xvector.py 85.8 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
25
Copyright 2014-2021 Anthony Larcher, Yevhenii Prokopalo
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28

Anthony Larcher's avatar
Anthony Larcher committed
29
import logging
Anthony Larcher's avatar
debug    
Anthony Larcher committed
30
import math
Anthony Larcher's avatar
Anthony Larcher committed
31
import os
Anthony Larcher's avatar
Anthony Larcher committed
32
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
33
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
34
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
35
import shutil
36
import time
Anthony Larcher's avatar
Anthony Larcher committed
37
import torch
Anthony Larcher's avatar
debug    
Anthony Larcher committed
38
import torchaudio
Anthony Larcher's avatar
Anthony Larcher committed
39
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
40
41
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
42
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
43
44
45
46
47
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
from .preprocessor import MfccFrontEnd
from .preprocessor import MelSpecFrontEnd
from .preprocessor import RawPreprocessor
Anthony Larcher's avatar
Anthony Larcher committed
48
from .xsets import SideSet
Anthony Larcher's avatar
Anthony Larcher committed
49
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
50
from .xsets import IdMapSetPerSpeaker
Anthony Larcher's avatar
Anthony Larcher committed
51
from .xsets import SideSampler
Anthony Larcher's avatar
Anthony Larcher committed
52
53
54
55
from .res_net import ResBlockWFMS
from .res_net import ResBlock
from .res_net import PreResNet34
from .res_net import PreFastResNet34
Anthony Larcher's avatar
Anthony Larcher committed
56
from ..bosaris import IdMap
Anthony Larcher's avatar
Anthony Larcher committed
57
58
from ..bosaris import Key
from ..bosaris import Ndx
Anthony Larcher's avatar
Anthony Larcher committed
59
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
60
from ..iv_scoring import cosine_scoring
Anthony Larcher's avatar
Anthony Larcher committed
61
from .sincnet import SincNet
Anthony Larcher's avatar
merge    
Anthony Larcher committed
62
from ..bosaris.detplot import rocch, rocch2eer
Anthony Larcher's avatar
merge    
Anthony Larcher committed
63
from .loss import SoftmaxAngularProto, ArcLinear
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
64
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
65
from .loss import ArcMarginProduct
Anthony Larcher's avatar
Anthony Larcher committed
66

Anthony Larcher's avatar
ddp    
Anthony Larcher committed
67

Anthony Larcher's avatar
Anthony Larcher committed
68
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
69

Anthony Larcher's avatar
Anthony Larcher committed
70
71
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
72
__copyright__ = "Copyright 2015-2021 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
73
74
75
76
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
77
78


Anthony Larcher's avatar
Anthony Larcher committed
79
80
logging.basicConfig(format='%(asctime)s %(message)s')

Anthony Larcher's avatar
Anthony Larcher committed
81
82
83

# Make PyTorch Deterministic
torch.manual_seed(0)
Anthony Larcher's avatar
Anthony Larcher committed
84
85
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.benchmark = True
Anthony Larcher's avatar
Anthony Larcher committed
86
87
88
numpy.random.seed(0)


Anthony Larcher's avatar
Anthony Larcher committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

def eer(negatives, positives):
    """Logarithmic complexity EER computation

    Args:
        negative_scores (numpy array): impostor scores
        positive_scores (numpy array): genuine scores

    Returns:
        float: Equal Error Rate (EER)
    """

    positives = numpy.sort(positives)
    negatives = numpy.sort(negatives)[::-1]

    pos_count = positives.shape[0]
    neg_count = negatives.shape[0]

    p_score = positives[0]
    n_score = negatives[0]

    p_index = 0
    n_index = 0

    next_p_jump = pos_count//2
    next_n_jump = neg_count//2

    kdx = 0
    while True:
        kdx += 1
        if p_index < 0 or n_index < 0:
            return 0
        if p_index > pos_count or n_index > neg_count:
            return 100
        if p_score < n_score:
            p_index = p_index + next_p_jump
            n_index = n_index + next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break
        elif p_score >= n_score:
            p_index = p_index - next_p_jump
            n_index = n_index - next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break

        p_score = positives[p_index]
        n_score = negatives[n_index]
        next_p_jump = next_p_jump//2
        next_n_jump = next_n_jump//2

    eer_predicate = 100

    tfr = (abs(p_index))/pos_count
    tfa = (1+abs(n_index))/neg_count
    if (p_score == n_score and tfr == tfa):
        return tfr

