anthony Larcher's avatar
debug    
Anthony Larcher committed
251

Anthony Larcher's avatar
merge    
Anthony Larcher committed
252
253
254
255
    #test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))
    pmiss, pfa = rocch(tar, non)

    return rocch2eer(pmiss, pfa)
Anthony Larcher's avatar
Anthony Larcher committed
256

Anthony Larcher's avatar
Anthony Larcher committed
257
def new_test_metrics(model,
Anthony Larcher's avatar
Anthony Larcher committed
258
259
260
                     device,
                     data_opts,
                     train_opts):
Anthony Larcher's avatar
Anthony Larcher committed
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
    # TODO modifier les parametres pour utiliser le dataset_description a la place de :

    #idmap_test_filename,
    #ndx_test_filename,
    #key_test_filename,
    #data_root_name,

    transform_pipeline = dict()

    xv_stat = extract_embeddings(idmap_name=data_opts["idmap_test_filename"],
                                 model_filename=model,
                                 data_root_name=data_opts["data_root_name"],
                                 device=device,
                                 loss=model.loss,
                                 transform_pipeline=transform_pipeline,
                                 num_thread=train_opts["num_thread"],
                                 mixed_precision=train_opts["mixed_precision"])

    tar, non = cosine_scoring(xv_stat,
                              xv_stat,
                              Ndx(data_opts["ndx_test_filename"]),
                              wccn=None,
                              check_missing=True,
                              device=device
                              ).get_tar_non(Key(data_opts["key_test_filename"]))

    #test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))
    pmiss, pfa = rocch(tar, non)

    return rocch2eer(pmiss, pfa)

Anthony Larcher's avatar
Anthony Larcher committed
308

Anthony Larcher's avatar
Anthony Larcher committed
309
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
310
311
312
313
314
315
316
317
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
318
319
320
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
321

Anthony Larcher's avatar
Anthony Larcher committed
322

Anthony Larcher's avatar
Anthony Larcher committed
323

Anthony Larcher's avatar
Anthony Larcher committed
324
325
326
class TrainingMonitor():

    def __init__(self,
Anthony Larcher's avatar
Anthony Larcher committed
327
                 output_file,
Anthony Larcher's avatar
Anthony Larcher committed
328
329
330
331
332
333
334
                 patience=numpy.inf,
                 best_accuracy=0.0,
                 best_accuracy_epoch=1,
                 best_eer=100,
                 compute_test_eer=False
                 ):
        # Stocker plutot des listes pour conserver l'historique complet
Anthony Larcher's avatar
Anthony Larcher committed
335
        self.current_epoch = 0
Anthony Larcher's avatar
Anthony Larcher committed
336
337
338
339
340
341
342
343
344
345
346
347
        self.init_patience = patience
        self.current_patience = patience
        self.best_accuracy = best_accuracy
        self.best_accuracy_epoch = best_accuracy_epoch
        self.best_eer = best_eer
        self.test_eer = []
        self.val_eer = []
        self.val_loss = []
        self.val_acc = []
        self.compute_test_eer = compute_test_eer
        self.is_best = True

Anthony Larcher's avatar
Anthony Larcher committed
348
349
350
351
352
353
354
355
        # Initialize the logger
        self.logger = logging.getLogger('monitoring')
        self.logger.setLevel(logging.INFO)
        # create file handler which logs even debug messages
        fh = logging.FileHandler(output_file)
        fh.setLevel(logging.INFO)
        self.logger.addHandler(fh)

Anthony Larcher's avatar
Anthony Larcher committed
356
357
358
359
360
361
    def display(self):
        """

        :return:
        """
        # TODO
Anthony Larcher's avatar
Anthony Larcher committed
362
363
        self.logger.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Training metrics - Cross validation accuracy = {val_acc} %, EER = {val_eer * 100} %")
        self.logger.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Training metrics - Test EER = {test_eer * 100} %")
Anthony Larcher's avatar
Anthony Larcher committed
364
365
366
367
368
369

    def display_final(self):
        """

        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
370
        self.logger.critical(f"Best accuracy {self.best_accuracy * 100.} obtained at epoch {self.best_accuracy_epoch}")
Anthony Larcher's avatar
Anthony Larcher committed
371
372
373
374
375
376
377
378

    def update(self,
               epoch,
               test_eer=None,
               val_eer=None,
               val_loss=None,
               val_acc=None):

Anthony Larcher's avatar
Anthony Larcher committed
379
        self.current_epoch = epoch
Anthony Larcher's avatar
Anthony Larcher committed
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
        self.val_eer.append(val_eer)
        self.val_loss.append(val_loss)
        self.val_acc.append(val_acc)

