xvector.py 29.6 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# -*- coding: utf-8 -*-
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
Anthony Larcher committed
25
Copyright 2014-2020 Yevhenii Prokopalo, Anthony Larcher
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
import logging
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
30
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
31
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
32
import shutil
Anthony Larcher's avatar
Anthony Larcher committed
33
import torch
Anthony Larcher's avatar
Anthony Larcher committed
34
35
import torch.optim as optim
import torch.multiprocessing as mp
Anthony Larcher's avatar
Anthony Larcher committed
36
37
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
38
from torchvision import transforms
Anthony Larcher's avatar
Anthony Larcher committed
39
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
40
41
from .xsets import XvectorMultiDataset, StatDataset, VoxDataset, SideSet
from .xsets import FrequencyMask, CMVN, TemporalMask, MFCC
Anthony Larcher's avatar
Anthony Larcher committed
42
43
from ..bosaris import IdMap
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
44
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
45
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
46

Anthony Larcher's avatar
Anthony Larcher committed
47
48
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
49
__copyright__ = "Copyright 2015-2020 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
50
51
52
53
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
54
55


Anthony Larcher's avatar
Anthony Larcher committed
56
# logging.basicConfig(stream=sys.stdout, level=logging.INFO)
Anthony Larcher's avatar
Anthony Larcher committed
57
58


59
60
61
62
63
def get_lr(optimizer):
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
64
65
66
67
68
69
70
def split_file_list(batch_files, num_processes):
    # Cut the list of files into args.num_processes lists of files
    batch_sub_lists = [[]] * num_processes
    x = [ii for ii in range(len(batch_files))]
    for ii in range(num_processes):
        batch_sub_lists[ii - 1] = [batch_files[z + ii] for z in x[::num_processes] if (z + ii) < len(batch_files)]
    return batch_sub_lists
Anthony Larcher's avatar
Anthony Larcher committed
71
72
73


class Xtractor(torch.nn.Module):
74
75
76
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
77

Anthony Larcher's avatar
Anthony Larcher committed
78
    def __init__(self, speaker_number, model_archi=None):
Anthony Larcher's avatar
Anthony Larcher committed
79
80
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
81
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
82
        """
Anthony Larcher's avatar
Anthony Larcher committed
83
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
84
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
85
86
        self.feature_size = 24

Anthony Larcher's avatar
Anthony Larcher committed
87
        if model_archi is None:
Anthony Larcher's avatar
Anthony Larcher committed
88
89
            self.activation = torch.nn.ReLU()

Anthony Larcher's avatar
xv    
Anthony Larcher committed
90
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
91
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
92
93
94
95
96
97
98
99
                ("activation1", torch.nn.LeakyReLU(0.2)),
                ("norm1", torch.nn.BatchNorm1d(512)),
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
                ("norm2", torch.nn.BatchNorm1d(512)),
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
                ("norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
100
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
101
102
                ("activation4", torch.nn.LeakyReLU(0.2)),
                ("norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
103
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
104
105
106
107
                ("activation5", torch.nn.LeakyReLU(0.2)),
                ("norm5", torch.nn.BatchNorm1d(1536))
            ]))

Anthony Larcher's avatar
xv    
Anthony Larcher committed
108
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
109
                ("linear6", torch.nn.Linear(1536, 512))
Anthony Larcher's avatar
Anthony Larcher committed
110
111
            ]))

Anthony Larcher's avatar
xv    
Anthony Larcher committed
112
            self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
113
114
                ("activation6", torch.nn.LeakyReLU(0.2)),
                ("norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
115
                ("linear7", torch.nn.Linear(512, 512)),
Anthony Larcher's avatar
Anthony Larcher committed
116
117
                ("activation7", torch.nn.LeakyReLU(0.2)),
                ("norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
118
                ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
119
120
121
122
            ]))

        else:
            # Load Yaml configuration
Anthony Larcher's avatar
Anthony Larcher committed
123
            with open(model_archi, 'r') as fh:
Anthony Larcher's avatar
Anthony Larcher committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
                cfg = yaml.load(fh, Loader=yaml.FullLoader)

