xvector.py 62.2 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
25
Copyright 2014-2021 Anthony Larcher, Yevhenii Prokopalo
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28

Anthony Larcher's avatar
Anthony Larcher committed
29
import logging
Anthony Larcher's avatar
debug    
Anthony Larcher committed
30
import math
Anthony Larcher's avatar
Anthony Larcher committed
31
import os
Anthony Larcher's avatar
Anthony Larcher committed
32
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
33
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
34
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
35
import shutil
36
import time
Anthony Larcher's avatar
Anthony Larcher committed
37
import torch
Anthony Larcher's avatar
debug    
Anthony Larcher committed
38
import torchaudio
Anthony Larcher's avatar
Anthony Larcher committed
39
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
40
41
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
42
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
43
44
45
46
47
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
from .preprocessor import MfccFrontEnd
from .preprocessor import MelSpecFrontEnd
from .preprocessor import RawPreprocessor
Anthony Larcher's avatar
Anthony Larcher committed
48
from .xsets import SideSet
Anthony Larcher's avatar
Anthony Larcher committed
49
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
50
from .xsets import IdMapSetPerSpeaker
Anthony Larcher's avatar
Anthony Larcher committed
51
from .xsets import SideSampler
Anthony Larcher's avatar
Anthony Larcher committed
52
53
54
55
from .res_net import ResBlockWFMS
from .res_net import ResBlock
from .res_net import PreResNet34
from .res_net import PreFastResNet34
Anthony Larcher's avatar
Anthony Larcher committed
56
from ..bosaris import IdMap
Anthony Larcher's avatar
Anthony Larcher committed
57
58
from ..bosaris import Key
from ..bosaris import Ndx
Anthony Larcher's avatar
Anthony Larcher committed
59
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
60
from ..iv_scoring import cosine_scoring
Anthony Larcher's avatar
Anthony Larcher committed
61
from .sincnet import SincNet
Anthony Larcher's avatar
merge    
Anthony Larcher committed
62
from .loss import SoftmaxAngularProto, ArcLinear
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
63
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
64
from .loss import ArcMarginProduct
Anthony Larcher's avatar
Anthony Larcher committed
65

Anthony Larcher's avatar
ddp    
Anthony Larcher committed
66

Anthony Larcher's avatar
Anthony Larcher committed
67
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
68

Anthony Larcher's avatar
Anthony Larcher committed
69
70
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
71
__copyright__ = "Copyright 2015-2021 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
72
73
74
75
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
76
77


Anthony Larcher's avatar
Anthony Larcher committed
78
79
logging.basicConfig(format='%(asctime)s %(message)s')

Anthony Larcher's avatar
Anthony Larcher committed
80
81
82
83
84
85
86
87

# Make PyTorch Deterministic
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
numpy.random.seed(0)


Anthony Larcher's avatar
Anthony Larcher committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

def eer(negatives, positives):
    """Logarithmic complexity EER computation

    Args:
        negative_scores (numpy array): impostor scores
        positive_scores (numpy array): genuine scores

    Returns:
        float: Equal Error Rate (EER)
    """

    positives = numpy.sort(positives)
    negatives = numpy.sort(negatives)[::-1]

    pos_count = positives.shape[0]
    neg_count = negatives.shape[0]

    p_score = positives[0]
    n_score = negatives[0]

    p_index = 0
    n_index = 0

    next_p_jump = pos_count//2
    next_n_jump = neg_count//2

    kdx = 0
    while True:
        kdx += 1
        if p_index < 0 or n_index < 0:
            return 0
        if p_index > pos_count or n_index > neg_count:
            return 100
        if p_score < n_score:
            p_index = p_index + next_p_jump
            n_index = n_index + next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break
        elif p_score >= n_score:
            p_index = p_index - next_p_jump
            n_index = n_index - next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break

        p_score = positives[p_index]
        n_score = negatives[n_index]
        next_p_jump = next_p_jump//2
        next_n_jump = next_n_jump//2

