xvector.py 28.7 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# -*- coding: utf-8 -*-
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
Anthony Larcher committed
25
Copyright 2014-2020 Yevhenii Prokopalo, Anthony Larcher
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
import logging
import numpy
Anthony Larcher's avatar
minor    
Anthony Larcher committed
30
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
31
import torch
Anthony Larcher's avatar
Anthony Larcher committed
32
33
import torch.optim as optim
import torch.multiprocessing as mp
Anthony Larcher's avatar
Anthony Larcher committed
34
from torchvision import transforms
Anthony Larcher's avatar
Anthony Larcher committed
35
from collections import OrderedDict
36
from .xsets import XvectorMultiDataset, StatDataset, VoxDataset
Anthony Larcher's avatar
Anthony Larcher committed
37
38
39
from .xsets import FrequencyMask, CMVN, TemporalMask
from ..bosaris import IdMap
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
40
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
41

Anthony Larcher's avatar
Anthony Larcher committed
42
43
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
44
__copyright__ = "Copyright 2015-2020 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
45
46
47
48
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
49
50


Anthony Larcher's avatar
Anthony Larcher committed
51
# logging.basicConfig(stream=sys.stdout, level=logging.INFO)
Anthony Larcher's avatar
Anthony Larcher committed
52
53


54
55
56
57
58
def get_lr(optimizer):
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
59
60
61
62
63
64
65
def split_file_list(batch_files, num_processes):
    # Cut the list of files into args.num_processes lists of files
    batch_sub_lists = [[]] * num_processes
    x = [ii for ii in range(len(batch_files))]
    for ii in range(num_processes):
        batch_sub_lists[ii - 1] = [batch_files[z + ii] for z in x[::num_processes] if (z + ii) < len(batch_files)]
    return batch_sub_lists
Anthony Larcher's avatar
Anthony Larcher committed
66
67
68


class Xtractor(torch.nn.Module):
69
70
71
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
72
    def __init__(self, spk_number, dropout, activation='LeakyReLU'):
Anthony Larcher's avatar
Anthony Larcher committed
73
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
74
        self.frame_conv0 = torch.nn.Conv1d(30, 512, 5, dilation=1)
Anthony Larcher's avatar
Anthony Larcher committed
75
76
77
        self.frame_conv1 = torch.nn.Conv1d(512, 512, 3, dilation=2)
        self.frame_conv2 = torch.nn.Conv1d(512, 512, 3, dilation=3)
        self.frame_conv3 = torch.nn.Conv1d(512, 512, 1)
Anthony Larcher's avatar
test    
Anthony Larcher committed
78
79
        self.frame_conv4 = torch.nn.Conv1d(512, 3 * 512, 1)
        self.seg_lin0 = torch.nn.Linear(3 * 512 * 2, 512)
Anthony Larcher's avatar
Anthony Larcher committed
80
        self.dropout_lin0 = torch.nn.Dropout(p=dropout)
Anthony Larcher's avatar
Anthony Larcher committed
81
        self.seg_lin1 = torch.nn.Linear(512, 512)
Anthony Larcher's avatar
Anthony Larcher committed
82
        self.dropout_lin1 = torch.nn.Dropout(p=dropout)
Anthony Larcher's avatar
Anthony Larcher committed
83
84
85
        self.seg_lin2 = torch.nn.Linear(512, spk_number)
        #
        self.norm0 = torch.nn.BatchNorm1d(512)
Anthony Larcher's avatar
Anthony Larcher committed
86
87
88
        self.norm1 = torch.nn.BatchNorm1d(512)
        self.norm2 = torch.nn.BatchNorm1d(512)
        self.norm3 = torch.nn.BatchNorm1d(512)
Anthony Larcher's avatar
test    
Anthony Larcher committed
89
        self.norm4 = torch.nn.BatchNorm1d(3 * 512)
Anthony Larcher's avatar
Anthony Larcher committed
90
        self.norm6 = torch.nn.BatchNorm1d(512)
Anthony Larcher's avatar
Anthony Larcher committed
91
        self.norm7 = torch.nn.BatchNorm1d(512)
Anthony Larcher's avatar
Anthony Larcher committed
92
        #
Anthony Larcher's avatar
minor    
Anthony Larcher committed
93
94
95
96
97
98
99
100
101
102
103
104
105
        if activation == 'LeakyReLU':
            self.activation = torch.nn.LeakyReLU(0.2)
        elif activation == 'ReLU':
            self.activation = torch.nn.ReLU()
        elif activation == 'PReLU':
            self.activation = torch.nn.PReLU()
        elif activation == 'ReLU6':
            self.activation = torch.nn.ReLU6()
        elif activation == 'SELU':
            self.activation = torch.nn.SELU()
        else:
            raise ValueError("Activation function is not implemented")