            # Get Feature size
            self.feature_size = cfg["feature_size"]
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
                if k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
144
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
145
146
147
148
149
150
151
152
153
154
155
                                                                cfg["segmental"][k]["output_channels"],
                                                                cfg["segmental"][k]["kernel_size"],
                                                                cfg["segmental"][k]["dilation"])))
                    input_size = cfg["segmental"][k]["output_channels"]

                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

                elif k.startswith('norm'):
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
156
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
157
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
158
159
160

            # Create sequential object for the second part of the network
            input_size = input_size * 2
Anthony Larcher's avatar
xv    
Anthony Larcher committed
161
162
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
163
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
164
165
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
166
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
167
168
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, cfg["before_embedding"][k]["output"])))
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
169
170

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
171
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
172
173

                elif k.startswith('norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
174
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
175
176

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
177
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
178

Anthony Larcher's avatar
Anthony Larcher committed
179
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
180
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
181
182
183
184
185

            # Create sequential object for the second part of the network
            after_embedding_layers = []
            for k in cfg["after_embedding"].keys():
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
186
187
                    if cfg["after_embedding"][k]["output"] == "speaker_number":
                        after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
188
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
189
190
                        after_embedding_layers.append((k, torch.nn.Linear(input_size, cfg["after_embedding"][k]["output"])))
                        input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
191
192
193
194
195
196
197
198

                elif k.startswith("activation"):
                    after_embedding_layers.append((k, self.activation))

                elif k.startswith('norm'):
                    after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
199
                    after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))
Anthony Larcher's avatar
Anthony Larcher committed
200

Anthony Larcher's avatar
Anthony Larcher committed
201
            self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
202
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
203

Anthony Larcher's avatar
Anthony Larcher committed
204
    def forward(self, x, is_eval=False):
205
206
207
208
209
        """

        :param x:
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
210
        x = self.sequence_network(x)
211

Anthony Larcher's avatar
Anthony Larcher committed
212
213
214
215
216
217
218
219
        # Mean and Standard deviation pooling
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        x = torch.cat([mean, std], dim=1)

        x = self.before_speaker_embedding(x)
        if is_eval:
            return x
220

Anthony Larcher's avatar
Anthony Larcher committed
221
222
        x = self.after_speaker_embedding(x)
        return x
Anthony Larcher's avatar
Anthony Larcher committed
223

Anthony Larcher's avatar
Anthony Larcher committed
224

Anthony Larcher's avatar
Anthony Larcher committed
225
226
227
228
229
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)

Anthony Larcher's avatar
minor    
Anthony Larcher committed
230

Anthony Larcher's avatar
Anthony Larcher committed
231
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
232
           dataset_yaml,
Anthony Larcher's avatar
Anthony Larcher committed
233
234
           epochs=10,
           lr=0.01,
Anthony Larcher's avatar
Anthony Larcher committed
235
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
236
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
237
           num_thread=1):
238
239
240
241
242
243
    """
    Initialize and train an x-vector on a single GPU

    :param args:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
244
245
    device = torch.device("cuda:0")

246
    # If we start from an existing model
Anthony Larcher's avatar
Anthony Larcher committed
247
    if model_name is not None:
248
        # Load the model
Anthony Larcher's avatar
Anthony Larcher committed
249
250
        logging.critical(f"*** Load model from = {model_name}")
        checkpoint = torch.load(model_name)
Anthony Larcher's avatar
Anthony Larcher committed
251
        model = Xtractor(speaker_number, model_yaml)
Anthony Larcher's avatar
Anthony Larcher committed
252
        model.load_state_dict(checkpoint["model_state_dict"])
253
    else:
Anthony Larcher's avatar
Anthony Larcher committed
254
255
        # Initialize a first model
        if model_yaml is None:
Anthony Larcher's avatar
Anthony Larcher committed
256
            model = Xtractor(speaker_number)
Anthony Larcher's avatar
Anthony Larcher committed
257
        else:
Anthony Larcher's avatar
Anthony Larcher committed
258
            model = Xtractor(speaker_number, model_yaml)
Anthony Larcher's avatar
Anthony Larcher committed
259
260

    model.train()
Anthony Larcher's avatar
Anthony Larcher committed
261
262
263
264
265

    if torch.cuda.device_count() > 1:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)

