xvector.py 29.4 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# -*- coding: utf-8 -*-
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
Anthony Larcher committed
25
Copyright 2014-2020 Yevhenii Prokopalo, Anthony Larcher
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
import logging
import numpy
Anthony Larcher's avatar
minor    
Anthony Larcher committed
30
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
31
import torch
Anthony Larcher's avatar
Anthony Larcher committed
32
33
import torch.optim as optim
import torch.multiprocessing as mp
Anthony Larcher's avatar
Anthony Larcher committed
34
35
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
36
from torchvision import transforms
Anthony Larcher's avatar
Anthony Larcher committed
37
from collections import OrderedDict
38
from .xsets import XvectorMultiDataset, StatDataset, VoxDataset
Anthony Larcher's avatar
Anthony Larcher committed
39
40
41
from .xsets import FrequencyMask, CMVN, TemporalMask
from ..bosaris import IdMap
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
42
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
43

Anthony Larcher's avatar
Anthony Larcher committed
44
45
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
46
__copyright__ = "Copyright 2015-2020 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
47
48
49
50
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
51
52


Anthony Larcher's avatar
Anthony Larcher committed
53
# logging.basicConfig(stream=sys.stdout, level=logging.INFO)
Anthony Larcher's avatar
Anthony Larcher committed
54
55


56
57
58
59
60
def get_lr(optimizer):
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
61
62
63
64
65
66
67
def split_file_list(batch_files, num_processes):
    # Cut the list of files into args.num_processes lists of files
    batch_sub_lists = [[]] * num_processes
    x = [ii for ii in range(len(batch_files))]
    for ii in range(num_processes):
        batch_sub_lists[ii - 1] = [batch_files[z + ii] for z in x[::num_processes] if (z + ii) < len(batch_files)]
    return batch_sub_lists
Anthony Larcher's avatar
Anthony Larcher committed
68
69
70


class Xtractor(torch.nn.Module):
71
72
73
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
74

Anthony Larcher's avatar
Anthony Larcher committed
75
76
77
78
79
    def __init__(self, speaker_number, config=None):
        """
        If config is None, default architecture is created
        :param config:
        """
Anthony Larcher's avatar
Anthony Larcher committed
80
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
81
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
82
83
        self.feature_size = 24

Anthony Larcher's avatar
Anthony Larcher committed
84
        if config is None:
Anthony Larcher's avatar
Anthony Larcher committed
85
86
            self.activation = torch.nn.ReLU()

Anthony Larcher's avatar
xv    
Anthony Larcher committed
87
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
88
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
89
90
91
92
93
94
95
96
                ("activation1", torch.nn.LeakyReLU(0.2)),
                ("norm1", torch.nn.BatchNorm1d(512)),
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
                ("norm2", torch.nn.BatchNorm1d(512)),
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
                ("norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
97
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
98
99
                ("activation4", torch.nn.LeakyReLU(0.2)),
                ("norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
100
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
101
102
103
104
                ("activation5", torch.nn.LeakyReLU(0.2)),
                ("norm5", torch.nn.BatchNorm1d(1536))
            ]))

Anthony Larcher's avatar
xv    
Anthony Larcher committed
105
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
106
                ("linear6", torch.nn.Linear(1536, 512))
Anthony Larcher's avatar
Anthony Larcher committed
107
108
            ]))

Anthony Larcher's avatar
xv    
Anthony Larcher committed
109
            self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
110
111
                ("activation6", torch.nn.LeakyReLU(0.2)),
                ("norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
112
                ("linear7", torch.nn.Linear(512, 512)),
Anthony Larcher's avatar
Anthony Larcher committed
113
114
                ("activation7", torch.nn.LeakyReLU(0.2)),
                ("norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
115
                ("linear8", torch.nn.Linear(512, self.speaker_number ))
Anthony Larcher's avatar
Anthony Larcher committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
            ]))

        else:
            # Load Yaml configuration
            with open(config, 'r') as fh:
                cfg = yaml.load(fh, Loader=yaml.FullLoader)

