xvector.py 42.2 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
Anthony Larcher committed
25
Copyright 2014-2020 Yevhenii Prokopalo, Anthony Larcher
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
30

import pdb
import traceback
Anthony Larcher's avatar
Anthony Larcher committed
31
import logging
Anthony Larcher's avatar
Anthony Larcher committed
32
import matplotlib.pyplot as plt
Anthony Larcher's avatar
Anthony Larcher committed
33
import multiprocessing
Anthony Larcher's avatar
Anthony Larcher committed
34
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
35
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
36
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
37
import shutil
38
import time
Anthony Larcher's avatar
Anthony Larcher committed
39
import torch
Anthony Larcher's avatar
Anthony Larcher committed
40
import torch.optim as optim
Anthony Larcher's avatar
Anthony Larcher committed
41
42
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
43
from torchvision import transforms
Anthony Larcher's avatar
Anthony Larcher committed
44
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
45
from .xsets import SideSet
Anthony Larcher's avatar
Anthony Larcher committed
46
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
47
from .res_net import RawPreprocessor, ResBlockWFMS
Anthony Larcher's avatar
Anthony Larcher committed
48
49
from ..bosaris import IdMap
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
50
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
51
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
52
from .sincnet import SincNet
Anthony Larcher's avatar
Anthony Larcher committed
53
#from torch.utils.tensorboard import SummaryWriter
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
54
55
56
from .loss import ArcLinear
from .loss import ArcFace
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
57

Anthony Larcher's avatar
Anthony Larcher committed
58
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
59

Anthony Larcher's avatar
Anthony Larcher committed
60
61
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
62
__copyright__ = "Copyright 2015-2020 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
63
64
65
66
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
67
68


Anthony Larcher's avatar
Anthony Larcher committed
69
70
logging.basicConfig(format='%(asctime)s %(message)s')

Anthony Larcher's avatar
Anthony Larcher committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

# Make PyTorch Deterministic
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
numpy.random.seed(0)


class GuruMeditation (torch.autograd.detect_anomaly):
    
    def __init__(self):
        super(GuruMeditation, self).__init__()

    def __enter__(self):
        super(GuruMeditation, self).__enter__()
        return self

    def __exit__(self, type, value, trace):
        super(GuruMeditation, self).__exit__()
        if isinstance(value, RuntimeError):
            traceback.print_tb(trace)
            halt(str(value))

    def halt(msg):
        print (msg)
        pdb.set_trace()









def select_n_random(data, labels, n=100):
    '''
    Selects n random datapoints and their corresponding labels from a dataset
    '''
    assert len(data) == len(labels)

    perm = torch.randperm(len(data))
    return data[perm][:n], labels[perm][:n]


def matplotlib_imshow(img, one_channel=False):
    if one_channel:
        img = img.mean(dim=0)
    img = img / 2 + 0.5     # unnormalize
    npimg = img.cpu().numpy()
    if one_channel:
        plt.imshow(npimg, cmap="Greys")
    else:
        plt.imshow(np.transpose(npimg, (1, 2, 0)))

def speech_to_probs(model, speech):
    '''
    Generates predictions and corresponding probabilities from a trained
    network and a list of images
    '''
    output = model(speech)
    # convert output probabilities to predicted class
    _, preds_tensor = torch.max(output, 1)
    preds = numpy.squeeze(preds_tensor.cpu().numpy())
    return preds, [torch.nn.functional.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]


def plot_classes_preds(model, speech, labels):
    '''
Anthony Larcher's avatar
Anthony Larcher committed
140

Anthony Larcher's avatar
Anthony Larcher committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    Generates matplotlib Figure using a trained network, along with images
    and labels from a batch, that shows the network's top prediction along
    with its probability, alongside the actual label, coloring this
    information based on whether the prediction was correct or not.
    Uses the "speech_to_probs" function.
    '''
    preds, probs = speech_to_probs(model, speech)
    # plot the images in the batch, along with predicted and true labels
    fig = plt.figure(figsize=(12, 48))
    for idx in numpy.arange(4):
         ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])
         #matplotlib_imshow(speech[idx], one_channel=True)
         ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
                                                           preds[idx],
                                                           probs[idx] * 100.0,
                                                           labels[idx]),
                                                           color=("green" if preds[idx]==labels[idx].item() else "red"))
    return fig