    while positives[p_index] < negatives[n_index]:
        if p_index < pos_count - 1:
            p_index += 1
        elif n_index < neg_count - 1:
            n_index += 1
        else:
            break

    while positives[p_index] > negatives[n_index] and n_index >= 1:
        n_index -= 1

    tfr = (1+p_index)/pos_count
    tfa = (1+n_index)/neg_count

    while tfa > tfr:
        p_index += 1
        while positives[p_index] > negatives[n_index] and n_index >= 1:
            n_index -= 1
        tfr = (1+p_index)/pos_count
        tfa = (1+n_index)/neg_count

    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    tfr = p_index/pos_count
    tfa = (1+n_index)/neg_count
    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    while True:
        while negatives[n_index + 1] <= positives[p_index - 1]:
            p_index -= 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer
        while negatives[n_index + 1] > positives[p_index - 1]:
            n_index += 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer

    return eer


Anthony Larcher's avatar
debug    
Anthony Larcher committed
204
205
def test_metrics(model,
                 device,
Anthony Larcher's avatar
Anthony Larcher committed
206
                 speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
207
208
                 num_thread,
                 mixed_precision):
Anthony Larcher's avatar
Anthony Larcher committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
Anthony Larcher's avatar
Anthony Larcher committed
225

Anthony Larcher's avatar
Anthony Larcher committed
226
227
228
229
    idmap_test_filename = '/lium/raid01_c/larcher/data/allies_dev_verif_idmap.h5'
    ndx_test_filename = '/lium/raid01_c/larcher/data/allies_dev_verif_ndx.h5'
    key_test_filename = '/lium/raid01_c/larcher/data/allies_dev_verif_key.h5'
    data_root_name='/lium/corpus/base/ALLIES/wav'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
230

231
    transform_pipeline = dict()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
232
233
234
235
236

    xv_stat = extract_embeddings(idmap_name=idmap_test_filename,
                                 model_filename=model,
                                 data_root_name=data_root_name,
                                 device=device,
Anthony Larcher's avatar
Anthony Larcher committed
237
                                 loss="aam",
Anthony Larcher's avatar
Anthony Larcher committed
238
239
                                 transform_pipeline=transform_pipeline,
                                 num_thread=num_thread,
Anthony Larcher's avatar
Anthony Larcher committed
240
                                 mixed_precision=mixed_precision)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
241

Anthony Larcher's avatar
merge    
Anthony Larcher committed
242
243
244
245
246
247
248
    tar, non = cosine_scoring(xv_stat,
                              xv_stat,
                              Ndx(ndx_test_filename),
                              wccn=None,
                              check_missing=True,
                              device=device
                              ).get_tar_non(Key(key_test_filename))
Anthony Larcher's avatar
debug    
Anthony Larcher committed
249

Anthony Larcher's avatar
merge    
Anthony Larcher committed
250
251
252
253
    #test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))
    pmiss, pfa = rocch(tar, non)

    return rocch2eer(pmiss, pfa)
Anthony Larcher's avatar
Anthony Larcher committed
254

Anthony Larcher's avatar
Anthony Larcher committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
def new_test_metrics(model,
                 device,
                 data_opts,
                 train_opts):
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
    # TODO modifier les parametres pour utiliser le dataset_description a la place de :

    #idmap_test_filename,
    #ndx_test_filename,
    #key_test_filename,
    #data_root_name,

    transform_pipeline = dict()

    xv_stat = extract_embeddings(idmap_name=data_opts["idmap_test_filename"],
                                 model_filename=model,
                                 data_root_name=data_opts["data_root_name"],
                                 device=device,
                                 loss=model.loss,
                                 transform_pipeline=transform_pipeline,
                                 num_thread=train_opts["num_thread"],
                                 mixed_precision=train_opts["mixed_precision"])

    tar, non = cosine_scoring(xv_stat,
                              xv_stat,
                              Ndx(data_opts["ndx_test_filename"]),
                              wccn=None,
                              check_missing=True,
                              device=device
                              ).get_tar_non(Key(data_opts["key_test_filename"]))

    #test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))
    pmiss, pfa = rocch(tar, non)

    return rocch2eer(pmiss, pfa)

Anthony Larcher's avatar
Anthony Larcher committed
306

Anthony Larcher's avatar
Anthony Larcher committed
307
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
308
309
310
311
312
313
314
315
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
316
317
318
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
319