            # Get Feature size
            self.feature_size = cfg["feature_size"]
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
                if k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
141
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
142
143
144
145
146
147
148
149
150
151
152
                                                                cfg["segmental"][k]["output_channels"],
                                                                cfg["segmental"][k]["kernel_size"],
                                                                cfg["segmental"][k]["dilation"])))
                    input_size = cfg["segmental"][k]["output_channels"]

                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

                elif k.startswith('norm'):
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
153
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
154
155
156

            # Create sequential object for the second part of the network
            input_size = input_size * 2
Anthony Larcher's avatar
xv    
Anthony Larcher committed
157
158
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
159
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
160
161
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
162
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
163
164
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, cfg["before_embedding"][k]["output"])))
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
165
166

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
167
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
168
169

                elif k.startswith('norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
170
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
171
172

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
173
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
174

Anthony Larcher's avatar
Anthony Larcher committed
175
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
176
177
178
179
180

            # Create sequential object for the second part of the network
            after_embedding_layers = []
            for k in cfg["after_embedding"].keys():
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
181
182
                    if cfg["after_embedding"][k]["output"] == "speaker_number":
                        after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
183
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
184
185
                        after_embedding_layers.append((k, torch.nn.Linear(input_size, cfg["after_embedding"][k]["output"])))
                        input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
186
187
188
189
190
191
192
193

                elif k.startswith("activation"):
                    after_embedding_layers.append((k, self.activation))

                elif k.startswith('norm'):
                    after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
194
                    after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))
Anthony Larcher's avatar
Anthony Larcher committed
195

Anthony Larcher's avatar
Anthony Larcher committed
196
            self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
197

Anthony Larcher's avatar
Anthony Larcher committed
198
    def forward(self, x, is_eval=False):
199
200
201
202
203
        """

        :param x:
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
204
        x = self.sequence_network(x)
205

Anthony Larcher's avatar
Anthony Larcher committed
206
207
208
209
210
211
212
213
        # Mean and Standard deviation pooling
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        x = torch.cat([mean, std], dim=1)

        x = self.before_speaker_embedding(x)
        if is_eval:
            return x
214

Anthony Larcher's avatar
Anthony Larcher committed
215
216
        x = self.after_speaker_embedding(x)
        return x
Anthony Larcher's avatar
Anthony Larcher committed
217

Anthony Larcher's avatar
Anthony Larcher committed
218
219

def xtrain(args):
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    """
    Initialize and train an x-vector on a single GPU

    :param args:
    :return:
    """
    # If we start from an existing model
    if not args.init_model_name == '':
        # Load the model
        logging.critical("*** Load model from = {}/{}".format(args.model_path, args.init_model_name))
        model_file_name = '/'.join([args.model_path, args.init_model_name])
        model = torch.load(model_file_name)
        model.train()
    else:
        # Initialize a first model and save to disk
Anthony Larcher's avatar
Anthony Larcher committed
235
236
237
238
        if args.yaml is None:
            model = Xtractor(args.class_number)
        else:
            model = Xtractor(args.class_number, args.yaml)
239
        model.train()
Anthony Larcher's avatar
Anthony Larcher committed
240
241
242
243
244

    if torch.cuda.device_count() > 1:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    model.cuda()

    # Split the training data in train and cv
    total_seg_df = pickle.load(open(args.batch_training_list, "rb"))

    speaker_dict = {}
    tmp = total_seg_df.speaker_id.unique()
    tmp.sort()
    for idx, spk in enumerate(tmp):
        speaker_dict[spk] = idx
    pickle.dump(speaker_dict, open("spk_dictionary.pkl", "wb"))

    cv_portion = 0.007
    idx = numpy.arange(len(total_seg_df))
    numpy.random.shuffle(idx)
    train_seg_df = total_seg_df.iloc[idx[:int((1 - cv_portion) * len(idx))]].reset_index()
    cv_seg_df = total_seg_df.iloc[idx[int((1 - cv_portion) * len(idx)):]].reset_index()

    current_model_file_name = "initial_model"
    torch.save(model.state_dict(), current_model_file_name)