Anthony Larcher's avatar
Anthony Larcher committed
106

107
    def produce_embeddings(self, x):
Anthony Larcher's avatar
Anthony Larcher committed
108
        """
Anthony Larcher's avatar
Anthony Larcher committed
109

110
111
112
        :param x:
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
113
114
115
116
117
        frame_emb_0 = self.norm0(self.activation(self.frame_conv0(x)))
        frame_emb_1 = self.norm1(self.activation(self.frame_conv1(frame_emb_0)))
        frame_emb_2 = self.norm2(self.activation(self.frame_conv2(frame_emb_1)))
        frame_emb_3 = self.norm3(self.activation(self.frame_conv3(frame_emb_2)))
        frame_emb_4 = self.norm4(self.activation(self.frame_conv4(frame_emb_3)))
Anthony Larcher's avatar
Anthony Larcher committed
118
119
120

        mean = torch.mean(frame_emb_4, dim=2)
        std = torch.std(frame_emb_4, dim=2)
121
        seg_emb = torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
122

123
124
        embedding_a = self.seg_lin0(seg_emb)
        return embedding_a
Anthony Larcher's avatar
Anthony Larcher committed
125
126

    def forward(self, x):
127
128
129
130
131
132
        """

        :param x:
        :return:
        """
        seg_emb_0 = self.produce_embeddings(x)
Anthony Larcher's avatar
Anthony Larcher committed
133
        # batch-normalisation after this layer
134
        seg_emb_1 = self.norm6(self.activation(seg_emb_0))
Anthony Larcher's avatar
Anthony Larcher committed
135
        # new layer with batch Normalization
136
        seg_emb_2 = self.norm7(self.activation(self.seg_lin1(self.dropout_lin1(seg_emb_1))))
Anthony Larcher's avatar
Anthony Larcher committed
137
        # No batch-normalisation after this layer
Anthony Larcher's avatar
minor    
Anthony Larcher committed
138
        result = self.seg_lin2(seg_emb_2)
Anthony Larcher's avatar
Anthony Larcher committed
139
140
        return result

141
142
143
144
145
146
147
148
149
150
151
    def extract(self, x):
        """
        Extract x-vector given an input sequence of features

        :param x:
        :return:
        """
        embedding_a = self.produce_embeddings(x)
        embedding_b = self.seg_lin1(self.norm6(self.activation(embedding_a)))

        return embedding_a, embedding_b
Anthony Larcher's avatar
Anthony Larcher committed
152
153
154

    def init_weights(self):
        """
155
        Initialize the x-vector extract weights and biaises
Anthony Larcher's avatar
Anthony Larcher committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        """
        torch.nn.init.normal_(self.frame_conv0.weight, mean=-0.5, std=0.1)
        torch.nn.init.normal_(self.frame_conv1.weight, mean=-0.5, std=0.1)
        torch.nn.init.normal_(self.frame_conv2.weight, mean=-0.5, std=0.1)
        torch.nn.init.normal_(self.frame_conv3.weight, mean=-0.5, std=0.1)
        torch.nn.init.normal_(self.frame_conv4.weight, mean=-0.5, std=0.1)
        torch.nn.init.xavier_uniform(self.seg_lin0.weight)
        torch.nn.init.xavier_uniform(self.seg_lin1.weight)
        torch.nn.init.xavier_uniform(self.seg_lin2.weight)

        torch.nn.init.constant(self.frame_conv0.bias, 0.1)
        torch.nn.init.constant(self.frame_conv1.bias, 0.1)
        torch.nn.init.constant(self.frame_conv2.bias, 0.1)
        torch.nn.init.constant(self.frame_conv3.bias, 0.1)
        torch.nn.init.constant(self.frame_conv4.bias, 0.1)
        torch.nn.init.constant(self.seg_lin0.bias, 0.1)
        torch.nn.init.constant(self.seg_lin1.bias, 0.1)
        torch.nn.init.constant(self.seg_lin2.bias, 0.1)

Anthony Larcher's avatar
Anthony Larcher committed
175
176

def xtrain(args):
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    """
    Initialize and train an x-vector on a single GPU