162
def get_lr(optimizer):
Anthony Larcher's avatar
Anthony Larcher committed
163
164
165
166
167
    """

    :param optimizer:
    :return:
    """
168
169
170
171
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
172
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
173
174
175
176
177
178
179
180
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
181
182
183
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
184

Anthony Larcher's avatar
Anthony Larcher committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
class MeanStdPooling(torch.nn.Module):
    """
    Mean and Standard deviation pooling
    """
    def __init__(self):
        """

        """
        super(MeanStdPooling, self).__init__()
        pass

    def forward(self, x):
        """

        :param x:
        :return:
        """
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        return torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
205

Anthony Larcher's avatar
Anthony Larcher committed
206

Anthony Larcher's avatar
Anthony Larcher committed
207
208
209
210
211
212
213
214
215
216
217
class GruPooling(torch.nn.Module):
    """

    """
    def __init__(self, input_size, gru_node, nb_gru_layer):
        """

        :param input_size:
        :param gru_node:
        :param nb_gru_layer:
        """
Anthony Larcher's avatar
Anthony Larcher committed
218
        super(GruPooling, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
        self.lrelu_keras = torch.nn.LeakyReLU(negative_slope = 0.3)
        self.bn_before_gru = torch.nn.BatchNorm1d(num_features = input_size)
        self.gru = torch.nn.GRU(input_size = input_size,
                          hidden_size = gru_node,
                          num_layers = nb_gru_layer,
                          batch_first = True)

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = self.bn_before_gru(x)
        x = self.lrelu_keras(x)
        x = x.permute(0, 2, 1)  #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
        x = x[:,-1,:]

        return x

Anthony Larcher's avatar
Anthony Larcher committed
241

Anthony Larcher's avatar
Anthony Larcher committed
242
class Xtractor(torch.nn.Module):
243
244
245
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
246

Anthony Larcher's avatar
Anthony Larcher committed
247
248
249
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
250
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
251
252
253
                 norm_embedding=False,
                 aam_margin=0.5,
                 aam_s=0.5):
Anthony Larcher's avatar
Anthony Larcher committed
254
255
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
256
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
257
        """
Anthony Larcher's avatar
Anthony Larcher committed
258
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
259
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
260
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
261
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
262

Anthony Larcher's avatar
Anthony Larcher committed
263
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
264
265
266
267
268
269

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
270
            self.feature_size = 30
Anthony Larcher's avatar
Anthony Larcher committed
271
272
273
            self.activation = torch.nn.LeakyReLU(0.2)

            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
274

Anthony Larcher's avatar
xv    
Anthony Larcher committed
275
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
276
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
277
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
278
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
279
280
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
281
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
282
283
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
284
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
285
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
286
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
287
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
288
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
289
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
290
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
291
292
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
293
294
            self.stat_pooling = MeanStdPooling()

Anthony Larcher's avatar
xv    
Anthony Larcher committed
295
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
296
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
297
298
            ]))

Anthony Larcher's avatar
Anthony Larcher committed
299
300
            if self.loss == "aam":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
301
                  ("arclinear", ArcLinear(512, int(self.speaker_number), margin=aam_margin, s=aam_s))
Anthony Larcher's avatar
Anthony Larcher committed
302
303
304
305
                ]))
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
306
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
307
308
309
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
310
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
311
312
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
313

Anthony Larcher's avatar
Anthony Larcher committed
314
315
316
317
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002

Anthony Larcher's avatar
Anthony Larcher committed
318
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
319
320
321
322
323
324

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
325
326
327
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
328
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
329
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
330
331
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
349
350
351
352
353
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
354
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
355
356
357
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
358

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
359
360
361
362
363
364
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
365
        else:
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
366
367
368
369
370
371
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
372

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
373
            self.loss = cfg["training"]["loss"]
Anthony Larcher's avatar
Anthony Larcher committed
374
            if self.loss == "aam":
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
375
376
                self.aam_margin = cfg["training"]["aam_margin"]
                self.aam_s = cfg["training"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
377