Anthony Larcher's avatar
Anthony Larcher committed
266
    optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.9)
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min')

    for epoch in range(1, args.epochs + 1):
        # Process one epoch and return the current model
        model = train_epoch(model, epoch, train_seg_df, speaker_dict, optimizer, args)

        # Add the cross validation here
        accuracy, val_loss = cross_validation(args, model, cv_seg_df, speaker_dict)
        logging.critical("*** Cross validation accuracy = {} %".format(accuracy))

        # Decrease learning rate according to the scheduler policy
        scheduler.step(val_loss)

        # return the file name of the new model
        base_name = "model"
        if not args.init_model_name == "":
            base_name = args.init_model_name
        current_model_file_name = "{}/{}_{}_epoch_{}".format(args.model_path, base_name, args.expe_id, epoch)
        torch.save(model, current_model_file_name)


def train_epoch(model, epoch, train_seg_df, speaker_dict, optimizer, args):
    """

    :param model:
    :param epoch:
    :param train_seg_df:
    :param speaker_dict:
    :param optimizer:
    :param args:
    :return:
    """
    device = torch.device("cuda:0")

    torch.manual_seed(args.seed)

    train_transform = []
    if not args.train_transformation == '':
        trans = args.train_transformation.split(',')
        for t in trans:
            if "CMVN" in t:
                train_transform.append(CMVN())
            if "FrequencyMask" in t:
                a = int(t.split("-")[0].split("(")[1])
                b = int(t.split("-")[1].split(")")[0])
                train_transform.append(FrequencyMask(a, b))
            if "TemporalMask" in t:
                a = int(t.split("(")[1].split(")")[0])
                train_transform.append(TemporalMask(a))
Anthony Larcher's avatar
Anthony Larcher committed
317
    train_set = VoxDataset(train_seg_df, speaker_dict, args.duration, transform=transforms.Compose(train_transform),
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
                           spec_aug_ratio=args.spec_aug, temp_aug_ratio=args.temp_aug)
    train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=15)

    criterion = torch.nn.CrossEntropyLoss()

    accuracy = 0.0
    for batch_idx, (data, target, _, __) in enumerate(train_loader):
        target = target.squeeze()
        optimizer.zero_grad()
        output = model(data.to(device))
        loss = criterion(output, target.to(device))
        loss.backward()
        optimizer.step()
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()

        if batch_idx % args.log_interval == 0:
            logging.critical('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                epoch, batch_idx + 1, train_loader.__len__(),
                       100. * batch_idx / train_loader.__len__(), loss.item(),
                       100.0 * accuracy.item() / ((batch_idx + 1) * args.batch_size)))
    return model


# def cross_validation(args, model):
#
#     with open(args.cross_validation_list, 'r') as fh:
#         cross_validation_list = [l.rstrip() for l in fh]
#     cv_loader = XvectorMultiDataset(cross_validation_list, args.batch_path)
#
#     model.eval()
#     device = torch.device("cuda:0")
#     model.to(device)
#
#     accuracy = 0.0
#     bi = 0
#     for batch_idx, (data, target) in enumerate(cv_loader):
#         output = model(data.to(device))
#         accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
#         bi = batch_idx
#     return 100. * accuracy.cpu().numpy() / ((bi + 1) * args.batch_size)


def cross_validation(args, model, cv_seg_df, speaker_dict):
    """

    :param args:
    :param model:
    :param cv_seg_df:
    :return:
    """
    cv_transform = []
    if not args.cv_transformation == '':
        trans = args.cv_transformation.split(',')
        for t in trans:
            if "CMVN" in t:
                cv_transform.append(CMVN())
            if "FrequencyMask" in t:
                a = t.split(",")[0].split("(")[1]
                b = t.split(",")[1].split("(")[0]
                cv_transform.append(FrequencyMask(a, b))
            if "TemporalMask" in t:
                a = t.split(",")[0].split("(")[1]
                cv_transform.append(TemporalMask(a, b))
    cv_set = VoxDataset(cv_seg_df, speaker_dict, 500, transform=transforms.Compose(cv_transform),
                        spec_aug_ratio=args.spec_aug, temp_aug_ratio=args.temp_aug)
    cv_loader = DataLoader(cv_set, batch_size=args.batch_size, shuffle=False, num_workers=15)
    model.eval()
    device = torch.device("cuda:0")
    model.to(device)