    eer_predicate = 100

    tfr = (abs(p_index))/pos_count
    tfa = (1+abs(n_index))/neg_count
    if (p_score == n_score and tfr == tfa):
        return tfr

    while positives[p_index] < negatives[n_index]:
        if p_index < pos_count - 1:
            p_index += 1
        elif n_index < neg_count - 1:
            n_index += 1
        else:
            break

    while positives[p_index] > negatives[n_index] and n_index >= 1:
        n_index -= 1

    tfr = (1+p_index)/pos_count
    tfa = (1+n_index)/neg_count

    while tfa > tfr:
        p_index += 1
        while positives[p_index] > negatives[n_index] and n_index >= 1:
            n_index -= 1
        tfr = (1+p_index)/pos_count
        tfa = (1+n_index)/neg_count

    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    tfr = p_index/pos_count
    tfa = (1+n_index)/neg_count
    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    while True:
        while negatives[n_index + 1] <= positives[p_index - 1]:
            p_index -= 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer
        while negatives[n_index + 1] > positives[p_index - 1]:
            n_index += 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer

    return eer


Anthony Larcher's avatar
debug    
Anthony Larcher committed
203
204
def test_metrics(model,
                 device,
Anthony Larcher's avatar
Anthony Larcher committed
205
206
207
                 speaker_number,
                 num_thread,
                 mixed_precision):
Anthony Larcher's avatar
Anthony Larcher committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
Anthony Larcher's avatar
debug    
Anthony Larcher committed
224
225
226
    idmap_test_filename = 'h5f/idmap_test.h5'
    ndx_test_filename = 'h5f/ndx_test.h5'
    key_test_filename = 'h5f/key_test.h5'
Anthony Larcher's avatar
Anthony Larcher committed
227
    data_root_name='/lium/scratch/larcher/voxceleb1/test/wav'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
228

Anthony Larcher's avatar
debug    
Anthony Larcher committed
229
    transform_pipeline = ""
Anthony Larcher's avatar
debug    
Anthony Larcher committed
230
231
232
233
234

    xv_stat = extract_embeddings(idmap_name=idmap_test_filename,
                                 model_filename=model,
                                 data_root_name=data_root_name,
                                 device=device,
Anthony Larcher's avatar
Anthony Larcher committed
235
236
237
                                 transform_pipeline=transform_pipeline,
                                 num_thread=num_thread,
                                 mixed_precision=mixed_precision)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
238
239
240
241
242

    scores = cosine_scoring(xv_stat,
                            xv_stat,
                            Ndx(ndx_test_filename),
                            wccn=None,
Anthony Larcher's avatar
merge    
Anthony Larcher committed
243
244
                            check_missing=True,
                            device=device)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
245
246
247
248

    tar, non = scores.get_tar_non(Key(key_test_filename))
    test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))
    return test_eer
Anthony Larcher's avatar
Anthony Larcher committed
249

Anthony Larcher's avatar
Anthony Larcher committed
250

Anthony Larcher's avatar
Anthony Larcher committed
251
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
252
253
254
255
256
257
258
259
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
260
261
262
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
263

Anthony Larcher's avatar
Anthony Larcher committed
264

Anthony Larcher's avatar
Anthony Larcher committed
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
class MeanStdPooling(torch.nn.Module):
    """
    Mean and Standard deviation pooling
    """
    def __init__(self):
        """

        """
        super(MeanStdPooling, self).__init__()
        pass

    def forward(self, x):
        """

        :param x:
        :return:
        """
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        return torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
285

Anthony Larcher's avatar
Anthony Larcher committed
286

Anthony Larcher's avatar
Anthony Larcher committed
287
288
289
290
291
292
293
294
295
296
297
class GruPooling(torch.nn.Module):
    """

    """
    def __init__(self, input_size, gru_node, nb_gru_layer):
        """