Anthony Larcher's avatar
Anthony Larcher committed
320

Anthony Larcher's avatar
Anthony Larcher committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
class TrainingMonitor():

    def __init__(self,
                 patience=numpy.inf,
                 best_accuracy=0.0,
                 best_accuracy_epoch=1,
                 best_eer=100,
                 test_eer=100.,
                 val_eer= 100.,
                 val_loss= numpy.inf,
                 val_acc= 0.,
                 compute_test_eer=False
                 ):
        # Stocker plutot des listes pour conserver l'historique complet

        self.init_patience = patience
        self.current_patience = patience
        self.best_accuracy = best_accuracy
        self.best_accuracy_epoch = best_accuracy_epoch
        self.best_eer = best_eer
        self.test_eer = []
        self.val_eer = []
        self.val_loss = []
        self.val_acc = []
        self.compute_test_eer = compute_test_eer
        self.is_best = True

    def display(self):
        """

        :return:
        """
        # TODO
        logging.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Training metrics - Cross validation accuracy = {val_acc} %, EER = {val_eer * 100} %")
        logging.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Training metrics - Test EER = {test_eer * 100} %")
        # Utiliser le packager tabulate pour faire quelque chose de propre
        pass

    def display_final(self):
        """

        :return:
        """
        logging.critical(f"Best accuracy {self.best_accuracy * 100.} obtained at epoch {self.best_accuracy_epoch}")

    def update(self,
               epoch,
               test_eer=None,
               val_eer=None,
               val_loss=None,
               val_acc=None):

        self.val_eer.append(val_eer)
        self.val_loss.append(val_loss)
        self.val_acc.append(val_acc)

        # remember best accuracy and save checkpoint
        if self.compute_test_eer:
            self.test_eer.append(test_eer)
            self.is_best = test_eer < self.best_eer
            self.best_eer = min(test_eer, self.best_eer)
        else:
            self.is_best = val_eer < self.best_eer
            self.best_eer = min(val_eer, self.best_eer)

        self.best_accuracy = max(val_acc, self.best_accuracy)

        if is_best:
            self.best_accuracy_epoch = epoch
            self.current_patience = self.init_patience
        else:
            self.current_patience -= 1



Anthony Larcher's avatar
Anthony Larcher committed
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
class MeanStdPooling(torch.nn.Module):
    """
    Mean and Standard deviation pooling
    """
    def __init__(self):
        """

        """
        super(MeanStdPooling, self).__init__()
        pass

    def forward(self, x):
        """

        :param x:
        :return:
        """
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        return torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
416

Anthony Larcher's avatar
Anthony Larcher committed
417

Anthony Larcher's avatar
Anthony Larcher committed
418
419
420
421
422
423
424
425
426
427
428
class GruPooling(torch.nn.Module):
    """

    """
    def __init__(self, input_size, gru_node, nb_gru_layer):
        """

        :param input_size:
        :param gru_node:
        :param nb_gru_layer:
        """
Anthony Larcher's avatar
Anthony Larcher committed
429
        super(GruPooling, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
430
431
432
        self.lrelu_keras = torch.nn.LeakyReLU(negative_slope = 0.3)
        self.bn_before_gru = torch.nn.BatchNorm1d(num_features = input_size)
        self.gru = torch.nn.GRU(input_size = input_size,
Anthony Larcher's avatar
Anthony Larcher committed
433
434
435
                                hidden_size = gru_node,
                                num_layers = nb_gru_layer,
                                batch_first = True)
Anthony Larcher's avatar
Anthony Larcher committed
436
437
438
439
440
441
442
443
444
445
446
447

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = self.bn_before_gru(x)
        x = self.lrelu_keras(x)
        x = x.permute(0, 2, 1)  #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
Anthony Larcher's avatar
Anthony Larcher committed
448
        x = x[:, -1, :]
Anthony Larcher's avatar
Anthony Larcher committed
449
450
451

        return x

Anthony Larcher's avatar
Anthony Larcher committed
452

Anthony Larcher's avatar
Anthony Larcher committed
453
class Xtractor(torch.nn.Module):
454
455
456
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
457

Anthony Larcher's avatar
Anthony Larcher committed
458
459
460
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
461
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
462
                 norm_embedding=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
463
464
                 aam_margin=0.2,
                 aam_s=30):
Anthony Larcher's avatar
Anthony Larcher committed
465
466
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
467
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
468
        """
Anthony Larcher's avatar
Anthony Larcher committed
469
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
470
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
471
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
472
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
473