    accuracy = 0.0
    criterion = torch.nn.CrossEntropyLoss()

    for batch_idx, (data, target, _, __) in enumerate(cv_loader):
        target = target.squeeze()
        output = model(data.to(device))
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()

    loss = criterion(output, target.to(device))

    return 100. * accuracy.cpu().numpy() / ((batch_idx + 1) * args.batch_size), loss


def xtrain_asynchronous(args):
402
403
404
405
406
407
    """
    Initialize and train an x-vector in asynchronous manner

    :param args:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
408
    # Initialize a first model and save to disk
Anthony Larcher's avatar
Anthony Larcher committed
409
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
410
411
412
413
    current_model_file_name = "initial_model"
    torch.save(model.state_dict(), current_model_file_name)

    for epoch in range(1, args.epochs + 1):
414
        current_model_file_name = train_asynchronous_epoch(epoch, args, current_model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
415
416

        # Add the cross validation here
417
        accuracy = cross_asynchronous_validation(args, current_model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
418
        print("*** Cross validation accuracy = {} %".format(accuracy))
Anthony Larcher's avatar
Anthony Larcher committed
419

Anthony Larcher's avatar
Anthony Larcher committed
420
        # Decrease learning rate after every epoch
Anthony Larcher's avatar
sad    
Anthony Larcher committed
421
422
        args.lr = args.lr * 0.9
        print("        Decrease learning rate: {}".format(args.lr))
Anthony Larcher's avatar
Anthony Larcher committed
423

Anthony Larcher's avatar
Anthony Larcher committed
424

425
def train_asynchronous_epoch(epoch, args, initial_model_file_name):
426
427
428
429
430
431
432
433
    """
    Process one training epoch using an asynchronous implementation of the training

    :param epoch:
    :param args:
    :param initial_model_file_name:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    # Compute the megabatch number
    with open(args.batch_training_list, 'r') as fh:
        batch_file_list = [l.rstrip() for l in fh]

    # Shorten the batch_file_list to be a multiple of

    megabatch_number = len(batch_file_list) // (args.averaging_step * args.num_processes)
    megabatch_size = args.averaging_step * args.num_processes
    print("Epoch {}, number of megabatches = {}".format(epoch, megabatch_number))

    current_model = initial_model_file_name

    # For each sublist: run an asynchronous training and averaging of the model
    for ii in range(megabatch_number):
        print('Process megabatch [{} / {}]'.format(ii + 1, megabatch_number))
        current_model = train_asynchronous(epoch,
                                           args,
                                           current_model,
                                           batch_file_list[megabatch_size * ii: megabatch_size * (ii + 1)],
                                           ii,
454
                                           megabatch_number)  # function that split train, fuse and write the new model
Anthony Larcher's avatar
Anthony Larcher committed
455
456
457
    return current_model


458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
def train_asynchronous(epoch, args, initial_model_file_name, batch_file_list, megabatch_idx, megabatch_number):
    """
    Process one mega-batch of data asynchronously, average the model parameters across
    subrocesses and return the updated version of the model

    :param epoch:
    :param args:
    :param initial_model_file_name:
    :param batch_file_list:
    :param megabatch_idx:
    :param megabatch_number:
    :return:
    """
    # Split the list of files for each process
    sub_lists = split_file_list(batch_file_list, args.num_processes)

    #
    output_queue = mp.Queue()
    # output_queue = multiprocessing.Queue()

    processes = []
    for rank in range(args.num_processes):
480
        p = mp.Process(target=train_asynchronous_worker,
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
                       args=(rank, epoch, args, initial_model_file_name, sub_lists[rank], output_queue)
                       )
        # We first train the model across `num_processes` processes
        p.start()
        processes.append(p)