Anthony Larcher's avatar
Anthony Larcher committed
378
379
380
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
381
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
382
383
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
384
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
385
386
387
388
389
390
391
392
393
394
395
396
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
397
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
398
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
399
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
400
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
401
402
403
404
405
406
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
407
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
408
409

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
410
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
411
            """
Anthony Larcher's avatar
Anthony Larcher committed
412
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
413
414
415
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
431
432
433
434
435
436
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
437
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
438
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
439
440
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
441
442
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
443
444
445
446
447
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
                                                                         cfg["segmental"][k]["output_channels"],
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
448
449
450
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
451
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
452
453
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
454
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
455
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
456

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
457
458
459
460
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
461
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
462
463
464
465
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
466
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
467

Anthony Larcher's avatar
Anthony Larcher committed
468
469
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
470
            """
Anthony Larcher's avatar
Anthony Larcher committed
471
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
472
            """
Anthony Larcher's avatar
Anthony Larcher committed
473
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
474
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
475
476
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
477
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
478
479
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
480
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
481
482
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
483
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
484
485

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
486
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
487

Anthony Larcher's avatar
Anthony Larcher committed
488
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
489
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
490
491

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
492
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
493

Anthony Larcher's avatar
Anthony Larcher committed
494
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
495
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
496

Anthony Larcher's avatar
Anthony Larcher committed
497
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
498
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
499
500
501
502
503
504
505
506
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
507
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
508
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
509

Anthony Larcher's avatar
Anthony Larcher committed
510
511
512
513
514
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
515

Anthony Larcher's avatar
Anthony Larcher committed
516
517
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
518

Anthony Larcher's avatar
Anthony Larcher committed
519
520
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
521

Anthony Larcher's avatar
Anthony Larcher committed
522
523
524
525
526
527
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
528
                self.norm_embedding = True
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
529
530
531
532
533
534
535
                #self.after_speaker_embedding = ArcLinear(input_size,
                #                                         self.speaker_number,
                #                                         margin=self.aam_margin,
                #                                         s=self.aam_s)
                self.after_speaker_embedding = ArcFace(embedding_size=input_size,
                                                       classnum=self.speaker_number,
                                                       s=64.,
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
536
                                                       m=0.5)
Anthony Larcher's avatar
Anthony Larcher committed
537

Anthony Larcher's avatar
Anthony Larcher committed
538
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
539

Anthony Larcher's avatar
Anthony Larcher committed
540

Anthony Larcher's avatar
Anthony Larcher committed
541
    def forward(self, x, is_eval=False, target=None):
542
543
544
        """

        :param x:
Anthony Larcher's avatar
Anthony Larcher committed
545
        :param is_eval:
546
547
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
548
549
550
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
551
        x = self.sequence_network(x)
552

Anthony Larcher's avatar
Anthony Larcher committed
553
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
554
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
555
556

        x = self.before_speaker_embedding(x)
557

Anthony Larcher's avatar
Anthony Larcher committed
558
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
559
            #x_norm = x.norm(p=2,dim=1, keepdim=True) / 10. # Why  10. ?
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
560
561
562
            #x_norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True, out=None, dtype=None)
            #x = torch.div(x, x_norm)
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
563

Anthony Larcher's avatar
Anthony Larcher committed
564
565
566
        if is_eval:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
567
568
        if self.loss == "cce":
            x = self.after_speaker_embedding(x)
Anthony Larcher's avatar
Anthony Larcher committed
569

Anthony Larcher's avatar
Anthony Larcher committed
570
571
572
573
574
575
        elif self.loss == "aam":
            if not is_eval:
                x = self.after_speaker_embedding(x,target=target)
            else:
                x = self.after_speaker_embedding(x, target=None)

Anthony Larcher's avatar
Anthony Larcher committed
576
        return x
Anthony Larcher's avatar
Anthony Larcher committed
577

578
579
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
580
581
582
583
584
585
586
587
588
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
589