Anthony Larcher's avatar
Anthony Larcher committed
266
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
267
268

    """
Anthony Larcher's avatar
Anthony Larcher committed
269
270
271
272
    Set the dataloaders according to the dataset_yaml
    
    First we load the dataframe from CSV file in order to split it for training and validation purpose
    Then we provide those two 
Anthony Larcher's avatar
Anthony Larcher committed
273
    """
Anthony Larcher's avatar
Anthony Larcher committed
274
275
276
277
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])
    training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"])
278

Anthony Larcher's avatar
Anthony Larcher committed
279
    torch.manual_seed(dataset_params['seed'])
Anthony Larcher's avatar
Anthony Larcher committed
280
281
282
283
284
    training_set = SideSet(dataset_yaml, set_type="train", dataset_df=training_df)
    training_loader = DataLoader(training_set,
                                 batch_size=dataset_params["batch_size"],
                                 shuffle=True,
                                 num_workers=num_thread)
285

Anthony Larcher's avatar
Anthony Larcher committed
286
287
288
289
    validation_set = SideSet(dataset_yaml, set_type="validation", dataset_df=validation_df)
    validation_loader = DataLoader(validation_set,
                                   batch_size=dataset_params["batch_size"],
                                   num_workers=num_thread)
Anthony Larcher's avatar
Anthony Larcher committed
290

Anthony Larcher's avatar
Anthony Larcher committed
291
292
    print(f"Length of training: {len(training_set)}, length of validation: {len(validation_set)}")

Anthony Larcher's avatar
Anthony Larcher committed
293
294
295
296
297
    """
    Set the training options
    """
    if type(model) is Xtractor:
        optimizer = torch.optim.SGD([
Anthony Larcher's avatar
Anthony Larcher committed
298
299
300
301
302
303
            {'params': model.sequence_network.parameters(),
             'weight_decay': model.sequence_network_weight_decay},
            {'params': model.before_speaker_embedding.parameters(),
             'weight_decay': model.before_speaker_embedding_weight_decay},
            {'params': model.after_speaker_embedding.parameters(),
             'weight_decay': model.after_speaker_embedding_weight_decay}],
Anthony Larcher's avatar
Anthony Larcher committed
304
305
306
307
            lr=lr, momentum=0.9
        )
    else:
        optimizer = torch.optim.SGD([
Anthony Larcher's avatar
Anthony Larcher committed
308
309
310
311
312
313
            {'params': model.module.sequence_network.parameters(),
             'weight_decay': model.module.sequence_network_weight_decay},
            {'params': model.module.before_speaker_embedding.parameters(),
             'weight_decay': model.module.before_speaker_embedding_weight_decay},
            {'params': model.module.after_speaker_embedding.parameters(),
             'weight_decay': model.module.after_speaker_embedding_weight_decay}],
Anthony Larcher's avatar
Anthony Larcher committed
314
315
            lr=lr, momentum=0.9
        )
316
317
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min')

Anthony Larcher's avatar
Anthony Larcher committed
318
    for epoch in range(1, epochs + 1):
319
        # Process one epoch and return the current model
Anthony Larcher's avatar
Anthony Larcher committed
320
        model = train_epoch(model, epoch, training_loader, optimizer, dataset_params["log_interval"], device=device)
321
322

        # Add the cross validation here
Anthony Larcher's avatar
Anthony Larcher committed
323
        accuracy, val_loss = cross_validation(model, validation_loader, device=device)
324
325
326
327
328
        logging.critical("*** Cross validation accuracy = {} %".format(accuracy))

        # Decrease learning rate according to the scheduler policy
        scheduler.step(val_loss)

Anthony Larcher's avatar
Anthony Larcher committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        # remember best accuracy and save checkpoint
        is_best = accuracy > best_accuracy
        best_accuracy = max(accuracy, best_accuracy)

        save_checkpoint({
            'epoch': epoch,
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'accuracy': best_accuracy,
            'scheduler': scheduler
        }, is_best, filename = tmp_model_name+".pt", best_filename=output_model_name+'.pt')

        if is_best:
            best_accuracy_epoch = epoch
343

Anthony Larcher's avatar
Anthony Larcher committed
344
    logging.critical(f"Best accuracy {best_accuracy * 100.} obtained at epoch {best_accuracy_epoch}")
345