    # Average the models and write the new one to disk
    asynchronous_model = []
    for ii in range(args.num_processes):
        asynchronous_model.append(dict(output_queue.get()))

    for p in processes:
        p.join()

    av_model = Xtractor(args.class_number, args.dropout)
    tmp = av_model.state_dict()

    average_param = dict()
    for k in list(asynchronous_model[0].keys()):
        average_param[k] = asynchronous_model[0][k]

        for mod in asynchronous_model[1:]:
            average_param[k] += mod[k]

        if 'num_batches_tracked' not in k:
            tmp[k] = torch.FloatTensor(average_param[k] / len(asynchronous_model))

    # return the file name of the new model
    current_model_file_name = "{}/model_{}_epoch_{}_batch_{}".format(args.model_path, args.expe_id, epoch,
                                                                     megabatch_idx)
    torch.save(tmp, current_model_file_name)
    if megabatch_idx == megabatch_number:
        torch.save(tmp, "{}/model_{}_epoch_{}".format(args.model_path, args.expe_id, epoch))

    return current_model_file_name


518
def train_asynchronous_worker(rank, epoch, args, initial_model_file_name, batch_list, output_queue):
519
520
521
522
523
524
525
526
527
528
529
    """


    :param rank:
    :param epoch:
    :param args:
    :param initial_model_file_name:
    :param batch_list:
    :param output_queue:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
530
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
531
532
533
534
    model.load_state_dict(torch.load(initial_model_file_name))
    model.train()

    torch.manual_seed(args.seed + rank)
Anthony Larcher's avatar
Anthony Larcher committed
535
    train_loader = XvectorMultiDataset(batch_list, args.batch_path)
Anthony Larcher's avatar
Anthony Larcher committed
536
537
538
539
540
541
542
543
544
545
546
547

    device = torch.device("cuda:{}".format(rank))
    model.to(device)

    optimizer = optim.Adam([{'params': model.frame_conv0.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv1.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv2.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv3.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv4.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.seg_lin0.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin1.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin2.parameters(), 'weight_decay': args.l2_seg}
Anthony Larcher's avatar
Anthony Larcher committed
548
                            ], lr=args.lr)
Anthony Larcher's avatar
Anthony Larcher committed
549

Anthony Larcher's avatar
Anthony Larcher committed
550
    criterion = torch.nn.CrossEntropyLoss()
Anthony Larcher's avatar
Anthony Larcher committed
551
552
553
554
555
556
557
558

    accuracy = 0.0
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = model(data.to(device))
        loss = criterion(output, target.to(device))
        loss.backward()
        optimizer.step()
Anthony Larcher's avatar
Anthony Larcher committed
559

Anthony Larcher's avatar
Anthony Larcher committed
560
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
Anthony Larcher's avatar
Anthony Larcher committed
561

Anthony Larcher's avatar
Anthony Larcher committed
562
563
564
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                epoch, batch_idx + 1, train_loader.__len__(),
565
566
                100. * batch_idx / train_loader.__len__(), loss.item(),
                100.0 * accuracy.item() / ((batch_idx + 1) * args.batch_size)))
Anthony Larcher's avatar
Anthony Larcher committed
567

Anthony Larcher's avatar
Anthony Larcher committed
568
569
    model_param = OrderedDict()
    params = model.state_dict()
Anthony Larcher's avatar
Anthony Larcher committed
570

Anthony Larcher's avatar
Anthony Larcher committed
571
572
573
    for k in list(params.keys()):
        model_param[k] = params[k].cpu().detach().numpy()
    output_queue.put(model_param)
Anthony Larcher's avatar
Anthony Larcher committed
574
575


576
def cross_asynchronous_validation(args, current_model_file_name):
Anthony Larcher's avatar
Anthony Larcher committed
577
578
    """

Anthony Larcher's avatar
Anthony Larcher committed
579
580
    :param args:
    :param current_model_file_name:
Anthony Larcher's avatar
Anthony Larcher committed
581
582
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
583
    with open(args.cross_validation_list, 'r') as fh:
Anthony Larcher's avatar
Anthony Larcher committed
584
        cross_validation_list = [l.rstrip() for l in fh]
Anthony Larcher's avatar
Anthony Larcher committed
585
        sub_lists = split_file_list(cross_validation_list, args.num_processes)
Anthony Larcher's avatar
Anthony Larcher committed
586