    :param args:
    :return:
    """
    # If we start from an existing model
    if not args.init_model_name == '':
        # Load the model
        logging.critical("*** Load model from = {}/{}".format(args.model_path, args.init_model_name))
        model_file_name = '/'.join([args.model_path, args.init_model_name])
        model = torch.load(model_file_name)
        model.train()
    else:
        # Initialize a first model and save to disk
        model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
minor    
Anthony Larcher committed
193
        model.init_weights()
194
        model.train()
Anthony Larcher's avatar
Anthony Larcher committed
195
196
197
198
199

    if torch.cuda.device_count() > 1:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    model.cuda()

    # Split the training data in train and cv
    total_seg_df = pickle.load(open(args.batch_training_list, "rb"))

    speaker_dict = {}
    tmp = total_seg_df.speaker_id.unique()
    tmp.sort()
    for idx, spk in enumerate(tmp):
        speaker_dict[spk] = idx
    pickle.dump(speaker_dict, open("spk_dictionary.pkl", "wb"))

    cv_portion = 0.007
    idx = numpy.arange(len(total_seg_df))
    numpy.random.shuffle(idx)
    train_seg_df = total_seg_df.iloc[idx[:int((1 - cv_portion) * len(idx))]].reset_index()
    cv_seg_df = total_seg_df.iloc[idx[int((1 - cv_portion) * len(idx)):]].reset_index()

    current_model_file_name = "initial_model"
    torch.save(model.state_dict(), current_model_file_name)

Anthony Larcher's avatar
minor    
Anthony Larcher committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
    if type(model) is Xtractor:
        optimizer = torch.optim.SGD([
            {'params': model.frame_conv0.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.frame_conv1.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.frame_conv2.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.frame_conv3.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.frame_conv4.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.seg_lin0.parameters(), 'weight_decay': args.l2_seg},
            {'params': model.seg_lin1.parameters(), 'weight_decay': args.l2_seg},
            {'params': model.seg_lin2.parameters(), 'weight_decay': args.l2_seg}
            ],
            lr=args.lr, momentum=0.9)
    else:
        optimizer = torch.optim.SGD([
            {'params': model.module.frame_conv0.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.module.frame_conv1.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.module.frame_conv2.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.module.frame_conv3.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.module.frame_conv4.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.module.seg_lin0.parameters(), 'weight_decay': args.l2_seg},
            {'params': model.module.seg_lin1.parameters(), 'weight_decay': args.l2_seg},
            {'params': model.module.seg_lin2.parameters(), 'weight_decay': args.l2_seg}
            ],
            lr=args.lr, momentum=0.9)
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min')

    for epoch in range(1, args.epochs + 1):
        # Process one epoch and return the current model
        model = train_epoch(model, epoch, train_seg_df, speaker_dict, optimizer, args)

        # Add the cross validation here
        accuracy, val_loss = cross_validation(args, model, cv_seg_df, speaker_dict)
        logging.critical("*** Cross validation accuracy = {} %".format(accuracy))

        # Decrease learning rate according to the scheduler policy
        scheduler.step(val_loss)

        # return the file name of the new model
        base_name = "model"
        if not args.init_model_name == "":
            base_name = args.init_model_name
        current_model_file_name = "{}/{}_{}_epoch_{}".format(args.model_path, base_name, args.expe_id, epoch)
        torch.save(model, current_model_file_name)


def train_epoch(model, epoch, train_seg_df, speaker_dict, optimizer, args):
    """

    :param model:
    :param epoch:
    :param train_seg_df:
    :param speaker_dict:
    :param optimizer:
    :param args:
    :return:
    """
    device = torch.device("cuda:0")

    torch.manual_seed(args.seed)

    train_transform = []
    if not args.train_transformation == '':
        trans = args.train_transformation.split(',')
        for t in trans:
            if "CMVN" in t:
                train_transform.append(CMVN())
            if "FrequencyMask" in t:
                a = int(t.split("-")[0].split("(")[1])
                b = int(t.split("-")[1].split(")")[0])
                train_transform.append(FrequencyMask(a, b))
            if "TemporalMask" in t:
                a = int(t.split("(")[1].split(")")[0])
                train_transform.append(TemporalMask(a))
Anthony Larcher's avatar
Anthony Larcher committed
295
    train_set = VoxDataset(train_seg_df, speaker_dict, args.duration, transform=transforms.Compose(train_transform),
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
                           spec_aug_ratio=args.spec_aug, temp_aug_ratio=args.temp_aug)
    train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=15)

    criterion = torch.nn.CrossEntropyLoss()

    accuracy = 0.0
    for batch_idx, (data, target, _, __) in enumerate(train_loader):
        target = target.squeeze()
        optimizer.zero_grad()
        output = model(data.to(device))
        loss = criterion(output, target.to(device))
        loss.backward()
        optimizer.step()
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()

        if batch_idx % args.log_interval == 0:
            logging.critical('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                epoch, batch_idx + 1, train_loader.__len__(),
                       100. * batch_idx / train_loader.__len__(), loss.item(),
                       100.0 * accuracy.item() / ((batch_idx + 1) * args.batch_size)))
    return model