Anthony Larcher's avatar
Anthony Larcher committed
474
475
        print(f"Speaker number : {self.speaker_number}")

Anthony Larcher's avatar
Anthony Larcher committed
476
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
477

Anthony Larcher's avatar
Anthony Larcher committed
478
479
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
480
481
482
483
484
            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
485
486
            self.activation = torch.nn.LeakyReLU(0.2)

Anthony Larcher's avatar
Anthony Larcher committed
487
            self.preprocessor = MfccFrontEnd()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
488
            self.feature_size = self.preprocessor.n_mfcc
Anthony Larcher's avatar
Anthony Larcher committed
489

Anthony Larcher's avatar
xv    
Anthony Larcher committed
490
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
491
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
492
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
493
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
494
495
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
496
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
497
498
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
499
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
500
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
501
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
502
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
503
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
504
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
505
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
506
507
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
508
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
509
            self.stat_pooling_weight_decay = 0
Anthony Larcher's avatar
xv    
Anthony Larcher committed
510
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
511
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
512
513
            ]))

514
515
            self.embedding_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
516
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
517
518
519
520
521
                self.after_speaker_embedding = ArcMarginProduct(512,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)
Anthony Larcher's avatar
Anthony Larcher committed
522
523
524
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
525
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
526
527
528
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
529
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
530
531
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
532

533
            self.preprocessor_weight_decay = 0.0002
Anthony Larcher's avatar
debug    
Anthony Larcher committed
534
535
536
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002
537
            self.embedding_size = 512
Anthony Larcher's avatar
Anthony Larcher committed
538

Anthony Larcher's avatar
Anthony Larcher committed
539
        elif model_archi == "resnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
540

Anthony Larcher's avatar
Anthony Larcher committed
541
            self.preprocessor = MelSpecFrontEnd(n_mels=80)
Anthony Larcher's avatar
Anthony Larcher committed
542
            self.sequence_network = PreResNet34()
Anthony Larcher's avatar
Anthony Larcher committed
543
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
544

Anthony Larcher's avatar
Anthony Larcher committed
545
546
            self.before_speaker_embedding = torch.nn.Linear(in_features=5120,
                                                            out_features=self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
547
548
549
550

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

551
            self.loss = "aam"
Anthony Larcher's avatar
Anthony Larcher committed
552
            self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
Anthony Larcher's avatar
Anthony Larcher committed
553
554
                                                            int(self.speaker_number),
                                                            s = 30.0,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
555
                                                            m = 0.20,
Anthony Larcher's avatar
Anthony Larcher committed
556
                                                            easy_margin = False)
Anthony Larcher's avatar
Anthony Larcher committed
557
558
559
560
561
562
563

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
564
        elif model_archi == "fastresnet34":
Anthony Larcher's avatar
Anthony Larcher committed
565
            self.preprocessor = MelSpecFrontEnd()
Anthony Larcher's avatar
Anthony Larcher committed
566
            self.sequence_network = PreFastResNet34()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
567
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
568

Anthony Larcher's avatar
Anthony Larcher committed
569
            self.before_speaker_embedding = torch.nn.Linear(in_features = 2560,
Anthony Larcher's avatar
Anthony Larcher committed
570
                                                            out_features = self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
571
572
573
574

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

Anthony Larcher's avatar
merge    
Anthony Larcher committed
575
576
577
578
            self.loss = loss
            if self.loss == "aam":
                self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
                                                                int(self.speaker_number),
Anthony Larcher's avatar
merge    
Anthony Larcher committed
579
580
                                                                s = 30,
                                                                m = 0.2,
Anthony Larcher's avatar
merge    
Anthony Larcher committed
581
582
583
584
                                                                easy_margin = False)

            elif self.loss == 'aps':
                self.after_speaker_embedding = SoftmaxAngularProto(int(self.speaker_number))
Anthony Larcher's avatar
Anthony Larcher committed
585
586
587
588
589
590

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00
Anthony Larcher's avatar
Anthony Larcher committed
591

Anthony Larcher's avatar
Anthony Larcher committed
592
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
593
594
595
596
597
598

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
599
600
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
601
602
603
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
604
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
605
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
606
607
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
625
626
627
628
629
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
630
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
631
632
633
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
634