Anthony Larcher's avatar
Anthony Larcher committed
587
588
    #
    output_queue = mp.Queue()
Anthony Larcher's avatar
Anthony Larcher committed
589

Anthony Larcher's avatar
Anthony Larcher committed
590
591
    processes = []
    for rank in range(args.num_processes):
592
        p = mp.Process(target=cv_asynchronous_worker,
Anthony Larcher's avatar
Anthony Larcher committed
593
594
595
596
597
                       args=(rank, args, current_model_file_name, sub_lists[rank], output_queue)
                       )
        # We first evaluate the model across `num_processes` processes
        p.start()
        processes.append(p)
Anthony Larcher's avatar
Anthony Larcher committed
598

Anthony Larcher's avatar
Anthony Larcher committed
599
600
601
602
    # Average the models and write the new one to disk
    result = []
    for ii in range(args.num_processes):
        result.append(output_queue.get())
Anthony Larcher's avatar
Anthony Larcher committed
603

Anthony Larcher's avatar
Anthony Larcher committed
604
605
    for p in processes:
        p.join()
Anthony Larcher's avatar
Anthony Larcher committed
606

Anthony Larcher's avatar
Anthony Larcher committed
607
608
609
    # Compute the global accuracy
    accuracy = 0.0
    total_batch_number = 0
Anthony Larcher's avatar
Anthony Larcher committed
610
    for bn, acc in result:
Anthony Larcher's avatar
Anthony Larcher committed
611
        accuracy += acc
Anthony Larcher's avatar
Anthony Larcher committed
612
613
        total_batch_number += bn
    
Anthony Larcher's avatar
Anthony Larcher committed
614
    return 100. * accuracy / (total_batch_number * args.batch_size)
Anthony Larcher's avatar
Anthony Larcher committed
615
616


617
def cv_asynchronous_worker(rank, args, current_model_file_name, batch_list, output_queue):
Anthony Larcher's avatar
Anthony Larcher committed
618
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
619
620
    model.load_state_dict(torch.load(current_model_file_name))
    model.eval()
Anthony Larcher's avatar
Anthony Larcher committed
621

Anthony Larcher's avatar
Anthony Larcher committed
622
    cv_loader = XvectorMultiDataset(batch_list, args.batch_path)
Anthony Larcher's avatar
Anthony Larcher committed
623

Anthony Larcher's avatar
Anthony Larcher committed
624
625
    device = torch.device("cuda:{}".format(rank))
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
626

Anthony Larcher's avatar
Anthony Larcher committed
627
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
628
    for batch_idx, (data, target) in enumerate(cv_loader):
Anthony Larcher's avatar
Anthony Larcher committed
629
630
        output = model(data.to(device))
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
Anthony Larcher's avatar
Anthony Larcher committed
631
    output_queue.put((cv_loader.__len__(), accuracy.cpu().numpy()))
Anthony Larcher's avatar
Anthony Larcher committed
632

Anthony Larcher's avatar
hot    
Anthony Larcher committed
633

634
def extract_idmap(args, device_id, segment_indices, fs_params, idmap_name, output_queue):
Anthony Larcher's avatar
Anthony Larcher committed
635
    """
Anthony Larcher's avatar
Anthony Larcher committed
636
637
    Function that takes a model and an idmap and extract all x-vectors based on this model
    and return a StatServer containing the x-vectors
Anthony Larcher's avatar
Anthony Larcher committed
638
    """
639
    # device = torch.device("cuda:{}".format(device_ID))
Anthony Larcher's avatar
Anthony Larcher committed
640
    device = torch.device('cpu')
Anthony Larcher's avatar
Anthony Larcher committed
641
642
643
644
645
646
647
648
649
650
651
652
653

    # Create the dataset
    tmp_idmap = IdMap(idmap_name)
    idmap = IdMap()
    idmap.leftids = tmp_idmap.leftids[segment_indices]
    idmap.rightids = tmp_idmap.rightids[segment_indices]
    idmap.start = tmp_idmap.start[segment_indices]
    idmap.stop = tmp_idmap.stop[segment_indices]

    segment_loader = StatDataset(idmap, fs_params)