# def cross_validation(args, model):
#
#     with open(args.cross_validation_list, 'r') as fh:
#         cross_validation_list = [l.rstrip() for l in fh]
#     cv_loader = XvectorMultiDataset(cross_validation_list, args.batch_path)
#
#     model.eval()
#     device = torch.device("cuda:0")
#     model.to(device)
#
#     accuracy = 0.0
#     bi = 0
#     for batch_idx, (data, target) in enumerate(cv_loader):
#         output = model(data.to(device))
#         accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
#         bi = batch_idx
#     return 100. * accuracy.cpu().numpy() / ((bi + 1) * args.batch_size)


def cross_validation(args, model, cv_seg_df, speaker_dict):
    """

    :param args:
    :param model:
    :param cv_seg_df:
    :return:
    """
    cv_transform = []
    if not args.cv_transformation == '':
        trans = args.cv_transformation.split(',')
        for t in trans:
            if "CMVN" in t:
                cv_transform.append(CMVN())
            if "FrequencyMask" in t:
                a = t.split(",")[0].split("(")[1]
                b = t.split(",")[1].split("(")[0]
                cv_transform.append(FrequencyMask(a, b))
            if "TemporalMask" in t:
                a = t.split(",")[0].split("(")[1]
                cv_transform.append(TemporalMask(a, b))
    cv_set = VoxDataset(cv_seg_df, speaker_dict, 500, transform=transforms.Compose(cv_transform),
                        spec_aug_ratio=args.spec_aug, temp_aug_ratio=args.temp_aug)
    cv_loader = DataLoader(cv_set, batch_size=args.batch_size, shuffle=False, num_workers=15)
    model.eval()
    device = torch.device("cuda:0")
    model.to(device)

    accuracy = 0.0
    criterion = torch.nn.CrossEntropyLoss()

    for batch_idx, (data, target, _, __) in enumerate(cv_loader):
        target = target.squeeze()
        output = model(data.to(device))
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()

    loss = criterion(output, target.to(device))

    return 100. * accuracy.cpu().numpy() / ((batch_idx + 1) * args.batch_size), loss


def xtrain_asynchronous(args):
380
381
382
383
384
385
    """
    Initialize and train an x-vector in asynchronous manner

    :param args:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
386
    # Initialize a first model and save to disk
Anthony Larcher's avatar
Anthony Larcher committed
387
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
388
389
390
391
    current_model_file_name = "initial_model"
    torch.save(model.state_dict(), current_model_file_name)

    for epoch in range(1, args.epochs + 1):
392
        current_model_file_name = train_asynchronous_epoch(epoch, args, current_model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
393
394

        # Add the cross validation here
395
        accuracy = cross_asynchronous_validation(args, current_model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
396
        print("*** Cross validation accuracy = {} %".format(accuracy))
Anthony Larcher's avatar
Anthony Larcher committed
397

Anthony Larcher's avatar
Anthony Larcher committed
398
        # Decrease learning rate after every epoch
Anthony Larcher's avatar
sad    
Anthony Larcher committed
399
400
        args.lr = args.lr * 0.9
        print("        Decrease learning rate: {}".format(args.lr))
Anthony Larcher's avatar
Anthony Larcher committed
401

Anthony Larcher's avatar
Anthony Larcher committed
402

403
def train_asynchronous_epoch(epoch, args, initial_model_file_name):
404
405
406
407
408
409
410
411
    """
    Process one training epoch using an asynchronous implementation of the training

    :param epoch:
    :param args:
    :param initial_model_file_name:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    # Compute the megabatch number
    with open(args.batch_training_list, 'r') as fh:
        batch_file_list = [l.rstrip() for l in fh]