        :param input_size:
        :param gru_node:
        :param nb_gru_layer:
        """
Anthony Larcher's avatar
Anthony Larcher committed
298
        super(GruPooling, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
299
300
301
        self.lrelu_keras = torch.nn.LeakyReLU(negative_slope = 0.3)
        self.bn_before_gru = torch.nn.BatchNorm1d(num_features = input_size)
        self.gru = torch.nn.GRU(input_size = input_size,
Anthony Larcher's avatar
Anthony Larcher committed
302
303
304
                                hidden_size = gru_node,
                                num_layers = nb_gru_layer,
                                batch_first = True)
Anthony Larcher's avatar
Anthony Larcher committed
305
306
307
308
309
310
311
312
313
314
315
316

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = self.bn_before_gru(x)
        x = self.lrelu_keras(x)
        x = x.permute(0, 2, 1)  #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
Anthony Larcher's avatar
Anthony Larcher committed
317
        x = x[:, -1, :]
Anthony Larcher's avatar
Anthony Larcher committed
318
319
320

        return x

Anthony Larcher's avatar
Anthony Larcher committed
321

Anthony Larcher's avatar
Anthony Larcher committed
322
class Xtractor(torch.nn.Module):
323
324
325
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
326

Anthony Larcher's avatar
Anthony Larcher committed
327
328
329
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
330
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
331
                 norm_embedding=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
332
333
                 aam_margin=0.2,
                 aam_s=30):
Anthony Larcher's avatar
Anthony Larcher committed
334
335
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
336
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
337
        """
Anthony Larcher's avatar
Anthony Larcher committed
338
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
339
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
340
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
341
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
342

Anthony Larcher's avatar
Anthony Larcher committed
343
344
        print(f"Speaker number : {self.speaker_number}")

Anthony Larcher's avatar
Anthony Larcher committed
345
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
346

Anthony Larcher's avatar
Anthony Larcher committed
347
348
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
349
350
351
352
353
            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
354
355
            self.activation = torch.nn.LeakyReLU(0.2)

Anthony Larcher's avatar
Anthony Larcher committed
356
            self.preprocessor = MfccFrontEnd()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
357
            self.feature_size = self.preprocessor.n_mfcc
Anthony Larcher's avatar
Anthony Larcher committed
358

Anthony Larcher's avatar
xv    
Anthony Larcher committed
359
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
360
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
361
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
362
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
363
364
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
365
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
366
367
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
368
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
369
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
370
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
371
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
372
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
373
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
374
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
375
376
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
377
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
378
            self.stat_pooling_weight_decay = 0
Anthony Larcher's avatar
xv    
Anthony Larcher committed
379
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
380
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
381
382
            ]))

383
384
            self.embedding_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
385
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
386
387
388
389
390
                self.after_speaker_embedding = ArcMarginProduct(512,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)
Anthony Larcher's avatar
Anthony Larcher committed
391
392
393
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
394
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
395
396
397
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
398
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
399
400
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
401

Anthony Larcher's avatar
debug    
Anthony Larcher committed
402
403
404
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002
405
            self.embedding_size = 512
Anthony Larcher's avatar
Anthony Larcher committed
406

Anthony Larcher's avatar
Anthony Larcher committed
407
        elif model_archi == "resnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
408

Anthony Larcher's avatar
Anthony Larcher committed
409
            self.preprocessor = MelSpecFrontEnd(n_mels=80)
Anthony Larcher's avatar
Anthony Larcher committed
410
411
            self.sequence_network = PreResNet34()

Anthony Larcher's avatar
Anthony Larcher committed
412
413
            self.before_speaker_embedding = torch.nn.Linear(in_features=5120,
                                                            out_features=self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
414
415
416
417

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

418
            self.loss = "aam"
Anthony Larcher's avatar
Anthony Larcher committed
419
            self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
Anthony Larcher's avatar
Anthony Larcher committed
420
421
                                                            int(self.speaker_number),
                                                            s = 30.0,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
422
                                                            m = 0.20,
Anthony Larcher's avatar
Anthony Larcher committed
423
                                                            easy_margin = False)
Anthony Larcher's avatar
Anthony Larcher committed
424
425
426
427
428
429
430