Anthony Larcher's avatar
Anthony Larcher committed
346
def train_epoch(model, epoch, training_loader, optimizer, log_interval, device):
347
348
349
350
351
352
353
354
355
356
357
358
359
    """

    :param model:
    :param epoch:
    :param train_seg_df:
    :param speaker_dict:
    :param optimizer:
    :param args:
    :return:
    """
    criterion = torch.nn.CrossEntropyLoss()

    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
360
    for batch_idx, (data, target) in enumerate(training_loader):
361
362
363
364
365
366
367
368
        target = target.squeeze()
        optimizer.zero_grad()
        output = model(data.to(device))
        loss = criterion(output, target.to(device))
        loss.backward()
        optimizer.step()
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()

Anthony Larcher's avatar
Anthony Larcher committed
369
        if batch_idx % log_interval == 0:
Anthony Larcher's avatar
Anthony Larcher committed
370
            batch_size = target.shape[0]
371
            logging.critical('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
Anthony Larcher's avatar
Anthony Larcher committed
372
373
                epoch, batch_idx + 1, training_loader.__len__(),
                       100. * batch_idx / training_loader.__len__(), loss.item(),
Anthony Larcher's avatar
Anthony Larcher committed
374
                       100.0 * accuracy.item() / ((batch_idx + 1) * batch_size)))
375
376
377
    return model


Anthony Larcher's avatar
Anthony Larcher committed
378
def cross_validation(model, validation_loader, device):
379
380
381
382
383
384
385
386
387
388
389
390
391
    """

    :param args:
    :param model:
    :param cv_seg_df:
    :return:
    """
    model.eval()
    model.to(device)

    accuracy = 0.0
    criterion = torch.nn.CrossEntropyLoss()

Anthony Larcher's avatar
Anthony Larcher committed
392
    for batch_idx, (data, target) in enumerate(validation_loader):
393
394
395
396
397
398
        target = target.squeeze()
        output = model(data.to(device))
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()

    loss = criterion(output, target.to(device))

Anthony Larcher's avatar
Anthony Larcher committed
399
    return 100. * accuracy.cpu().numpy() / ((batch_idx + 1) * batch_size), loss
400
401
402


def xtrain_asynchronous(args):
403
404
405
406
407
408
    """
    Initialize and train an x-vector in asynchronous manner

    :param args:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
409
    # Initialize a first model and save to disk
Anthony Larcher's avatar
Anthony Larcher committed
410
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
411
412
413
414
    current_model_file_name = "initial_model"
    torch.save(model.state_dict(), current_model_file_name)

    for epoch in range(1, args.epochs + 1):
415
        current_model_file_name = train_asynchronous_epoch(epoch, args, current_model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
416
417

        # Add the cross validation here
418
        accuracy = cross_asynchronous_validation(args, current_model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
419
        print("*** Cross validation accuracy = {} %".format(accuracy))
Anthony Larcher's avatar
Anthony Larcher committed
420

Anthony Larcher's avatar
Anthony Larcher committed
421
        # Decrease learning rate after every epoch
Anthony Larcher's avatar
sad    
Anthony Larcher committed
422
423
        args.lr = args.lr * 0.9
        print("        Decrease learning rate: {}".format(args.lr))
Anthony Larcher's avatar
Anthony Larcher committed
424

Anthony Larcher's avatar
Anthony Larcher committed
425

426
def train_asynchronous_epoch(epoch, args, initial_model_file_name):
427
428
429
430
431
432
433
434
    """
    Process one training epoch using an asynchronous implementation of the training

    :param epoch:
    :param args:
    :param initial_model_file_name:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    # Compute the megabatch number
    with open(args.batch_training_list, 'r') as fh:
        batch_file_list = [l.rstrip() for l in fh]