    # Shorten the batch_file_list to be a multiple of

    megabatch_number = len(batch_file_list) // (args.averaging_step * args.num_processes)
    megabatch_size = args.averaging_step * args.num_processes
    print("Epoch {}, number of megabatches = {}".format(epoch, megabatch_number))

    current_model = initial_model_file_name

    # For each sublist: run an asynchronous training and averaging of the model
    for ii in range(megabatch_number):
        print('Process megabatch [{} / {}]'.format(ii + 1, megabatch_number))
        current_model = train_asynchronous(epoch,
                                           args,
                                           current_model,
                                           batch_file_list[megabatch_size * ii: megabatch_size * (ii + 1)],
                                           ii,
432
                                           megabatch_number)  # function that split train, fuse and write the new model
Anthony Larcher's avatar
Anthony Larcher committed
433
434
435
    return current_model


436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
def train_asynchronous(epoch, args, initial_model_file_name, batch_file_list, megabatch_idx, megabatch_number):
    """
    Process one mega-batch of data asynchronously, average the model parameters across
    subrocesses and return the updated version of the model

    :param epoch:
    :param args:
    :param initial_model_file_name:
    :param batch_file_list:
    :param megabatch_idx:
    :param megabatch_number:
    :return:
    """
    # Split the list of files for each process
    sub_lists = split_file_list(batch_file_list, args.num_processes)

    #
    output_queue = mp.Queue()
    # output_queue = multiprocessing.Queue()

    processes = []
    for rank in range(args.num_processes):
458
        p = mp.Process(target=train_asynchronous_worker,
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
                       args=(rank, epoch, args, initial_model_file_name, sub_lists[rank], output_queue)
                       )
        # We first train the model across `num_processes` processes
        p.start()
        processes.append(p)

    # Average the models and write the new one to disk
    asynchronous_model = []
    for ii in range(args.num_processes):
        asynchronous_model.append(dict(output_queue.get()))

    for p in processes:
        p.join()

    av_model = Xtractor(args.class_number, args.dropout)
    tmp = av_model.state_dict()

    average_param = dict()
    for k in list(asynchronous_model[0].keys()):
        average_param[k] = asynchronous_model[0][k]

        for mod in asynchronous_model[1:]:
            average_param[k] += mod[k]

        if 'num_batches_tracked' not in k:
            tmp[k] = torch.FloatTensor(average_param[k] / len(asynchronous_model))

    # return the file name of the new model
    current_model_file_name = "{}/model_{}_epoch_{}_batch_{}".format(args.model_path, args.expe_id, epoch,
                                                                     megabatch_idx)
    torch.save(tmp, current_model_file_name)
    if megabatch_idx == megabatch_number:
        torch.save(tmp, "{}/model_{}_epoch_{}".format(args.model_path, args.expe_id, epoch))

    return current_model_file_name


496
def train_asynchronous_worker(rank, epoch, args, initial_model_file_name, batch_list, output_queue):
497
498
499
500
501
502
503
504
505
506
507
    """


    :param rank:
    :param epoch:
    :param args:
    :param initial_model_file_name:
    :param batch_list:
    :param output_queue:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
508
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
509
510
511
512
    model.load_state_dict(torch.load(initial_model_file_name))
    model.train()

    torch.manual_seed(args.seed + rank)
Anthony Larcher's avatar
Anthony Larcher committed
513
    train_loader = XvectorMultiDataset(batch_list, args.batch_path)
Anthony Larcher's avatar
Anthony Larcher committed
514
515
516
517
518
519
520
521
522
523
524
525

    device = torch.device("cuda:{}".format(rank))
    model.to(device)

    optimizer = optim.Adam([{'params': model.frame_conv0.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv1.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv2.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv3.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv4.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.seg_lin0.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin1.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin2.parameters(), 'weight_decay': args.l2_seg}
Anthony Larcher's avatar
Anthony Larcher committed
526
                            ], lr=args.lr)
Anthony Larcher's avatar
Anthony Larcher committed
527

Anthony Larcher's avatar
Anthony Larcher committed
528
    criterion = torch.nn.CrossEntropyLoss()
Anthony Larcher's avatar
Anthony Larcher committed
529
530
531
532
533
534
535
536

    accuracy = 0.0
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = model(data.to(device))
        loss = criterion(output, target.to(device))
        loss.backward()
        optimizer.step()
Anthony Larcher's avatar
Anthony Larcher committed
537

Anthony Larcher's avatar
Anthony Larcher committed
538
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
Anthony Larcher's avatar
Anthony Larcher committed
539

Anthony Larcher's avatar
Anthony Larcher committed
540
541
542
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                epoch, batch_idx + 1, train_loader.__len__(),
543
544
                100. * batch_idx / train_loader.__len__(), loss.item(),
                100.0 * accuracy.item() / ((batch_idx + 1) * args.batch_size)))
Anthony Larcher's avatar
Anthony Larcher committed
545