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
431
        elif model_archi == "fastresnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
432

Anthony Larcher's avatar
Anthony Larcher committed
433
            self.preprocessor = MelSpecFrontEnd(n_mels=80)
Anthony Larcher's avatar
Anthony Larcher committed
434
            self.sequence_network = PreFastResNet34()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
435
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
436

Anthony Larcher's avatar
Anthony Larcher committed
437
            self.before_speaker_embedding = torch.nn.Linear(in_features = 2560,
Anthony Larcher's avatar
Anthony Larcher committed
438
                                                            out_features = self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
439
440
441
442

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

Anthony Larcher's avatar
merge    
Anthony Larcher committed
443
444
445
446
447
448
449
450
451
452
            self.loss = loss
            if self.loss == "aam":
                self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
                                                                int(self.speaker_number),
                                                                s = 30,
                                                                m = 0.2,
                                                                easy_margin = False)

            elif self.loss == 'aps':
                self.after_speaker_embedding = SoftmaxAngularProto(int(self.speaker_number))
Anthony Larcher's avatar
Anthony Larcher committed
453
454
455
456
457
458

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00
Anthony Larcher's avatar
Anthony Larcher committed
459

Anthony Larcher's avatar
Anthony Larcher committed
460
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
461
462
463
464
465
466

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
467
468
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
469
470
471
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
472
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
473
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
474
475
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
493
494
495
496
497
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
498
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
499
500
501
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
502

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
503
504
505
506
507
508
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
509
        else:
Anthony Larcher's avatar
Anthony Larcher committed
510
511
            is_first_resblock = True

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
512
513
514
515
516
517
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
518

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
519
            self.loss = cfg["training"]["loss"]
Anthony Larcher's avatar
Anthony Larcher committed
520
            if self.loss == "aam":
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
521
522
                self.aam_margin = cfg["training"]["aam_margin"]
                self.aam_s = cfg["training"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
523

Anthony Larcher's avatar
Anthony Larcher committed
524
525
526
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
527
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
528
529
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
530
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
531
532
533
534
535
536
537
538
539
540
541
542
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
543
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
544
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
545
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
546
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
547
548
549
550
551
552
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
553
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
554
555

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
556
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
557
            """
Anthony Larcher's avatar
Anthony Larcher committed
558
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
559
560
561
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
577
578
579
580
581
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

Anthony Larcher's avatar
Anthony Larcher committed
582
583
584
585
586
                elif k.startswith("conv2D"):
                    segmental_layers.append((k, torch.nn.Conv2d(in_channels=1,
                                                                out_channels=entry_conv_out_channels,
                                                                kernel_size=entry_conv_kernel_size,
                                                                padding=3,
Anthony Larcher's avatar
Anthony Larcher committed
587
                                                                stride=1)))
Anthony Larcher's avatar
Anthony Larcher committed
588

Anthony Larcher's avatar
Anthony Larcher committed
589
                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
590
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
591
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
592
593
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
594
595
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
596
597
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
598
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
599
600
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
601
602
603
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
604
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
605
606
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
607
608
609
610
611
612
                elif k.startswith('resblock'):
                    segmental_layers.append((ResBlock(cfg["segmental"][k]["input_channel"],
                                                      cfg["segmental"][k]["output_channel"],
                                                      is_first_resblock)))
                    is_first_resblock = False

Anthony Larcher's avatar
Anthony Larcher committed
613
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
614
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
615

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
616
617
618
619
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
620
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
621
622
623
624
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
625
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
626

Anthony Larcher's avatar
Anthony Larcher committed
627
628
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
629
            """
Anthony Larcher's avatar
Anthony Larcher committed
630
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
631
            """
Anthony Larcher's avatar
Anthony Larcher committed
632
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
633
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
634
635
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
636
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
637
638
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
639
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
640
641
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
642
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
643
644

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
645
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
646

Anthony Larcher's avatar
Anthony Larcher committed
647
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
648
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
649
650