Anthony Larcher's avatar
Anthony Larcher committed
590
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
591
           dataset_yaml,
Anthony Larcher's avatar
Anthony Larcher committed
592
593
           epochs=None,
           lr=None,
Anthony Larcher's avatar
Anthony Larcher committed
594
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
595
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
596
597
598
599
           loss=None,
           aam_margin=None,
           aam_s=None,
           patience=None,
Anthony Larcher's avatar
Anthony Larcher committed
600
           tmp_model_name=None,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
601
           best_model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
602
           multi_gpu=True,
603
           clipping=False,
Anthony Larcher's avatar
Anthony Larcher committed
604
           opt=None,
Anthony Larcher's avatar
Anthony Larcher committed
605
606
           reset_parts=[],
           freeze_parts=[],
Anthony Larcher's avatar
Anthony Larcher committed
607
           num_thread=None):
608
609
    """

Anthony Larcher's avatar
Anthony Larcher committed
610
611
612
613
614
615
    :param speaker_number:
    :param dataset_yaml:
    :param epochs:
    :param lr:
    :param model_yaml:
    :param model_name:
Anthony Larcher's avatar
Anthony Larcher committed
616
617
618
619
    :param loss:
    :param aam_margin:
    :param aam_s:
    :param patience:
Anthony Larcher's avatar
Anthony Larcher committed
620
621
622
623
    :param tmp_model_name:
    :param best_model_name:
    :param multi_gpu:
    :param clipping:
Anthony Larcher's avatar
Anthony Larcher committed
624
625
626
    :param opt:
    :param reset_parts:
    :param freeze_parts:
Anthony Larcher's avatar
Anthony Larcher committed
627
    :param num_thread:
628
629
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
630
631
632
633
    # Add for tensorboard
    # Writer will output to ./runs/ directory by default
    #writer = SummaryWriter("runs/xvectors_experiments_2")
    writer = None
Anthony Larcher's avatar
Anthony Larcher committed
634

Anthony Larcher's avatar
Anthony Larcher committed
635
636
637
    if num_thread is None:
        num_thread = multiprocessing.cpu_count()

Anthony Larcher's avatar
Anthony Larcher committed
638
    logging.critical(f"Start process at {time.strftime('%H:%M:%S', time.localtime())}")
639

Anthony Larcher's avatar
Anthony Larcher committed
640
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Anthony Larcher's avatar
Anthony Larcher committed
641

Anthony Larcher's avatar
Anthony Larcher committed
642
    # Start from scratch
Anthony Larcher's avatar
Anthony Larcher committed
643
    if model_name is None and model_yaml in ["xvector", "rawnet2"]:
Anthony Larcher's avatar
Anthony Larcher committed
644
        # Initialize a first model
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
645
        if model_yaml == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
646
            model = Xtractor(speaker_number, "xvector")
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
647
        elif model_yaml == "rawnet2":
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
648
            model = Xtractor(speaker_number, "rawnet2")
Anthony Larcher's avatar
Anthony Larcher committed
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
    else:
        with open(model_yaml, 'r') as fh:
            model_archi = yaml.load(fh, Loader=yaml.FullLoader)
            if epochs is None:
                epochs = model_archi["training"]["epochs"]
            if patience is None:
                patience = model_archi["training"]["patience"]
            if opt is None:
                opt = model_archi["training"]["opt"]
            if lr is None:
                lr = model_archi["training"]["lr"]
            if loss is None:
                loss = model_archi["training"]["loss"]
            if aam_margin is None and model_archi["training"]["loss"] == "aam":
                aam_margin = model_archi["training"]["aam_margin"]
            if aam_s is None and model_archi["training"]["loss"] == "aam":
                aam_s = model_archi["training"]["aam_s"]
            if tmp_model_name is None:
                tmp_model_name = model_archi["training"]["tmp_model_name"]
            if best_model_name is None:
                best_model_name = model_archi["training"]["best_model_name"]
            if multi_gpu is None:
                multi_gpu = model_archi["training"]["multi_gpu"]
            if clipping is None:
                clipping = model_archi["training"]["clipping"]

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
675
        if model_name is None:
Anthony Larcher's avatar
Anthony Larcher committed
676
677
678
            model = Xtractor(speaker_number, model_yaml)