    # Shorten the batch_file_list to be a multiple of

    megabatch_number = len(batch_file_list) // (args.averaging_step * args.num_processes)
    megabatch_size = args.averaging_step * args.num_processes
    print("Epoch {}, number of megabatches = {}".format(epoch, megabatch_number))

    current_model = initial_model_file_name

    # For each sublist: run an asynchronous training and averaging of the model
    for ii in range(megabatch_number):
        print('Process megabatch [{} / {}]'.format(ii + 1, megabatch_number))
        current_model = train_asynchronous(epoch,
                                           args,
                                           current_model,
                                           batch_file_list[megabatch_size * ii: megabatch_size * (ii + 1)],
                                           ii,
455
                                           megabatch_number)  # function that split train, fuse and write the new model
Anthony Larcher's avatar
Anthony Larcher committed
456
457
458
    return current_model


459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
def train_asynchronous(epoch, args, initial_model_file_name, batch_file_list, megabatch_idx, megabatch_number):
    """
    Process one mega-batch of data asynchronously, average the model parameters across
    subrocesses and return the updated version of the model

    :param epoch:
    :param args:
    :param initial_model_file_name:
    :param batch_file_list:
    :param megabatch_idx:
    :param megabatch_number:
    :return:
    """
    # Split the list of files for each process
    sub_lists = split_file_list(batch_file_list, args.num_processes)

    #
    output_queue = mp.Queue()
    # output_queue = multiprocessing.Queue()

    processes = []
    for rank in range(args.num_processes):
481
        p = mp.Process(target=train_asynchronous_worker,
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
                       args=(rank, epoch, args, initial_model_file_name, sub_lists[rank], output_queue)
                       )
        # We first train the model across `num_processes` processes
        p.start()
        processes.append(p)

    # Average the models and write the new one to disk
    asynchronous_model = []
    for ii in range(args.num_processes):
        asynchronous_model.append(dict(output_queue.get()))

    for p in processes:
        p.join()

    av_model = Xtractor(args.class_number, args.dropout)
    tmp = av_model.state_dict()

    average_param = dict()
    for k in list(asynchronous_model[0].keys()):
        average_param[k] = asynchronous_model[0][k]

        for mod in asynchronous_model[1:]:
            average_param[k] += mod[k]

        if 'num_batches_tracked' not in k:
            tmp[k] = torch.FloatTensor(average_param[k] / len(asynchronous_model))

    # return the file name of the new model
    current_model_file_name = "{}/model_{}_epoch_{}_batch_{}".format(args.model_path, args.expe_id, epoch,
                                                                     megabatch_idx)
    torch.save(tmp, current_model_file_name)
    if megabatch_idx == megabatch_number:
        torch.save(tmp, "{}/model_{}_epoch_{}".format(args.model_path, args.expe_id, epoch))

    return current_model_file_name


519
def train_asynchronous_worker(rank, epoch, args, initial_model_file_name, batch_list, output_queue):
520
521
522
523
524
525
526
527
528
529
530
    """


    :param rank:
    :param epoch:
    :param args:
    :param initial_model_file_name:
    :param batch_list:
    :param output_queue:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
531
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
532
533
534
535
    model.load_state_dict(torch.load(initial_model_file_name))
    model.train()

    torch.manual_seed(args.seed + rank)
Anthony Larcher's avatar
Anthony Larcher committed
536
    train_loader = XvectorMultiDataset(batch_list, args.batch_path)
Anthony Larcher's avatar
Anthony Larcher committed
537
538
539
540
541
542
543
544
545
546
547
548

    device = torch.device("cuda:{}".format(rank))
    model.to(device)

    optimizer = optim.Adam([{'params': model.frame_conv0.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv1.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv2.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv3.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv4.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.seg_lin0.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin1.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin2.parameters(), 'weight_decay': args.l2_seg}
Anthony Larcher's avatar
Anthony Larcher committed
549
                            ], lr=args.lr)
Anthony Larcher's avatar
Anthony Larcher committed
550

Anthony Larcher's avatar
Anthony Larcher committed
551
    criterion = torch.nn.CrossEntropyLoss()
Anthony Larcher's avatar
Anthony Larcher committed
552
553
554
555
556
557
558
559

    accuracy = 0.0
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = model(data.to(device))
        loss = criterion(output, target.to(device))
        loss.backward()
        optimizer.step()
Anthony Larcher's avatar
Anthony Larcher committed
560