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
651
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
652

Anthony Larcher's avatar
Anthony Larcher committed
653
            self.embedding_size = input_size
Anthony Larcher's avatar
Anthony Larcher committed
654
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
655
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
656

Anthony Larcher's avatar
Anthony Larcher committed
657
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
658
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
659
660
661
662
663
664
665
666
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
667
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
668
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
669

Anthony Larcher's avatar
Anthony Larcher committed
670
671
672
673
674
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
675

Anthony Larcher's avatar
Anthony Larcher committed
676
677
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
678

Anthony Larcher's avatar
Anthony Larcher committed
679
680
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
681

Anthony Larcher's avatar
Anthony Larcher committed
682
683
684
685
686
687
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
688
689
690
691
692
693
694
                self.norm_embedding = True
                self.after_speaker_embedding = ArcMarginProduct(input_size,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)

Anthony Larcher's avatar
arcface    
Anthony Larcher committed
695
696
697
698
                #self.after_speaker_embedding = ArcLinear(input_size,
                #                                         self.speaker_number,
                #                                         margin=self.aam_margin,
                #                                         s=self.aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
699
700
701
702
                #self.after_speaker_embedding = ArcFace(embedding_size=input_size,
                #                                       classnum=self.speaker_number,
                #                                       s=64.,
                #                                       m=0.5)
Anthony Larcher's avatar
Anthony Larcher committed
703

Anthony Larcher's avatar
Anthony Larcher committed
704
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
705

Anthony Larcher's avatar
Anthony Larcher committed
706

707
    def forward(self, x, is_eval=False, target=None, extract_after_pooling=False):
708
709
710
        """

        :param x:
711
        :param is_eval: False for training
712
713
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
714
715
716
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
717
        x = self.sequence_network(x)
718

Anthony Larcher's avatar
Anthony Larcher committed
719
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
720
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
721

722
723
724
        if extract_after_pooling:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
725
        x = self.before_speaker_embedding(x)
726

Anthony Larcher's avatar
Anthony Larcher committed
727
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
728
            #x_norm = x.norm(p=2,dim=1, keepdim=True) / 10. # Why  10. ?
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
729
730
731
            #x_norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True, out=None, dtype=None)
            #x = torch.div(x, x_norm)
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
732

Anthony Larcher's avatar
Anthony Larcher committed
733
        if self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
734
            if is_eval:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
735
                return x
Anthony Larcher's avatar
debug    
Anthony Larcher committed
736
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
737
                return self.after_speaker_embedding(x), x
Anthony Larcher's avatar
Anthony Larcher committed
738

Anthony Larcher's avatar
merge    
Anthony Larcher committed
739
        elif self.loss in ['aam', 'aps']:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
740
741
            if is_eval:
                x = torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
742
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
743
                x = self.after_speaker_embedding(torch.nn.functional.normalize(x, dim=1), target=target), torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
744

Anthony Larcher's avatar
Anthony Larcher committed
745
        return x
Anthony Larcher's avatar
Anthony Larcher committed
746

747
748
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
749
750
751
752
753
754
755
756
757
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
758

Anthony Larcher's avatar
Anthony Larcher committed
759
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
760
           dataset_yaml,
Anthony Larcher's avatar
Anthony Larcher committed
761
762
           epochs=None,
           lr=None,
Anthony Larcher's avatar
Anthony Larcher committed
763
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
764
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
765
766
767
768
           loss=None,
           aam_margin=None,
           aam_s=None,
           patience=None,
Anthony Larcher's avatar
Anthony Larcher committed
769
           tmp_model_name=None,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
770
           best_model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
771
           multi_gpu=True,
Anthony Larcher's avatar
Anthony Larcher committed
772
           mixed_precision=False,
773
           clipping=False,
Anthony Larcher's avatar
Anthony Larcher committed
774
           opt=None,
Anthony Larcher's avatar
Anthony Larcher committed
775
776
           reset_parts=[],
           freeze_parts=[],
Anthony Larcher's avatar
Anthony Larcher committed
777
           num_thread=None,
Anthony Larcher's avatar
Anthony Larcher committed
778
           compute_test_eer=True):
779
780
    """