    # Load the model
    model_file_name = '/'.join([args.model_path, args.model_name])
Anthony Larcher's avatar
Anthony Larcher committed
654
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
655
656
657
658
659
660
661
662
    model.load_state_dict(torch.load(model_file_name))
    model.eval()

    # Get the size of embeddings
    emb_a_size = model.seg_lin0.weight.data.shape[0]
    emb_b_size = model.seg_lin1.weight.data.shape[0]

    # Create a Tensor to store all x-vectors on the GPU
Anthony Larcher's avatar
Anthony Larcher committed
663
664
665
666
667
668
    emb_1 = numpy.zeros((idmap.leftids.shape[0], emb_a_size)).astype(numpy.float32)
    emb_2 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_3 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_4 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_5 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_6 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
Anthony Larcher's avatar
Anthony Larcher committed
669
670
671
672
673
674

    # Send on selected device
    model.to(device)

    # Loop to extract all x-vectors
    for idx, (model_id, segment_id, data) in enumerate(segment_loader):
Anthony Larcher's avatar
Anthony Larcher committed
675
        logging.critical('Process file {}, [{} / {}]'.format(segment_id, idx, segment_loader.__len__()))
Anthony Larcher's avatar
Anthony Larcher committed
676

Anthony Larcher's avatar
Anthony Larcher committed
677
678
679
        if list(data.shape)[2] < 20:
            pass
        else:
Anthony Larcher's avatar
Anthony Larcher committed
680
681
682
683
684
685
686
            seg_1, seg_2, seg_3, seg_4, seg_5, seg_6 = model.extract(data.to(device))
            emb_1[idx, :] = seg_1.detach().cpu()
            emb_2[idx, :] = seg_2.detach().cpu()
            emb_3[idx, :] = seg_3.detach().cpu()
            emb_4[idx, :] = seg_4.detach().cpu()
            emb_5[idx, :] = seg_5.detach().cpu()
            emb_6[idx, :] = seg_6.detach().cpu()
Anthony Larcher's avatar
Anthony Larcher committed
687

Anthony Larcher's avatar
Anthony Larcher committed
688
    output_queue.put((segment_indices, emb_1, emb_2, emb_3, emb_4, emb_5, emb_6))
Anthony Larcher's avatar
Anthony Larcher committed
689
690


Anthony Larcher's avatar
Anthony Larcher committed
691
def extract_parallel(args, fs_params):
692
693
694
695
696
697
    """

    :param args:
    :param fs_params:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
698
699
700
    emb_a_size = 512
    emb_b_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
701
    idmap = IdMap(args.idmap)
Anthony Larcher's avatar
Anthony Larcher committed
702

Anthony Larcher's avatar
Anthony Larcher committed
703
704
705
706
707
708
709
710
711
712
713
714
715
    x_server_1 = StatServer(idmap, 1, emb_a_size)
    x_server_2 = StatServer(idmap, 1, emb_b_size)
    x_server_3 = StatServer(idmap, 1, emb_b_size)
    x_server_4 = StatServer(idmap, 1, emb_b_size)
    x_server_5 = StatServer(idmap, 1, emb_b_size)
    x_server_6 = StatServer(idmap, 1, emb_b_size)

    x_server_1.stat0 = numpy.ones(x_server_1.stat0.shape)
    x_server_2.stat0 = numpy.ones(x_server_2.stat0.shape)
    x_server_3.stat0 = numpy.ones(x_server_3.stat0.shape)
    x_server_4.stat0 = numpy.ones(x_server_4.stat0.shape)
    x_server_5.stat0 = numpy.ones(x_server_5.stat0.shape)
    x_server_6.stat0 = numpy.ones(x_server_6.stat0.shape)
Anthony Larcher's avatar
Anthony Larcher committed
716
717
718

    # Split the indices
    mega_batch_size = idmap.leftids.shape[0] // args.num_processes
Anthony Larcher's avatar
Anthony Larcher committed
719
720
721

    logging.critical("Number of sessions to process: {}".format(idmap.leftids.shape[0]))