        # remember best accuracy and save checkpoint
        if self.compute_test_eer:
            self.test_eer.append(test_eer)
            self.is_best = test_eer < self.best_eer
            self.best_eer = min(test_eer, self.best_eer)
        else:
            self.is_best = val_eer < self.best_eer
            self.best_eer = min(val_eer, self.best_eer)

        self.best_accuracy = max(val_acc, self.best_accuracy)

Anthony Larcher's avatar
Anthony Larcher committed
395
        if self.is_best:
Anthony Larcher's avatar
Anthony Larcher committed
396
397
398
399
400
401
            self.best_accuracy_epoch = epoch
            self.current_patience = self.init_patience
        else:
            self.current_patience -= 1


Anthony Larcher's avatar
Anthony Larcher committed
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
class MeanStdPooling(torch.nn.Module):
    """
    Mean and Standard deviation pooling
    """
    def __init__(self):
        """

        """
        super(MeanStdPooling, self).__init__()
        pass

    def forward(self, x):
        """

        :param x:
        :return:
        """
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        return torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
422

Anthony Larcher's avatar
Anthony Larcher committed
423

Anthony Larcher's avatar
Anthony Larcher committed
424
425
426
427
428
429
430
431
432
433
434
class GruPooling(torch.nn.Module):
    """

    """
    def __init__(self, input_size, gru_node, nb_gru_layer):
        """

        :param input_size:
        :param gru_node:
        :param nb_gru_layer:
        """
Anthony Larcher's avatar
Anthony Larcher committed
435
        super(GruPooling, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
436
437
438
        self.lrelu_keras = torch.nn.LeakyReLU(negative_slope = 0.3)
        self.bn_before_gru = torch.nn.BatchNorm1d(num_features = input_size)
        self.gru = torch.nn.GRU(input_size = input_size,
Anthony Larcher's avatar
Anthony Larcher committed
439
440
441
                                hidden_size = gru_node,
                                num_layers = nb_gru_layer,
                                batch_first = True)
Anthony Larcher's avatar
Anthony Larcher committed
442
443
444
445
446
447
448
449
450
451
452
453

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = self.bn_before_gru(x)
        x = self.lrelu_keras(x)
        x = x.permute(0, 2, 1)  #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
Anthony Larcher's avatar
Anthony Larcher committed
454
        x = x[:, -1, :]
Anthony Larcher's avatar
Anthony Larcher committed
455
456
457

        return x

Anthony Larcher's avatar
Anthony Larcher committed
458

Anthony Larcher's avatar
Anthony Larcher committed
459
class Xtractor(torch.nn.Module):
460
461
462
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
463

Anthony Larcher's avatar
Anthony Larcher committed
464
465
466
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
467
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
468
                 norm_embedding=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
469
470
                 aam_margin=0.2,
                 aam_s=30):
Anthony Larcher's avatar
Anthony Larcher committed
471
472
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
473
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
474
        """
Anthony Larcher's avatar
Anthony Larcher committed
475
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
476
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
477
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
478
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
479

Anthony Larcher's avatar
Anthony Larcher committed
480
481
        print(f"Speaker number : {self.speaker_number}")

Anthony Larcher's avatar
Anthony Larcher committed
482
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
483

Anthony Larcher's avatar
Anthony Larcher committed
484
485
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
486
487
488
489
490
            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
491
492
            self.activation = torch.nn.LeakyReLU(0.2)

Anthony Larcher's avatar
Anthony Larcher committed
493
            self.preprocessor = MfccFrontEnd()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
494
            self.feature_size = self.preprocessor.n_mfcc
Anthony Larcher's avatar
Anthony Larcher committed
495

Anthony Larcher's avatar
xv    
Anthony Larcher committed
496
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
497
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
498
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
499
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
500
501
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
502
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
503
504
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
505
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
506
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
507
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
508
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
509
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
510
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
511
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
512
513
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
514
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
515
            self.stat_pooling_weight_decay = 0
Anthony Larcher's avatar
xv    
Anthony Larcher committed
516
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
517
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
518
519
            ]))

520
521
            self.embedding_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
522
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
523
524
525
526
527
                self.after_speaker_embedding = ArcMarginProduct(512,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)
Anthony Larcher's avatar
Anthony Larcher committed
528
529
530
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
531
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
532
533
534
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
535
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
536
537
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
538