Anthony Larcher's avatar
Anthony Larcher committed
561
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
Anthony Larcher's avatar
Anthony Larcher committed
562

Anthony Larcher's avatar
Anthony Larcher committed
563
564
565
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                epoch, batch_idx + 1, train_loader.__len__(),
566
567
                100. * batch_idx / train_loader.__len__(), loss.item(),
                100.0 * accuracy.item() / ((batch_idx + 1) * args.batch_size)))
Anthony Larcher's avatar
Anthony Larcher committed
568

Anthony Larcher's avatar
Anthony Larcher committed
569
570
    model_param = OrderedDict()
    params = model.state_dict()
Anthony Larcher's avatar
Anthony Larcher committed
571

Anthony Larcher's avatar
Anthony Larcher committed
572
573
574
    for k in list(params.keys()):
        model_param[k] = params[k].cpu().detach().numpy()
    output_queue.put(model_param)
Anthony Larcher's avatar
Anthony Larcher committed
575
576


577
def cross_asynchronous_validation(args, current_model_file_name):
Anthony Larcher's avatar
Anthony Larcher committed
578
579
    """

Anthony Larcher's avatar
Anthony Larcher committed
580
581
    :param args:
    :param current_model_file_name:
Anthony Larcher's avatar
Anthony Larcher committed
582
583
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
584
    with open(args.cross_validation_list, 'r') as fh:
Anthony Larcher's avatar
Anthony Larcher committed
585
        cross_validation_list = [l.rstrip() for l in fh]
Anthony Larcher's avatar
Anthony Larcher committed
586
        sub_lists = split_file_list(cross_validation_list, args.num_processes)
Anthony Larcher's avatar
Anthony Larcher committed
587

Anthony Larcher's avatar
Anthony Larcher committed
588
589
    #
    output_queue = mp.Queue()
Anthony Larcher's avatar
Anthony Larcher committed
590

Anthony Larcher's avatar
Anthony Larcher committed
591
592
    processes = []
    for rank in range(args.num_processes):
593
        p = mp.Process(target=cv_asynchronous_worker,
Anthony Larcher's avatar
Anthony Larcher committed
594
595
596
597
598
                       args=(rank, args, current_model_file_name, sub_lists[rank], output_queue)
                       )
        # We first evaluate the model across `num_processes` processes
        p.start()
        processes.append(p)
Anthony Larcher's avatar
Anthony Larcher committed
599

Anthony Larcher's avatar
Anthony Larcher committed
600
601
602
603
    # Average the models and write the new one to disk
    result = []
    for ii in range(args.num_processes):
        result.append(output_queue.get())
Anthony Larcher's avatar
Anthony Larcher committed
604

Anthony Larcher's avatar
Anthony Larcher committed
605
606
    for p in processes:
        p.join()
Anthony Larcher's avatar
Anthony Larcher committed
607

Anthony Larcher's avatar
Anthony Larcher committed
608
609
610
    # Compute the global accuracy
    accuracy = 0.0
    total_batch_number = 0
Anthony Larcher's avatar
Anthony Larcher committed
611
    for bn, acc in result:
Anthony Larcher's avatar
Anthony Larcher committed
612
        accuracy += acc
Anthony Larcher's avatar
Anthony Larcher committed
613
614
        total_batch_number += bn
    
Anthony Larcher's avatar
Anthony Larcher committed
615
    return 100. * accuracy / (total_batch_number * args.batch_size)
Anthony Larcher's avatar
Anthony Larcher committed
616
617


618
def cv_asynchronous_worker(rank, args, current_model_file_name, batch_list, output_queue):
Anthony Larcher's avatar
Anthony Larcher committed
619
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
620
621
    model.load_state_dict(torch.load(current_model_file_name))
    model.eval()
Anthony Larcher's avatar
Anthony Larcher committed
622

Anthony Larcher's avatar
Anthony Larcher committed
623
    cv_loader = XvectorMultiDataset(batch_list, args.batch_path)
Anthony Larcher's avatar
Anthony Larcher committed
624

Anthony Larcher's avatar
Anthony Larcher committed
625
626
    device = torch.device("cuda:{}".format(rank))
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
627