Anthony Larcher's avatar
Anthony Larcher committed
722
723
724
    segment_idx = []
    for ii in range(args.num_processes):
        segment_idx.append(
Anthony Larcher's avatar
Anthony Larcher committed
725
726
727
728
            numpy.arange(ii * mega_batch_size, numpy.min([(ii + 1) * mega_batch_size, idmap.leftids.shape[0]])))

    for idx, si in enumerate(segment_idx):
        logging.critical("Number of session on process {}: {}".format(idx, len(si)))
Anthony Larcher's avatar
Anthony Larcher committed
729
730
731
732
733
734
735

    # Extract x-vectors in parallel
    output_queue = mp.Queue()

    processes = []
    for rank in range(args.num_processes):
        p = mp.Process(target=extract_idmap,
Anthony Larcher's avatar
Anthony Larcher committed
736
                       args=(args, rank, segment_idx[rank], fs_params, args.idmap, output_queue)
Anthony Larcher's avatar
Anthony Larcher committed
737
738
739
740
741
742
743
                       )
        # We first train the model across `num_processes` processes
        p.start()
        processes.append(p)

    # Get the x-vectors and fill the StatServer
    for ii in range(args.num_processes):
Anthony Larcher's avatar
Anthony Larcher committed
744
745
746
747
748
749
750
        indices, seg_1, seg_2, seg_3, seg_4, seg_5, seg_6 = output_queue.get()
        x_server_1.stat1[indices, :] = seg_1
        x_server_2.stat1[indices, :] = seg_2
        x_server_3.stat1[indices, :] = seg_3
        x_server_4.stat1[indices, :] = seg_4
        x_server_5.stat1[indices, :] = seg_5
        x_server_6.stat1[indices, :] = seg_6
Anthony Larcher's avatar
Anthony Larcher committed
751
752
753
754

    for p in processes:
        p.join()

Anthony Larcher's avatar
Anthony Larcher committed
755
    return x_server_1, x_server_2, x_server_3, x_server_4, x_server_5, x_server_6
Anthony Larcher's avatar
Anthony Larcher committed
756
757


Anthony Larcher's avatar
Anthony Larcher committed
758
def extract_embeddings(args):
759
760
761
762
763
764
765
766
767
768
769
770
771
    """

    :param args:
    :param device_id:
    :param fs_params:
    :return:
    """
    device = torch.device("cuda:0")

    # Load the model
    logging.critical("*** Load model from = {}/{}".format(args.model_path, args.init_model_name))
    model_file_name = '/'.join([args.model_path, args.init_model_name])
    model = torch.load(model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
772
    model = torch.nn.DataParallel(model)
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
    model.eval()
    model.to(device)

    # Get the list of files
    total_seg_df = pickle.load(open(args.batch_training_list, "rb"))

    speaker_dict = {}
    tmp = total_seg_df.speaker_id.unique()
    tmp.sort()
    for idx, spk in enumerate(tmp):
        speaker_dict[spk] = idx

    extract_transform = [CMVN(), ]
    extract_set = VoxDataset(total_seg_df, speaker_dict, None, transform=transforms.Compose(extract_transform),
                             spec_aug_ratio=args.spec_aug, temp_aug_ratio=args.temp_aug)
    extract_loader = DataLoader(extract_set, batch_size=1, shuffle=False, num_workers=5)
Anthony Larcher's avatar
Anthony Larcher committed
789

790
    #CREER UN TENSEUR DE LA BONNE TAILLE POUR STOCKER LES X-VECTEURS
Anthony Larcher's avatar
Anthony Larcher committed
791

792
793
794
795
    for batch_idx, (data, target, _, __) in enumerate(extract_loader):
        print("extrait x-vecteur numero {}".format(batch_idx))
        embedding = model.produce_embeddings(data.to(device))
        #REMPLIR LE TENSEUR AVEC LE NOUVEAU X-VECTEUR
Anthony Larcher's avatar
Anthony Larcher committed
796

797
798
    #FAIRE CORRESPONDRE LES SPK_ID AVEC LES X-VECTEURS
    #RENVOYER LE TENSEUR DE X-VECTEURS SUR LE CPU OU L ECRTIRE SUR LE DISQUE