         # If we start from an existing model
Anthony Larcher's avatar
Anthony Larcher committed
679
        else:
Anthony Larcher's avatar
Anthony Larcher committed
680
681
682
            # Load the model
            logging.critical(f"*** Load model from = {model_name}")
            checkpoint = torch.load(model_name)
Anthony Larcher's avatar
Anthony Larcher committed
683
            model = Xtractor(speaker_number, model_yaml)
Anthony Larcher's avatar
Anthony Larcher committed
684

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
685
686
            """
            Here we remove all layers that we don't want to reload
Anthony Larcher's avatar
Anthony Larcher committed
687
        
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
688
689
690
691
692
693
694
695
696
697
698
699
700
            """
            pretrained_dict = checkpoint["model_state_dict"]
            for part in reset_parts:
                pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

            new_model_dict = model.state_dict()
            new_model_dict.update(pretrained_dict)
            model.load_state_dict(new_model_dict)

        # Freeze required layers
        for name, param in model.named_parameters():
            if name.split(".")[0] in freeze_parts:
                param.requires_grad = False
Anthony Larcher's avatar
Anthony Larcher committed
701

Anthony Larcher's avatar
Anthony Larcher committed
702
    print(model)
Anthony Larcher's avatar
Anthony Larcher committed
703

Anthony Larcher's avatar
Anthony Larcher committed
704
    if torch.cuda.device_count() > 1 and multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
705
706
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)
Anthony Larcher's avatar
Anthony Larcher committed
707
708
    else:
        print("Train on a single GPU")
Anthony Larcher's avatar
Anthony Larcher committed
709
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
710
711

    """
Anthony Larcher's avatar
Anthony Larcher committed
712
713
714
715
    Set the dataloaders according to the dataset_yaml
    
    First we load the dataframe from CSV file in order to split it for training and validation purpose
    Then we provide those two 
Anthony Larcher's avatar
Anthony Larcher committed
716
    """
Anthony Larcher's avatar
Anthony Larcher committed
717
718
719
720
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])
    training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"])
Anthony Larcher's avatar
Anthony Larcher committed
721
    torch.manual_seed(dataset_params['seed'])
722
723
724
    training_set = SideSet(dataset_yaml, 
                           set_type="train", 
                           dataset_df=training_df, 
Anthony Larcher's avatar
Anthony Larcher committed
725
726
                           chunk_per_segment=dataset_params['train']['chunk_per_segment'], 
                           overlap=dataset_params['train']['overlap'])
Anthony Larcher's avatar
Anthony Larcher committed
727
728
729
    training_loader = DataLoader(training_set,
                                 batch_size=dataset_params["batch_size"],
                                 shuffle=True,
Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
730
                                 drop_last=True,
Anthony Larcher's avatar
Anthony Larcher committed
731
                                 pin_memory=True,
Anthony Larcher's avatar
Anthony Larcher committed
732
                                 num_workers=num_thread)
733

Anthony Larcher's avatar
Anthony Larcher committed
734
735
736
    validation_set = SideSet(dataset_yaml, set_type="validation", dataset_df=validation_df)
    validation_loader = DataLoader(validation_set,
                                   batch_size=dataset_params["batch_size"],
Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
737
                                   drop_last=True,
Anthony Larcher's avatar
Anthony Larcher committed
738
                                   pin_memory=True,
Anthony Larcher's avatar
Anthony Larcher committed
739
                                   num_workers=num_thread)
Anthony Larcher's avatar
Anthony Larcher committed
740

Anthony Larcher's avatar
Anthony Larcher committed
741
742
743
744
745
746
    # Add for TensorBoard
    #dataiter = iter(training_loader)
    #data, labels = dataiter.next()
    #writer.add_graph(model, data)


Anthony Larcher's avatar
Anthony Larcher committed
747
748
749
    """
    Set the training options
    """
Anthony Larcher's avatar
Anthony Larcher committed
750
    if opt == 'adam':
Anthony Larcher's avatar
Anthony Larcher committed
751
        _optimizer = torch.optim.Adam
Anthony Larcher's avatar
Anthony Larcher committed
752
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
753
754
    elif opt == 'rmsprop':
        _optimizer = torch.optim.RMSprop
Anthony Larcher's avatar
Anthony Larcher committed
755
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
756
757
758
    else: # opt == 'sgd'
        _optimizer = torch.optim.SGD
        _options = {'lr': lr, 'momentum': 0.9}
Anthony Larcher's avatar
Anthony Larcher committed
759