Anthony Larcher's avatar
Anthony Larcher committed
628
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
629
    for batch_idx, (data, target) in enumerate(cv_loader):
Anthony Larcher's avatar
Anthony Larcher committed
630
631
        output = model(data.to(device))
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
Anthony Larcher's avatar
Anthony Larcher committed
632
    output_queue.put((cv_loader.__len__(), accuracy.cpu().numpy()))
Anthony Larcher's avatar
Anthony Larcher committed
633

Anthony Larcher's avatar
hot    
Anthony Larcher committed
634

635
def extract_idmap(args, device_id, segment_indices, fs_params, idmap_name, output_queue):
Anthony Larcher's avatar
Anthony Larcher committed
636
    """
Anthony Larcher's avatar
Anthony Larcher committed
637
638
    Function that takes a model and an idmap and extract all x-vectors based on this model
    and return a StatServer containing the x-vectors
Anthony Larcher's avatar
Anthony Larcher committed
639
    """
640
    # device = torch.device("cuda:{}".format(device_ID))
Anthony Larcher's avatar
Anthony Larcher committed
641
    device = torch.device('cpu')
Anthony Larcher's avatar
Anthony Larcher committed
642
643
644
645
646
647
648
649
650
651
652
653
654

    # Create the dataset
    tmp_idmap = IdMap(idmap_name)
    idmap = IdMap()
    idmap.leftids = tmp_idmap.leftids[segment_indices]
    idmap.rightids = tmp_idmap.rightids[segment_indices]
    idmap.start = tmp_idmap.start[segment_indices]
    idmap.stop = tmp_idmap.stop[segment_indices]

    segment_loader = StatDataset(idmap, fs_params)

    # Load the model
    model_file_name = '/'.join([args.model_path, args.model_name])
Anthony Larcher's avatar
Anthony Larcher committed
655
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
656
657
658
659
660
661
662
663
    model.load_state_dict(torch.load(model_file_name))
    model.eval()

    # Get the size of embeddings
    emb_a_size = model.seg_lin0.weight.data.shape[0]
    emb_b_size = model.seg_lin1.weight.data.shape[0]

    # Create a Tensor to store all x-vectors on the GPU
Anthony Larcher's avatar
Anthony Larcher committed
664
665
666
667
668
669
    emb_1 = numpy.zeros((idmap.leftids.shape[0], emb_a_size)).astype(numpy.float32)
    emb_2 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_3 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_4 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_5 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_6 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
Anthony Larcher's avatar
Anthony Larcher committed
670
671
672
673
674
675

    # Send on selected device
    model.to(device)

    # Loop to extract all x-vectors
    for idx, (model_id, segment_id, data) in enumerate(segment_loader):
Anthony Larcher's avatar
Anthony Larcher committed
676
        logging.critical('Process file {}, [{} / {}]'.format(segment_id, idx, segment_loader.__len__()))
Anthony Larcher's avatar
Anthony Larcher committed
677

Anthony Larcher's avatar
Anthony Larcher committed
678
679
680
        if list(data.shape)[2] < 20:
            pass
        else:
Anthony Larcher's avatar
Anthony Larcher committed
681
682
683
684
685
686
687
            seg_1, seg_2, seg_3, seg_4, seg_5, seg_6 = model.extract(data.to(device))
            emb_1[idx, :] = seg_1.detach().cpu()
            emb_2[idx, :] = seg_2.detach().cpu()
            emb_3[idx, :] = seg_3.detach().cpu()
            emb_4[idx, :] = seg_4.detach().cpu()
            emb_5[idx, :] = seg_5.detach().cpu()
            emb_6[idx, :] = seg_6.detach().cpu()
Anthony Larcher's avatar
Anthony Larcher committed
688

Anthony Larcher's avatar
Anthony Larcher committed
689
    output_queue.put((segment_indices, emb_1, emb_2, emb_3, emb_4, emb_5, emb_6))
Anthony Larcher's avatar
Anthony Larcher committed
690
691


Anthony Larcher's avatar
Anthony Larcher committed
692
def extract_parallel(args, fs_params):
693
694
695
696
697
698
    """

    :param args:
    :param fs_params:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
699
700
701
    emb_a_size = 512
    emb_b_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
702
    idmap = IdMap(args.idmap)
Anthony Larcher's avatar
Anthony Larcher committed
703