Anthony Larcher's avatar
Anthony Larcher committed
781
782
783
784
785
786
    :param speaker_number:
    :param dataset_yaml:
    :param epochs:
    :param lr:
    :param model_yaml:
    :param model_name:
Anthony Larcher's avatar
Anthony Larcher committed
787
788
789
790
    :param loss:
    :param aam_margin:
    :param aam_s:
    :param patience:
Anthony Larcher's avatar
Anthony Larcher committed
791
792
793
    :param tmp_model_name:
    :param best_model_name:
    :param multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
794
    :param mixed_precision:
Anthony Larcher's avatar
Anthony Larcher committed
795
    :param clipping:
Anthony Larcher's avatar
Anthony Larcher committed
796
797
798
    :param opt:
    :param reset_parts:
    :param freeze_parts:
Anthony Larcher's avatar
Anthony Larcher committed
799
    :param num_thread:
Anthony Larcher's avatar
Anthony Larcher committed
800
    :param compute_test_eer:
801
802
    :return:
    """
Anthony Larcher's avatar
debug    
Anthony Larcher committed
803
804
805
    # Test to optimize
    torch.autograd.profiler.emit_nvtx(enabled=False)

Anthony Larcher's avatar
Anthony Larcher committed
806
    if num_thread is None:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
807
        import multiprocessing
Anthony Larcher's avatar
Anthony Larcher committed
808
809
        num_thread = multiprocessing.cpu_count()

Anthony Larcher's avatar
Anthony Larcher committed
810
    logging.critical(f"Use {num_thread} cpus")
Anthony Larcher's avatar
Anthony Larcher committed
811
    logging.critical(f"Start process at {time.strftime('%H:%M:%S', time.localtime())}")
812

Anthony Larcher's avatar
debug    
Anthony Larcher committed
813
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
814
815
816
817
818

    # Use a predefined architecture
    if model_yaml in ["xvector", "rawnet2", "resnet34", "fastresnet34"]:

        if model_name is None:
Anthony Larcher's avatar
merge    
Anthony Larcher committed
819
            model = Xtractor(speaker_number, model_yaml, loss=loss)
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837

        else:
            logging.critical(f"*** Load model from = {model_name}")
            checkpoint = torch.load(model_name)
            model = Xtractor(speaker_number, model_yaml)

            """
            Here we remove all layers that we don't want to reload

            """
            pretrained_dict = checkpoint["model_state_dict"]
            for part in reset_parts:
                pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

            new_model_dict = model.state_dict()
            new_model_dict.update(pretrained_dict)
            model.load_state_dict(new_model_dict)

Anthony Larcher's avatar
Anthony Larcher committed
838

839
840
841
842
843
        # Freeze required layers
        for name, param in model.named_parameters():
            if name.split(".")[0] in freeze_parts:
                param.requires_grad = False

Anthony Larcher's avatar
Anthony Larcher committed
844
        model_archi = model_yaml
845
846

    # Here use a config file to build the architecture
Anthony Larcher's avatar
Anthony Larcher committed
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
    else:
        with open(model_yaml, 'r') as fh:
            model_archi = yaml.load(fh, Loader=yaml.FullLoader)
            if epochs is None:
                epochs = model_archi["training"]["epochs"]
            if patience is None:
                patience = model_archi["training"]["patience"]
            if opt is None:
                opt = model_archi["training"]["opt"]
            if lr is None:
                lr = model_archi["training"]["lr"]
            if loss is None:
                loss = model_archi["training"]["loss"]
            if aam_margin is None and model_archi["training"]["loss"] == "aam":
                aam_margin = model_archi["training"]["aam_margin"]
            if aam_s is None and model_archi["training"]["loss"] == "aam":
                aam_s = model_archi["training"]["aam_s"]
            if tmp_model_name is None:
                tmp_model_name = model_archi["training"]["tmp_model_name"]
            if best_model_name is None:
                best_model_name = model_archi["training"]["best_model_name"]
            if multi_gpu is None:
                multi_gpu = model_archi["training"]["multi_gpu"]
            if clipping is None:
                clipping = model_archi["training"]["clipping"]