Anthony Larcher's avatar
Anthony Larcher committed
760
761
762
763
764
765
766
767
768
769
770
771
772
773
    params = [
        {
            'params': [
                param for name, param in model.named_parameters() if 'bn' not in name
            ]
        },
        {
            'params': [
                param for name, param in model.named_parameters() if 'bn' in name
            ],
            'weight_decay': 0
        },
    ]

Anthony Larcher's avatar
Anthony Larcher committed
774
    param_list = []
Anthony Larcher's avatar
Anthony Larcher committed
775
    if type(model) is Xtractor:
Anthony Larcher's avatar
Anthony Larcher committed
776
777
778
779
780
781
782
        if model.preprocessor is not None:
            param_list.append({'params': model.preprocessor.parameters(), 'weight_decay': model.preprocessor_weight_decay})
        param_list.append({'params': model.sequence_network.parameters(), 'weight_decay': model.sequence_network_weight_decay})
        param_list.append({'params': model.stat_pooling.parameters(), 'weight_decay': model.stat_pooling_weight_decay})
        param_list.append({'params': model.before_speaker_embedding.parameters(), 'weight_decay': model.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.after_speaker_embedding.parameters(), 'weight_decay': model.after_speaker_embedding_weight_decay})

Anthony Larcher's avatar
Anthony Larcher committed
783
    else:
Anthony Larcher's avatar
Anthony Larcher committed
784
785
786
787
788
789
790
791
792
        if model.module.preprocessor is not None:
            param_list.append({'params': model.module.preprocessor.parameters(), 'weight_decay': model.module.preprocessor_weight_decay})
        param_list.append({'params': model.module.sequence_network.parameters(), 'weight_decay': model.module.sequence_network_weight_decay})
        param_list.append({'params': model.module.stat_pooling.parameters(), 'weight_decay': model.module.stat_pooling_weight_decay})
        param_list.append({'params': model.module.before_speaker_embedding.parameters(), 'weight_decay': model.module.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.module.after_speaker_embedding.parameters(), 'weight_decay': model.module.after_speaker_embedding_weight_decay})


    optimizer = _optimizer(param_list, **_options)
Anthony Larcher's avatar
Anthony Larcher committed
793
794
795
796
797
798

    #optimizer = torch.optim.SGD(params,
    #                            lr=lr,
    #                            momentum=0.9,
    #                            weight_decay=0.0005)
    #print(f"Learning rate = {lr}")
Anthony Larcher's avatar
Anthony Larcher committed
799

Anthony Larcher's avatar
Anthony Larcher committed
800
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', verbose=True)
801

Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
802
    best_accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
803
    best_accuracy_epoch = 1
Anthony Larcher's avatar
Anthony Larcher committed
804
    curr_patience = patience
Anthony Larcher's avatar
Anthony Larcher committed
805
    for epoch in range(1, epochs + 1):
806
        # Process one epoch and return the current model
Anthony Larcher's avatar
Anthony Larcher committed
807
808
809
        if curr_patience == 0:
            print(f"Stopping at epoch {epoch} for cause of patience")
            break
Anthony Larcher's avatar
Anthony Larcher committed
810
811
812
813
814
815
        model = train_epoch(model,
                            epoch,
                            training_loader,
                            optimizer,
                            dataset_params["log_interval"],
                            device=device,
Anthony Larcher's avatar
Anthony Larcher committed
816
817
                            clipping=clipping,
                            tb_writer=writer)
818
819

        # Add the cross validation here
Anthony Larcher's avatar
Anthony Larcher committed
820
        accuracy, val_loss = cross_validation(model, validation_loader, device=device)
Anthony Larcher's avatar
Anthony Larcher committed
821
        logging.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Cross validation accuracy = {accuracy} %")
822
823
824
825

        # Decrease learning rate according to the scheduler policy
        scheduler.step(val_loss)

Anthony Larcher's avatar
Anthony Larcher committed
826
827
828
829
        # remember best accuracy and save checkpoint
        is_best = accuracy > best_accuracy
        best_accuracy = max(accuracy, best_accuracy)