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
635
636
637
638
639
640
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
641
        else:
Anthony Larcher's avatar
Anthony Larcher committed
642
643
            is_first_resblock = True

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
644
645
646
647
648
649
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
650

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
651
            self.loss = cfg["training"]["loss"]
Anthony Larcher's avatar
Anthony Larcher committed
652
            if self.loss == "aam":
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
653
654
                self.aam_margin = cfg["training"]["aam_margin"]
                self.aam_s = cfg["training"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
655

Anthony Larcher's avatar
Anthony Larcher committed
656
657
658
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
659
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
660
661
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
662
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
663
664
665
666
667
668
669
670
671
672
673
674
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
675
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
676
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
677
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
678
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
679
680
681
682
683
684
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
685
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
686
687

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
688
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
689
            """
Anthony Larcher's avatar
Anthony Larcher committed
690
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
691
692
693
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
709
710
711
712
713
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

Anthony Larcher's avatar
Anthony Larcher committed
714
715
716
717
718
                elif k.startswith("conv2D"):
                    segmental_layers.append((k, torch.nn.Conv2d(in_channels=1,
                                                                out_channels=entry_conv_out_channels,
                                                                kernel_size=entry_conv_kernel_size,
                                                                padding=3,
Anthony Larcher's avatar
Anthony Larcher committed
719
                                                                stride=1)))
Anthony Larcher's avatar
Anthony Larcher committed
720

Anthony Larcher's avatar
Anthony Larcher committed
721
                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
722
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
723
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
724
725
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
726
727
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
728
729
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
730
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
731
732
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
733
734
735
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
736
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
737
738
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
739
740
741
742
743
744
                elif k.startswith('resblock'):
                    segmental_layers.append((ResBlock(cfg["segmental"][k]["input_channel"],
                                                      cfg["segmental"][k]["output_channel"],
                                                      is_first_resblock)))
                    is_first_resblock = False

Anthony Larcher's avatar
Anthony Larcher committed
745
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
746
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
747

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
748
749
750
751
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
752
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
753
754
755
756
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
757
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
758

Anthony Larcher's avatar
Anthony Larcher committed
759
760
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
761
            """
Anthony Larcher's avatar
Anthony Larcher committed
762
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
763
            """
Anthony Larcher's avatar
Anthony Larcher committed
764
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
765
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
766
767
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
768
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
769
770
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
771
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
772
773
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
774
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
775
776

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
777
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
778

Anthony Larcher's avatar
Anthony Larcher committed
779
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
780
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
781
782

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
783
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
784

Anthony Larcher's avatar
Anthony Larcher committed
785
            self.embedding_size = input_size
Anthony Larcher's avatar
Anthony Larcher committed
786
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
787
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
788

Anthony Larcher's avatar
Anthony Larcher committed
789
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
790
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
791
792
793
794
795
796
797
798
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
799
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
800
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
801

Anthony Larcher's avatar
Anthony Larcher committed
802
803
804
805
806
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
807

Anthony Larcher's avatar
Anthony Larcher committed
808
809
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
810

Anthony Larcher's avatar
Anthony Larcher committed
811
812
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
813

Anthony Larcher's avatar
Anthony Larcher committed
814
815
816
817
818
819
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
820
821
822
823
824
825
826
                self.norm_embedding = True
                self.after_speaker_embedding = ArcMarginProduct(input_size,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)

Anthony Larcher's avatar
arcface    
Anthony Larcher committed
827
828
829
830
                #self.after_speaker_embedding = ArcLinear(input_size,
                #                                         self.speaker_number,
                #                                         margin=self.aam_margin,
                #                                         s=self.aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
831
832
833
834
                #self.after_speaker_embedding = ArcFace(embedding_size=input_size,
                #                                       classnum=self.speaker_number,
                #                                       s=64.,
                #                                       m=0.5)
Anthony Larcher's avatar
Anthony Larcher committed
835

Anthony Larcher's avatar
Anthony Larcher committed
836
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
837

Anthony Larcher's avatar
Anthony Larcher committed
838

839
    def forward(self, x, is_eval=False, target=None, extract_after_pooling=False):
840
841
842
        """

        :param x:
843
        :param is_eval: False for training
844
845
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
846
847
848
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
849
        x = self.sequence_network(x)
850

Anthony Larcher's avatar
Anthony Larcher committed
851
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
852
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
853