Anthony Larcher's avatar
Anthony Larcher committed
546
547
    model_param = OrderedDict()
    params = model.state_dict()
Anthony Larcher's avatar
Anthony Larcher committed
548

Anthony Larcher's avatar
Anthony Larcher committed
549
550
551
    for k in list(params.keys()):
        model_param[k] = params[k].cpu().detach().numpy()
    output_queue.put(model_param)
Anthony Larcher's avatar
Anthony Larcher committed
552
553


554
def cross_asynchronous_validation(args, current_model_file_name):
Anthony Larcher's avatar
Anthony Larcher committed
555
556
    """

Anthony Larcher's avatar
Anthony Larcher committed
557
558
    :param args:
    :param current_model_file_name:
Anthony Larcher's avatar
Anthony Larcher committed
559
560
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
561
    with open(args.cross_validation_list, 'r') as fh:
Anthony Larcher's avatar
Anthony Larcher committed
562
        cross_validation_list = [l.rstrip() for l in fh]
Anthony Larcher's avatar
Anthony Larcher committed
563
        sub_lists = split_file_list(cross_validation_list, args.num_processes)
Anthony Larcher's avatar
Anthony Larcher committed
564

Anthony Larcher's avatar
Anthony Larcher committed
565
566
    #
    output_queue = mp.Queue()
Anthony Larcher's avatar
Anthony Larcher committed
567

Anthony Larcher's avatar
Anthony Larcher committed
568
569
    processes = []
    for rank in range(args.num_processes):
570
        p = mp.Process(target=cv_asynchronous_worker,
Anthony Larcher's avatar
Anthony Larcher committed
571
572
573
574
575
                       args=(rank, args, current_model_file_name, sub_lists[rank], output_queue)
                       )
        # We first evaluate the model across `num_processes` processes
        p.start()
        processes.append(p)
Anthony Larcher's avatar
Anthony Larcher committed
576

Anthony Larcher's avatar
Anthony Larcher committed
577
578
579
580
    # Average the models and write the new one to disk
    result = []
    for ii in range(args.num_processes):
        result.append(output_queue.get())
Anthony Larcher's avatar
Anthony Larcher committed
581

Anthony Larcher's avatar
Anthony Larcher committed
582
583
    for p in processes:
        p.join()
Anthony Larcher's avatar
Anthony Larcher committed
584

Anthony Larcher's avatar
Anthony Larcher committed
585
586
587
    # Compute the global accuracy
    accuracy = 0.0
    total_batch_number = 0
Anthony Larcher's avatar
Anthony Larcher committed
588
    for bn, acc in result:
Anthony Larcher's avatar
Anthony Larcher committed
589
        accuracy += acc
Anthony Larcher's avatar
Anthony Larcher committed
590
591
        total_batch_number += bn
    
Anthony Larcher's avatar
Anthony Larcher committed
592
    return 100. * accuracy / (total_batch_number * args.batch_size)
Anthony Larcher's avatar
Anthony Larcher committed
593
594


595
def cv_asynchronous_worker(rank, args, current_model_file_name, batch_list, output_queue):
Anthony Larcher's avatar
Anthony Larcher committed
596
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
597
598
    model.load_state_dict(torch.load(current_model_file_name))
    model.eval()
Anthony Larcher's avatar
Anthony Larcher committed
599

Anthony Larcher's avatar
Anthony Larcher committed
600
    cv_loader = XvectorMultiDataset(batch_list, args.batch_path)
Anthony Larcher's avatar
Anthony Larcher committed
601

Anthony Larcher's avatar
Anthony Larcher committed
602
603
    device = torch.device("cuda:{}".format(rank))
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
604

Anthony Larcher's avatar
Anthony Larcher committed
605
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
606
    for batch_idx, (data, target) in enumerate(cv_loader):
Anthony Larcher's avatar
Anthony Larcher committed
607
608
        output = model(data.to(device))
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
Anthony Larcher's avatar
Anthony Larcher committed
609
    output_queue.put((cv_loader.__len__(), accuracy.cpu().numpy()))
Anthony Larcher's avatar
Anthony Larcher committed
610