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
873
        if model_name is None:
Anthony Larcher's avatar
Anthony Larcher committed
874
875
876
            model = Xtractor(speaker_number, model_yaml)

         # If we start from an existing model
Anthony Larcher's avatar
Anthony Larcher committed
877
        else:
Anthony Larcher's avatar
Anthony Larcher committed
878
879
            # Load the model
            logging.critical(f"*** Load model from = {model_name}")
Anthony Larcher's avatar
merge    
Anthony Larcher committed
880
881
            checkpoint = torch.load(model_name, map_location=device)
            model = Xtractor(speaker_number, model_yaml, loss=loss)
Anthony Larcher's avatar
Anthony Larcher committed
882

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
883
884
            """
            Here we remove all layers that we don't want to reload
Anthony Larcher's avatar
Anthony Larcher committed
885
        
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
886
887
888
889
890
891
892
893
894
895
896
897
898
            """
            pretrained_dict = checkpoint["model_state_dict"]
            for part in reset_parts:
                pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

            new_model_dict = model.state_dict()
            new_model_dict.update(pretrained_dict)
            model.load_state_dict(new_model_dict)

        # Freeze required layers
        for name, param in model.named_parameters():
            if name.split(".")[0] in freeze_parts:
                param.requires_grad = False
Anthony Larcher's avatar
Anthony Larcher committed
899

Anthony Larcher's avatar
Anthony Larcher committed
900
901
902
903
    logging.critical(model)

    logging.critical("model_parameters_count: {:d}".format(
        sum(p.numel()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
904
905
906
907
            for p in model.sequence_network.parameters()
            if p.requires_grad) + \
        sum(p.numel()
            for p in model.before_speaker_embedding.parameters()
Anthony Larcher's avatar
merge    
Anthony Larcher committed
908
909
910
            if p.requires_grad) + \
        sum(p.numel()
            for p in model.stat_pooling.parameters()
Anthony Larcher's avatar
Anthony Larcher committed
911
912
            if p.requires_grad)))

Anthony Larcher's avatar
Anthony Larcher committed
913
    embedding_size = model.embedding_size
Anthony Larcher's avatar
Anthony Larcher committed
914

Anthony Larcher's avatar
Anthony Larcher committed
915
    if torch.cuda.device_count() > 1 and multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
916
917
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)
Anthony Larcher's avatar
Anthony Larcher committed
918

Anthony Larcher's avatar
Anthony Larcher committed
919
920
    else:
        print("Train on a single GPU")
Anthony Larcher's avatar
Anthony Larcher committed
921
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
922

Anthony Larcher's avatar
debug    
Anthony Larcher committed
923
924
925
926
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])

Anthony Larcher's avatar
Anthony Larcher committed
927
928
929
930
931
932
933
    """
    Set the dataloaders according to the dataset_yaml
    
    First we load the dataframe from CSV file in order to split it for training and validation purpose
    Then we provide those two 
    """
    training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"], stratify=df["speaker_idx"])
934

Anthony Larcher's avatar
Anthony Larcher committed
935
    torch.manual_seed(dataset_params['seed'])
Anthony Larcher's avatar
Anthony Larcher committed
936

Anthony Larcher's avatar
Anthony Larcher committed
937
938
939
940
941
942
943
944
945
946
947
948
    training_set = SideSet(dataset_yaml,
                           set_type="train",
                           chunk_per_segment=-1,
                           overlap=dataset_params['train']['overlap'],
                           dataset_df=training_df,
                           output_format="pytorch",
                           )

    validation_set = SideSet(dataset_yaml,
                             set_type="validation",
                             dataset_df=validation_df,
                             output_format="pytorch")
Anthony Larcher's avatar
debug    
Anthony Larcher committed
949