854
855
856
        if extract_after_pooling:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
857
        x = self.before_speaker_embedding(x)
858

Anthony Larcher's avatar
Anthony Larcher committed
859
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
860
            #x_norm = x.norm(p=2,dim=1, keepdim=True) / 10. # Why  10. ?
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
861
862
863
            #x_norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True, out=None, dtype=None)
            #x = torch.div(x, x_norm)
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
864

Anthony Larcher's avatar
Anthony Larcher committed
865
        if self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
866
            if is_eval:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
867
                return x
Anthony Larcher's avatar
debug    
Anthony Larcher committed
868
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
869
                return self.after_speaker_embedding(x), x
Anthony Larcher's avatar
Anthony Larcher committed
870

Anthony Larcher's avatar
merge    
Anthony Larcher committed
871
        elif self.loss in ['aam', 'aps']:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
872
873
            if is_eval:
                x = torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
874
            else:
Anthony Larcher's avatar
merge    
Anthony Larcher committed
875
                x = self.after_speaker_embedding(x, target=target), torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
876

Anthony Larcher's avatar
Anthony Larcher committed
877
        return x
Anthony Larcher's avatar
Anthony Larcher committed
878

879
880
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
881
882
883
884
885
886
887
888
889
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
890

Anthony Larcher's avatar
Anthony Larcher committed
891
892
893

def update_training_dictionary(dataset_description,
                               model_description,
Anthony Larcher's avatar
Anthony Larcher committed
894
                               kwargs):
Anthony Larcher's avatar
Anthony Larcher committed
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
    """
        speaker_number,
                               dataset_yaml,
                               epochs=None,
                               lr=None,
                               model_yaml=None,
                               model_name=None,
                               loss=None,
                               aam_margin=None,
                               aam_s=None,
                               scheduler_type="ReduceLROnPlateau",
                               scheduler_params={},
                               patience=None,
                               tmp_model_name=None,
                               best_model_name=None,
                               multi_gpu=True,
                               mixed_precision=False,
                               clipping=False,
                               opt=None,
                               reset_parts=[],
                               freeze_parts=[],
                               num_thread=None,
                               compute_test_eer=True):
    
    Fonction qui prend tous les arguments et met à jour les deux dictionnaires:
        dataset_yaml et model_yaml pour in intégrer toutes les options,
        une fois fait on ne manipule que ces dictionnaires


    :param speaker_number:
    :param dataset_yaml:
    :param epochs:
    :param lr:
    :param model_yaml:
    :param model_name:
    :param loss:
    :param aam_margin:
    :param aam_s:
    :param scheduler_type:
    :param scheduler_params:
    :param patience:
    :param tmp_model_name:
    :param best_model_name:
    :param multi_gpu:
    :param mixed_precision:
    :param clipping:
    :param opt:
    :param reset_parts:
    :param freeze_parts:
    :param num_thread:
    :param compute_test_eer:
    :return:
    """

    dataset_opts=dict()
    model_opts=dict()
    training_opts=dict()

    if num_thread is None:
        import multiprocessing
        training_opts["num_thread"] = min(multiprocessing.cpu_count() ,5)


    # TODO
    # C'est dans cetter fonction qu'il faut vérifier que toutes les options sont bien saisies ou initialisées
    # peut être revoir la structure complete des dictionnaires
    # les noms de modeles à sauvegarder sont stockés dans le dictionaires
    model_opts["best_model_name"]
    model_opts["tmp_model_name"]

    return dataset_opts, model_opts, training_opts


def get_network(model_yaml=None,
                model_name=None,
                loss=None,
                aam_margin=None,    # a supprimer
                aam_s=None,         # a supprimer
                reset_parts=[],
                freeze_parts=[]):
    """

    :param model_yaml:
    :param model_name:
    :param loss:
    :param aam_margin:
    :param aam_s:
    :param reset_parts:
    :param freeze_parts:
    :return:
    """


    # Use a predefined architecture
    if model_yaml in ["xvector", "rawnet2", "resnet34", "fastresnet34"]:

        if model_name is None:
            model = Xtractor(speaker_number, model_yaml, loss=loss)

        else:
            logging.critical(f"*** Load model from = {model_name}")
            checkpoint = torch.load(model_name)
            model = Xtractor(speaker_number, model_yaml, loss=loss)

            """
            Here we remove all layers that we don't want to reload
For faster browsing, not all history is shown. View entire blame