539
            self.preprocessor_weight_decay = 0.0002
Anthony Larcher's avatar
debug    
Anthony Larcher committed
540
541
542
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002
543
            self.embedding_size = 512
Anthony Larcher's avatar
Anthony Larcher committed
544

Anthony Larcher's avatar
Anthony Larcher committed
545
        elif model_archi == "resnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
546

Anthony Larcher's avatar
Anthony Larcher committed
547
            self.preprocessor = MelSpecFrontEnd(n_mels=80)
Anthony Larcher's avatar
Anthony Larcher committed
548
            self.sequence_network = PreResNet34()
Anthony Larcher's avatar
Anthony Larcher committed
549
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
550

Anthony Larcher's avatar
Anthony Larcher committed
551
552
            self.before_speaker_embedding = torch.nn.Linear(in_features=5120,
                                                            out_features=self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
553
554
555
556

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

557
            self.loss = "aam"
Anthony Larcher's avatar
Anthony Larcher committed
558
            self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
Anthony Larcher's avatar
Anthony Larcher committed
559
560
                                                            int(self.speaker_number),
                                                            s = 30.0,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
561
                                                            m = 0.20,
Anthony Larcher's avatar
Anthony Larcher committed
562
                                                            easy_margin = False)
Anthony Larcher's avatar
Anthony Larcher committed
563
564
565
566
567
568
569

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
570
        elif model_archi == "fastresnet34":
Anthony Larcher's avatar
Anthony Larcher committed
571
            self.preprocessor = MelSpecFrontEnd()
Anthony Larcher's avatar
Anthony Larcher committed
572
            self.sequence_network = PreFastResNet34()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
573
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
574

Anthony Larcher's avatar
Anthony Larcher committed
575
            self.before_speaker_embedding = torch.nn.Linear(in_features = 2560,
Anthony Larcher's avatar
Anthony Larcher committed
576
                                                            out_features = self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
577
578
579
580

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

Anthony Larcher's avatar
merge    
Anthony Larcher committed
581
582
            self.loss = loss
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
583
                print("\n\n\nAAM\n\n\n")
Anthony Larcher's avatar
merge    
Anthony Larcher committed
584
585
                self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
                                                                int(self.speaker_number),
Anthony Larcher's avatar
merge    
Anthony Larcher committed
586
587
                                                                s = 30,
                                                                m = 0.2,
Anthony Larcher's avatar
merge    
Anthony Larcher committed
588
589
590
591
                                                                easy_margin = False)

            elif self.loss == 'aps':
                self.after_speaker_embedding = SoftmaxAngularProto(int(self.speaker_number))
Anthony Larcher's avatar
Anthony Larcher committed
592
593
594
595
596
597

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00
Anthony Larcher's avatar
Anthony Larcher committed
598

Anthony Larcher's avatar
Anthony Larcher committed
599
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
600
601
602
603
604
605

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
606
607
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
608
609
610
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
611
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
612
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
613
614
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
632
633
634
635
636
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
637
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
638
639
640
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
641

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
642
643
644
645
646
647
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
648
        else:
Anthony Larcher's avatar
Anthony Larcher committed
649
650
            is_first_resblock = True

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
651
652
653
654
655
656
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
657

Anthony Larcher's avatar
Anthony Larcher committed
658
            self.loss = cfg["loss"]["type"]
Anthony Larcher's avatar
Anthony Larcher committed
659
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
660
661
                self.aam_margin = cfg["loss"]["aam_margin"]
                self.aam_s = cfg["loss"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
662

Anthony Larcher's avatar
Anthony Larcher committed
663
664
665
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
666
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
667
668
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
669
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
670
671
672
673
674
675
676
677
678
679
680
681
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
682
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
683
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
684
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
685
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
686
687
688
689
690
691
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
692
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
693
694

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
695
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
696
            """
Anthony Larcher's avatar
Anthony Larcher committed
697
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
698
            if self.feature_size is None:
Anthony Larcher's avatar
Anthony Larcher committed
699
                self.feature_size = cfg["preprocessor"]["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
700

Anthony Larcher's avatar
Anthony Larcher committed
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
716
717
718
719
720
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

Anthony Larcher's avatar
Anthony Larcher committed
721
722
723
724
725
                elif k.startswith("conv2D"):
                    segmental_layers.append((k, torch.nn.Conv2d(in_channels=1,
                                                                out_channels=entry_conv_out_channels,
                                                                kernel_size=entry_conv_kernel_size,
                                                                padding=3,
Anthony Larcher's avatar
Anthony Larcher committed
726
                                                                stride=1)))
Anthony Larcher's avatar
Anthony Larcher committed
727