Anthony Larcher's avatar
Anthony Larcher committed
830
831
832
833
834
835
        if type(model) is Xtractor:
            save_checkpoint({
                'epoch': epoch,
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'accuracy': best_accuracy,
Anthony Larcher's avatar
Anthony Larcher committed
836
837
                'scheduler': scheduler,
                'speaker_number' : speaker_number,
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
838
                'model_archi': model_archi
Anthony Larcher's avatar
Anthony Larcher committed
839
840
841
842
843
844
845
            }, is_best, filename=tmp_model_name+".pt", best_filename=best_model_name+'.pt')
        else:
            save_checkpoint({
                'epoch': epoch,
                'model_state_dict': model.module.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'accuracy': best_accuracy,
Anthony Larcher's avatar
Anthony Larcher committed
846
847
                'scheduler': scheduler,
                'speaker_number': speaker_number,
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
848
                'model_archi': model_archi
Anthony Larcher's avatar
Anthony Larcher committed
849
            }, is_best, filename=tmp_model_name+".pt", best_filename=best_model_name+'.pt')
Anthony Larcher's avatar
Anthony Larcher committed
850
851
852

        if is_best:
            best_accuracy_epoch = epoch
Anthony Larcher's avatar
Anthony Larcher committed
853
854
855
            curr_patience = patience
        else:
            curr_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
856
    #writer.close()
857

858
859
860
    for ii in range(torch.cuda.device_count()):
        print(torch.cuda.memory_summary(ii))

Anthony Larcher's avatar
Anthony Larcher committed
861
    logging.critical(f"Best accuracy {best_accuracy * 100.} obtained at epoch {best_accuracy_epoch}")
862

Anthony Larcher's avatar
Anthony Larcher committed
863
def train_epoch(model, epoch, training_loader, optimizer, log_interval, device, clipping=False, tb_writer=None):
864
865
866
867
    """

    :param model:
    :param epoch:
Anthony Larcher's avatar
Anthony Larcher committed
868
    :param training_loader:
869
    :param optimizer:
Anthony Larcher's avatar
Anthony Larcher committed
870
871
872
    :param log_interval:
    :param device:
    :param clipping:
873
874
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
875
    model.train()
Anthony Larcher's avatar
Anthony Larcher committed
876
    criterion = torch.nn.CrossEntropyLoss(reduction='mean')
877

Anthony Larcher's avatar
Anthony Larcher committed
878
879
880
881
882
    if isinstance(model, Xtractor):
        loss_criteria = model.loss
    else:
        loss_criteria = model.module.loss

883
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
884
    running_loss = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
885
    for batch_idx, (data, target) in enumerate(training_loader):
886
        target = target.squeeze()
Anthony Larcher's avatar
Anthony Larcher committed
887
        target = target.to(device)
888
        optimizer.zero_grad()
Anthony Larcher's avatar
Anthony Larcher committed
889
890
891
892
893
894

        if loss_criteria == 'aam':
            output = model(data.to(device), target=target)
        else:
            output = model(data.to(device), target=None)

Anthony Larcher's avatar
Anthony Larcher committed
895
        #with GuruMeditation():
Anthony Larcher's avatar
Anthony Larcher committed
896
        loss = criterion(output, target)
Anthony Larcher's avatar
Anthony Larcher committed
897
898
899
900
901
902
903
904
        if not torch.isnan(loss):
            loss.backward()
            if clipping:
                torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
            running_loss += loss.item()
            optimizer.step()

            running_loss += loss.item()
Anthony Larcher's avatar
Anthony Larcher committed
905
            accuracy += (torch.argmax(output.data, 1) == target).sum()
Anthony Larcher's avatar
Anthony Larcher committed
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
            if batch_idx % log_interval == 0:
                batch_size = target.shape[0]
                logging.critical('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                    epoch, batch_idx + 1, training_loader.__len__(),
                    100. * batch_idx / training_loader.__len__(), loss.item(),
                    100.0 * accuracy.item() / ((batch_idx + 1) * batch_size)))
                #tb_writer.add_scalar('training loss',
                #                     running_loss / log_interval,
                #                     epoch * len(training_loader) + batch_idx)
                #tb_writer.add_scalar('training_accuracy',
                #                      100.0 * accuracy.item() / ((batch_idx + 1) * batch_size),
                #                      epoch * len(training_loader) + batch_idx)