Anthony Larcher's avatar
hot    
Anthony Larcher committed
611

612
def extract_idmap(args, device_id, segment_indices, fs_params, idmap_name, output_queue):
Anthony Larcher's avatar
Anthony Larcher committed
613
    """
Anthony Larcher's avatar
Anthony Larcher committed
614
615
    Function that takes a model and an idmap and extract all x-vectors based on this model
    and return a StatServer containing the x-vectors
Anthony Larcher's avatar
Anthony Larcher committed
616
    """
617
    # device = torch.device("cuda:{}".format(device_ID))
Anthony Larcher's avatar
Anthony Larcher committed
618
    device = torch.device('cpu')
Anthony Larcher's avatar
Anthony Larcher committed
619
620
621
622
623
624
625
626
627
628
629
630
631

    # Create the dataset
    tmp_idmap = IdMap(idmap_name)
    idmap = IdMap()
    idmap.leftids = tmp_idmap.leftids[segment_indices]
    idmap.rightids = tmp_idmap.rightids[segment_indices]
    idmap.start = tmp_idmap.start[segment_indices]
    idmap.stop = tmp_idmap.stop[segment_indices]

    segment_loader = StatDataset(idmap, fs_params)

    # Load the model
    model_file_name = '/'.join([args.model_path, args.model_name])
Anthony Larcher's avatar
Anthony Larcher committed
632
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
633
634
635
636
637
638
639
640
    model.load_state_dict(torch.load(model_file_name))
    model.eval()

    # Get the size of embeddings
    emb_a_size = model.seg_lin0.weight.data.shape[0]
    emb_b_size = model.seg_lin1.weight.data.shape[0]

    # Create a Tensor to store all x-vectors on the GPU
Anthony Larcher's avatar
Anthony Larcher committed
641
642
643
644
645
646
    emb_1 = numpy.zeros((idmap.leftids.shape[0], emb_a_size)).astype(numpy.float32)
    emb_2 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_3 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_4 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_5 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_6 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
Anthony Larcher's avatar
Anthony Larcher committed
647
648
649
650
651
652

    # Send on selected device
    model.to(device)

    # Loop to extract all x-vectors
    for idx, (model_id, segment_id, data) in enumerate(segment_loader):
Anthony Larcher's avatar
Anthony Larcher committed
653
        logging.critical('Process file {}, [{} / {}]'.format(segment_id, idx, segment_loader.__len__()))
Anthony Larcher's avatar
Anthony Larcher committed
654

Anthony Larcher's avatar
Anthony Larcher committed
655
656
657
        if list(data.shape)[2] < 20:
            pass
        else:
Anthony Larcher's avatar
Anthony Larcher committed
658
659
660
661
662
663
664
            seg_1, seg_2, seg_3, seg_4, seg_5, seg_6 = model.extract(data.to(device))
            emb_1[idx, :] = seg_1.detach().cpu()
            emb_2[idx, :] = seg_2.detach().cpu()
            emb_3[idx, :] = seg_3.detach().cpu()
            emb_4[idx, :] = seg_4.detach().cpu()
            emb_5[idx, :] = seg_5.detach().cpu()
            emb_6[idx, :] = seg_6.detach().cpu()
Anthony Larcher's avatar
Anthony Larcher committed
665

Anthony Larcher's avatar
Anthony Larcher committed
666
    output_queue.put((segment_indices, emb_1, emb_2, emb_3, emb_4, emb_5, emb_6))
Anthony Larcher's avatar
Anthony Larcher committed
667
668


Anthony Larcher's avatar
Anthony Larcher committed
669
def extract_parallel(args, fs_params):
670
671
672
673
674
675
    """

    :param args:
    :param fs_params:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
676
677
678
    emb_a_size = 512
    emb_b_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
679
    idmap = IdMap(args.idmap)
Anthony Larcher's avatar
Anthony Larcher committed
680

Anthony Larcher's avatar
Anthony Larcher committed
681
682
683
684
685
686
687
688
689
690
691
692
693
    x_server_1 = StatServer(idmap, 1, emb_a_size)
    x_server_2 = StatServer(idmap, 1, emb_b_size)
    x_server_3 = StatServer(idmap, 1, emb_b_size)
    x_server_4 = StatServer(idmap, 1, emb_b_size)
    x_server_5 = StatServer(idmap, 1, emb_b_size)
    x_server_6 = StatServer(idmap, 1, emb_b_size)

    x_server_1.stat0 = numpy.ones(x_server_1.stat0.shape)
    x_server_2.stat0 = numpy.ones(x_server_2.stat0.shape)
    x_server_3.stat0 = numpy.ones(x_server_3.stat0.shape)
    x_server_4.stat0 = numpy.ones(x_server_4.stat0.shape)
    x_server_5.stat0 = numpy.ones(x_server_5.stat0.shape)
    x_server_6.stat0 = numpy.ones(x_server_6.stat0.shape)
Anthony Larcher's avatar
Anthony Larcher committed
694
695
696