Anthony Larcher's avatar
Anthony Larcher committed
950
951
952
953
    side_sampler = SideSampler(training_set.sessions['speaker_idx'],
                               speaker_number,
                               1,
                               100,
Anthony Larcher's avatar
Anthony Larcher committed
954
                               dataset_params["batch_size"])
Anthony Larcher's avatar
Anthony Larcher committed
955

Anthony Larcher's avatar
debug    
Anthony Larcher committed
956
    training_loader = DataLoader(training_set,
Anthony Larcher's avatar
Anthony Larcher committed
957
                                 batch_size=dataset_params["batch_size"],
Anthony Larcher's avatar
Anthony Larcher committed
958
                                 shuffle=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
959
960
                                 drop_last=True,
                                 pin_memory=True,
Anthony Larcher's avatar
Anthony Larcher committed
961
                                 sampler=side_sampler,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
962
                                 num_workers=num_thread,
Anthony Larcher's avatar
Anthony Larcher committed
963
                                 persistent_workers=True)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
964
965

    validation_loader = DataLoader(validation_set,
Anthony Larcher's avatar
Anthony Larcher committed
966
                                   batch_size=dataset_params["batch_size"],
Anthony Larcher's avatar
Anthony Larcher committed
967
                                   drop_last=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
968
                                   pin_memory=True,
Anthony Larcher's avatar
spkset    
Anthony Larcher committed
969
                                   num_workers=num_thread,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
970
                                   persistent_workers=False)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
971

Anthony Larcher's avatar
Anthony Larcher committed
972
973
974
    """
    Set the training options
    """
Anthony Larcher's avatar
Anthony Larcher committed
975
    if opt == 'adam':
Anthony Larcher's avatar
Anthony Larcher committed
976
        _optimizer = torch.optim.Adam
Anthony Larcher's avatar
Anthony Larcher committed
977
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
978
979
    elif opt == 'rmsprop':
        _optimizer = torch.optim.RMSprop
Anthony Larcher's avatar
Anthony Larcher committed
980
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
981
982
983
    else: # opt == 'sgd'
        _optimizer = torch.optim.SGD
        _options = {'lr': lr, 'momentum': 0.9}
Anthony Larcher's avatar
Anthony Larcher committed
984

Anthony Larcher's avatar
Anthony Larcher committed
985
    param_list = []
Anthony Larcher's avatar
Anthony Larcher committed
986
    if type(model) is Xtractor:
Anthony Larcher's avatar
Anthony Larcher committed
987
988
989
990
991
992
993
        if model.preprocessor is not None:
            param_list.append({'params': model.preprocessor.parameters(), 'weight_decay': model.preprocessor_weight_decay})
        param_list.append({'params': model.sequence_network.parameters(), 'weight_decay': model.sequence_network_weight_decay})
        param_list.append({'params': model.stat_pooling.parameters(), 'weight_decay': model.stat_pooling_weight_decay})
        param_list.append({'params': model.before_speaker_embedding.parameters(), 'weight_decay': model.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.after_speaker_embedding.parameters(), 'weight_decay': model.after_speaker_embedding_weight_decay})

Anthony Larcher's avatar
Anthony Larcher committed
994
    else:
Anthony Larcher's avatar
Anthony Larcher committed
995
996
997
998
999
1000
        if model.module.preprocessor is not None:
            param_list.append({'params': model.module.preprocessor.parameters(), 'weight_decay': model.module.preprocessor_weight_decay})
        param_list.append({'params': model.module.sequence_network.parameters(), 'weight_decay': model.module.sequence_network_weight_decay})
        param_list.append({'params': model.module.stat_pooling.parameters(), 'weight_decay': model.module.stat_pooling_weight_decay})
        param_list.append({'params': model.module.before_speaker_embedding.parameters(), 'weight_decay': model.module.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.module.after_speaker_embedding.parameters(), 'weight_decay': model.module.after_speaker_embedding_weight_decay})