                # ...log a Matplotlib Figure showing the model's predictions on a
                # random mini-batch
                #tb_writer.add_figure('predictions vs. actuals',
                #                     plot_classes_preds(model, data.to(device), target.to(device)),
                #                     global_step=epoch * len(training_loader) + batch_idx)

925
926
927
928
929
930
931
932
933
934
935
936
937
        else:
            save_checkpoint({
                             'epoch': epoch,
                             'model_state_dict': model.state_dict(),
                             'optimizer_state_dict': optimizer.state_dict(),
                             'accuracy': 0.0,
                             'scheduler': 0.0
                             }, False, filename="model_loss_NAN.pt", best_filename='toto.pt')
            with open("batch_loss_NAN.pkl", "wb") as fh:
                pickle.dump(data.cpu(), fh)
            import sys
            sys.exit()
        running_loss = 0.0
938
939
940
    return model


Anthony Larcher's avatar
Anthony Larcher committed
941
def cross_validation(model, validation_loader, device):
942
943
944
    """

    :param model:
Anthony Larcher's avatar
Anthony Larcher committed
945
946
    :param validation_loader:
    :param device:
947
948
949
950
    :return:
    """
    model.eval()

Anthony Larcher's avatar
Anthony Larcher committed
951
952
953
954
955
    if isinstance(model, Xtractor):
        loss_criteria = model.loss
    else:
        loss_criteria = model.module.loss

956
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
957
    loss = 0.0
958
    criterion = torch.nn.CrossEntropyLoss()
Anthony Larcher's avatar
Anthony Larcher committed
959
960
961
962
    with torch.no_grad():
        for batch_idx, (data, target) in enumerate(validation_loader):
            batch_size = target.shape[0]
            target = target.squeeze()
Anthony Larcher's avatar
Anthony Larcher committed
963
964
965
966
967
968

            if loss_criteria == "aam":
                output = model(data.to(device), target=target)
            else:
                output = model(data.to(device), target=None)

Anthony Larcher's avatar
Anthony Larcher committed
969
            accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
970

Anthony Larcher's avatar
Anthony Larcher committed
971
            loss += criterion(output, target.to(device))
Anthony Larcher's avatar
Anthony Larcher committed
972

Anthony Larcher's avatar
Anthony Larcher committed
973
974
975
976
    return 100. * accuracy.cpu().numpy() / ((batch_idx + 1) * batch_size), \
           loss.cpu().numpy() / ((batch_idx + 1) * batch_size)


Anthony Larcher's avatar
Anthony Larcher committed
977
978
def extract_embeddings(idmap_name,
                       model_filename,
Anthony Larcher's avatar
Anthony Larcher committed
979
                       data_root_name,
Anthony Larcher's avatar
Anthony Larcher committed
980
                       device,
Anthony Larcher's avatar
Anthony Larcher committed
981
982
                       model_yaml=None,
                       speaker_number=None,
Anthony Larcher's avatar
Anthony Larcher committed
983
                       file_extension="wav",
984
                       transform_pipeline=None,
985
986
                       frame_shift=0.01,
                       frame_duration=0.025,
987
                       num_thread=1):
988
989
990
    # Load the model
    if isinstance(model_filename, str):
        checkpoint = torch.load(model_filename)
Anthony Larcher's avatar
Anthony Larcher committed
991
992
993
        if speaker_number is None:
            speaker_number = checkpoint["speaker_number"]
        if model_yaml is None:
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
994
995
            model_archi = checkpoint["model_archi"]
        model = Xtractor(speaker_number, model_archi=model_archi)
996
997
998
        model.load_state_dict(checkpoint["model_state_dict"])
    else:
        model = model_filename
Anthony Larcher's avatar
Anthony Larcher committed
999

Anthony Larcher's avatar
Anthony Larcher committed
1000
    if isinstance(idmap_name, IdMap):
For faster browsing, not all history is shown. View entire blame