    # Split the indices
    mega_batch_size = idmap.leftids.shape[0] // args.num_processes
Anthony Larcher's avatar
Anthony Larcher committed
697
698
699

    logging.critical("Number of sessions to process: {}".format(idmap.leftids.shape[0]))

Anthony Larcher's avatar
Anthony Larcher committed
700
701
702
    segment_idx = []
    for ii in range(args.num_processes):
        segment_idx.append(
Anthony Larcher's avatar
Anthony Larcher committed
703
704
705
706
            numpy.arange(ii * mega_batch_size, numpy.min([(ii + 1) * mega_batch_size, idmap.leftids.shape[0]])))

    for idx, si in enumerate(segment_idx):
        logging.critical("Number of session on process {}: {}".format(idx, len(si)))
Anthony Larcher's avatar
Anthony Larcher committed
707
708
709
710
711
712
713

    # Extract x-vectors in parallel
    output_queue = mp.Queue()

    processes = []
    for rank in range(args.num_processes):
        p = mp.Process(target=extract_idmap,
Anthony Larcher's avatar
Anthony Larcher committed
714
                       args=(args, rank, segment_idx[rank], fs_params, args.idmap, output_queue)
Anthony Larcher's avatar
Anthony Larcher committed
715
716
717
718
719
720
721
                       )
        # We first train the model across `num_processes` processes
        p.start()
        processes.append(p)

    # Get the x-vectors and fill the StatServer
    for ii in range(args.num_processes):
Anthony Larcher's avatar
Anthony Larcher committed
722
723
724
725
726
727
728
        indices, seg_1, seg_2, seg_3, seg_4, seg_5, seg_6 = output_queue.get()
        x_server_1.stat1[indices, :] = seg_1
        x_server_2.stat1[indices, :] = seg_2
        x_server_3.stat1[indices, :] = seg_3
        x_server_4.stat1[indices, :] = seg_4
        x_server_5.stat1[indices, :] = seg_5
        x_server_6.stat1[indices, :] = seg_6
Anthony Larcher's avatar
Anthony Larcher committed
729
730
731
732

    for p in processes:
        p.join()

Anthony Larcher's avatar
Anthony Larcher committed
733
    return x_server_1, x_server_2, x_server_3, x_server_4, x_server_5, x_server_6
Anthony Larcher's avatar
Anthony Larcher committed
734
735


Anthony Larcher's avatar
Anthony Larcher committed
736
def extract_embeddings(args):
737
738
739
740
741
742
743
744
745
746
747
748
749
    """

    :param args:
    :param device_id:
    :param fs_params:
    :return:
    """
    device = torch.device("cuda:0")

    # Load the model
    logging.critical("*** Load model from = {}/{}".format(args.model_path, args.init_model_name))
    model_file_name = '/'.join([args.model_path, args.init_model_name])
    model = torch.load(model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
750
    model = torch.nn.DataParallel(model)
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
    model.eval()
    model.to(device)

    # Get the list of files
    total_seg_df = pickle.load(open(args.batch_training_list, "rb"))

    speaker_dict = {}
    tmp = total_seg_df.speaker_id.unique()
    tmp.sort()
    for idx, spk in enumerate(tmp):
        speaker_dict[spk] = idx

    extract_transform = [CMVN(), ]
    extract_set = VoxDataset(total_seg_df, speaker_dict, None, transform=transforms.Compose(extract_transform),
                             spec_aug_ratio=args.spec_aug, temp_aug_ratio=args.temp_aug)
    extract_loader = DataLoader(extract_set, batch_size=1, shuffle=False, num_workers=5)
Anthony Larcher's avatar
Anthony Larcher committed
767

768
    #CREER UN TENSEUR DE LA BONNE TAILLE POUR STOCKER LES X-VECTEURS
Anthony Larcher's avatar
Anthony Larcher committed
769

770
771
772
773
    for batch_idx, (data, target, _, __) in enumerate(extract_loader):
        print("extrait x-vecteur numero {}".format(batch_idx))
        embedding = model.produce_embeddings(data.to(device))
        #REMPLIR LE TENSEUR AVEC LE NOUVEAU X-VECTEUR
Anthony Larcher's avatar
Anthony Larcher committed
774

775
776
    #FAIRE CORRESPONDRE LES SPK_ID AVEC LES X-VECTEURS
    #RENVOYER LE TENSEUR DE X-VECTEURS SUR LE CPU OU L ECRTIRE SUR LE DISQUE