Anthony Larcher's avatar
Anthony Larcher committed
728
                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
729
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
730
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
731
732
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
733
734
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
735
736
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
737
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
738
739
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
740
741
742
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
743
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
744
745
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
746
747
748
749
750
751
                elif k.startswith('resblock'):
                    segmental_layers.append((ResBlock(cfg["segmental"][k]["input_channel"],
                                                      cfg["segmental"][k]["output_channel"],
                                                      is_first_resblock)))
                    is_first_resblock = False

Anthony Larcher's avatar
Anthony Larcher committed
752
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
753
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
754

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
755
756
757
758
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
759
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
760
761
762
763
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
764
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
765

Anthony Larcher's avatar
Anthony Larcher committed
766
767
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
768
            """
Anthony Larcher's avatar
Anthony Larcher committed
769
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
770
            """
Anthony Larcher's avatar
Anthony Larcher committed
771
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
772
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
773
774
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
775
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
776
777
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
778
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
779
780
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
781
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
782
783

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
784
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
785

Anthony Larcher's avatar
Anthony Larcher committed
786
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
787
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
788
789

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
790
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
791

Anthony Larcher's avatar
Anthony Larcher committed
792
            self.embedding_size = input_size
Anthony Larcher's avatar
Anthony Larcher committed
793
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
794
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
795

Anthony Larcher's avatar
Anthony Larcher committed
796
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
797
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
798
799
800
801
802
803
804
805
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
806
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
807
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
808

Anthony Larcher's avatar
Anthony Larcher committed
809
810
811
812
813
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
814

Anthony Larcher's avatar
Anthony Larcher committed
815
816
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
817

Anthony Larcher's avatar
Anthony Larcher committed
818
819
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
820

Anthony Larcher's avatar
Anthony Larcher committed
821
822
823
824
825
826
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
827
828
829
830
831
832
833
                self.norm_embedding = True
                self.after_speaker_embedding = ArcMarginProduct(input_size,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)

Anthony Larcher's avatar
arcface    
Anthony Larcher committed
834
835
836
837
                #self.after_speaker_embedding = ArcLinear(input_size,
                #                                         self.speaker_number,
                #                                         margin=self.aam_margin,
                #                                         s=self.aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
838
839
840
841
                #self.after_speaker_embedding = ArcFace(embedding_size=input_size,
                #                                       classnum=self.speaker_number,
                #                                       s=64.,
                #                                       m=0.5)
Anthony Larcher's avatar
Anthony Larcher committed
842

Anthony Larcher's avatar
Anthony Larcher committed
843
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
844

Anthony Larcher's avatar
Anthony Larcher committed
845

846
    def forward(self, x, is_eval=False, target=None, extract_after_pooling=False):
847
848
849
        """

        :param x:
850
        :param is_eval: False for training
851
852
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
853
854
855
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
856
        x = self.sequence_network(x)
857

Anthony Larcher's avatar
Anthony Larcher committed
858
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
859
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
860

861
862
863
        if extract_after_pooling:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
864
        x = self.before_speaker_embedding(x)
865

Anthony Larcher's avatar
Anthony Larcher committed
866
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
867
            #x_norm = x.norm(p=2,dim=1, keepdim=True) / 10. # Why  10. ?
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
868
869
870
            #x_norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True, out=None, dtype=None)
            #x = torch.div(x, x_norm)
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
871

Anthony Larcher's avatar
Anthony Larcher committed
872
        if self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
873
            if is_eval:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
874
                return x
Anthony Larcher's avatar
debug    
Anthony Larcher committed
875
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
876
                return self.after_speaker_embedding(x), x
Anthony Larcher's avatar
Anthony Larcher committed
877

Anthony Larcher's avatar
merge    
Anthony Larcher committed
878
        elif self.loss in ['aam', 'aps']:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
879
880
            if is_eval:
                x = torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
881
            else:
Anthony Larcher's avatar
merge    
Anthony Larcher committed
882
                x = self.after_speaker_embedding(x, target=target), torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
883

Anthony Larcher's avatar
Anthony Larcher committed
884
        return x
Anthony Larcher's avatar
Anthony Larcher committed
885

886
887
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
888
889
890
891
892
893
894
895
896
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
897

Anthony Larcher's avatar
Anthony Larcher committed
898

Anthony Larcher's avatar
Anthony Larcher committed
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
def fill_dict(target_dict, source_dict, prefix = ""):
    """
    Recursively Fill a dictionary target_dict by taking values from source_dict

    :param target_dict: output dictionary that is initialized with default values
    :param source_dict: input dictionary
    :return:
    """
    for k1, v1 in target_dict.items():

        if isinstance(v1, dict):
            if k1 in source_dict and isinstance(source_dict[k1], dict):
                #print(f"\n{prefix}{k1}")
                fill_dict(v1, source_dict[k1], prefix + "\t")
                #print("\n")
            else:
                #print(f"{prefix}{k1} set to default value: {target_dict[k1]}")
                pass
        else:
            if k1 in source_dict and source_dict[k1] is not None:
                target_dict[k1] = source_dict[k1]
                #print(f"{prefix}{k1} set to: {source_dict[k1]}")
            else:
                #print(f"{prefix}{k1} set to default value: {target_dict[k1]}")
                pass


Anthony Larcher's avatar
Anthony Larcher committed
926
927
def update_training_dictionary(dataset_description,
                               model_description,
Anthony Larcher's avatar
Anthony Larcher committed
928
929
                               training_description,
                               kwargs=None):
Anthony Larcher's avatar
Anthony Larcher committed
930
931
    """

Anthony Larcher's avatar
Anthony Larcher committed
932
933
934
935
    :param dataset_description:
    :param model_description:
    :param training_description:
    :param kwargs:
Anthony Larcher's avatar
Anthony Larcher committed
936
937
938
939
940
941
    :return:
    """
    dataset_opts=dict()
    model_opts=dict()
    training_opts=dict()

Anthony Larcher's avatar
Anthony Larcher committed
942
943
944
945
946
    if isinstance(dataset_description, str) and os.path.isfile(dataset_description):
        with open(dataset_description, 'r') as fh:
            tmp_data_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_data_dict = dataset_description
Anthony Larcher's avatar
Anthony Larcher committed
947

Anthony Larcher's avatar
Anthony Larcher committed
948
949
950
951
952
    if isinstance(model_description, str) and os.path.isfile(model_description):
        with open(model_description, 'r') as fh:
            tmp_model_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_model_dict = model_description
Anthony Larcher's avatar
Anthony Larcher committed
953

Anthony Larcher's avatar
Anthony Larcher committed
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
    if isinstance(training_description, str) and os.path.isfile(training_description):
        with open(training_description, 'r') as fh:
            tmp_train_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_train_dict = training_description

    # Initialize default dictionaries
    dataset_opts["data_path"] = None
    dataset_opts["dataset_csv"] = None
    dataset_opts["data_file_extension"] = ".wav"
    dataset_opts["sample_rate"] = 16000

    dataset_opts["validation_ratio"] = 0.1
    dataset_opts["batch_size"] = 64

    dataset_opts["train"] = dict()
    dataset_opts["train"]["duration"] = 2.
    dataset_opts["train"]["chunk_per_segment"] = -1
    dataset_opts["train"]["overlap"] = 1.9
    dataset_opts["train"]["transformation"] = dict()
    dataset_opts["train"]["transformation"]["pipeline"] = ""
    dataset_opts["train"]["transformation"]["add_noise"] = dict()
    dataset_opts["train"]["transformation"]["add_noise"]["noise_db_csv"] = ""
    dataset_opts["train"]["transformation"]["add_noise"]["data_path"] = ""
    dataset_opts["train"]["transformation"]["add_reverb"] = dict()
    dataset_opts["train"]["transformation"]["add_reverb"]["noise_db_csv"] = ""
    dataset_opts["train"]["transformation"]["add_reverb"]["data_path"] = ""

    dataset_opts["valid"] = dict()
    dataset_opts["valid"]["duration"] = 2.
    dataset_opts["valid"]["transformation"] = dict()
    dataset_opts["valid"]["transformation"]["pipeline"] = ""
    dataset_opts["valid"]["transformation"]["add_noise"] = dict()
    dataset_opts["valid"]["transformation"]["add_noise"]["noise_db_csv"] = ""
    dataset_opts["valid"]["transformation"]["add_noise"]["data_path"] = ""
    dataset_opts["valid"]["transformation"]["add_reverb"] = dict()
    dataset_opts["valid"]["transformation"]["add_reverb"]["noise_db_csv"] = ""
    dataset_opts["valid"]["transformation"]["add_reverb"]["data_path"] = ""

    dataset_opts["test"] = dict()
    dataset_opts["test"]["idmap"] = ""
    dataset_opts["test"]["ndx"] = ""
    dataset_opts["test"]["key"] = ""
    dataset_opts["test"]["data_path"] =""

    # Initialize model options
    model_opts["speaker_number"] = None
For faster browsing, not all history is shown. View entire blame