Anthony Larcher's avatar
Anthony Larcher committed
704
705
706
707
708
709
710
711
712
713
714
715
716
    x_server_1 = StatServer(idmap, 1, emb_a_size)
    x_server_2 = StatServer(idmap, 1, emb_b_size)
    x_server_3 = StatServer(idmap, 1, emb_b_size)
    x_server_4 = StatServer(idmap, 1, emb_b_size)
    x_server_5 = StatServer(idmap, 1, emb_b_size)
    x_server_6 = StatServer(idmap, 1, emb_b_size)

    x_server_1.stat0 = numpy.ones(x_server_1.stat0.shape)
    x_server_2.stat0 = numpy.ones(x_server_2.stat0.shape)
    x_server_3.stat0 = numpy.ones(x_server_3.stat0.shape)
    x_server_4.stat0 = numpy.ones(x_server_4.stat0.shape)
    x_server_5.stat0 = numpy.ones(x_server_5.stat0.shape)
    x_server_6.stat0 = numpy.ones(x_server_6.stat0.shape)
Anthony Larcher's avatar
Anthony Larcher committed
717
718
719

    # Split the indices
    mega_batch_size = idmap.leftids.shape[0] // args.num_processes
Anthony Larcher's avatar
Anthony Larcher committed
720
721
722

    logging.critical("Number of sessions to process: {}".format(idmap.leftids.shape[0]))

Anthony Larcher's avatar
Anthony Larcher committed
723
724
725
    segment_idx = []
    for ii in range(args.num_processes):
        segment_idx.append(
Anthony Larcher's avatar
Anthony Larcher committed
726
727
728
729
            numpy.arange(ii * mega_batch_size, numpy.min([(ii + 1) * mega_batch_size, idmap.leftids.shape[0]])))

    for idx, si in enumerate(segment_idx):
        logging.critical("Number of session on process {}: {}".format(idx, len(si)))
Anthony Larcher's avatar
Anthony Larcher committed
730
731
732
733
734
735
736

    # Extract x-vectors in parallel
    output_queue = mp.Queue()

    processes = []
    for rank in range(args.num_processes):
        p = mp.Process(target=extract_idmap,
Anthony Larcher's avatar
Anthony Larcher committed
737
                       args=(args, rank, segment_idx[rank], fs_params, args.idmap, output_queue)
Anthony Larcher's avatar
Anthony Larcher committed
738
739
740
741
742
743
744
                       )
        # We first train the model across `num_processes` processes
        p.start()
        processes.append(p)

    # Get the x-vectors and fill the StatServer
    for ii in range(args.num_processes):
Anthony Larcher's avatar
Anthony Larcher committed
745
746
747
748
749
750
751
        indices, seg_1, seg_2, seg_3, seg_4, seg_5, seg_6 = output_queue.get()
        x_server_1.stat1[indices, :] = seg_1
        x_server_2.stat1[indices, :] = seg_2
        x_server_3.stat1[indices, :] = seg_3
        x_server_4.stat1[indices, :] = seg_4
        x_server_5.stat1[indices, :] = seg_5
        x_server_6.stat1[indices, :] = seg_6
Anthony Larcher's avatar
Anthony Larcher committed
752
753
754
755

    for p in processes:
        p.join()

Anthony Larcher's avatar
Anthony Larcher committed
756
    return x_server_1, x_server_2, x_server_3, x_server_4, x_server_5, x_server_6
Anthony Larcher's avatar
Anthony Larcher committed
757
758


Anthony Larcher's avatar
Anthony Larcher committed
759
def extract_embeddings(args):
760
761
762
763
764
765
766
767
768
769
770
771
772
    """

    :param args:
    :param device_id:
    :param fs_params:
    :return:
    """
    device = torch.device("cuda:0")

    # Load the model
    logging.critical("*** Load model from = {}/{}".format(args.model_path, args.init_model_name))
    model_file_name = '/'.join([args.model_path, args.init_model_name])
    model = torch.load(model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
773
    model = torch.nn.DataParallel(model)
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
    model.eval()
    model.to(device)

    # Get the list of files
    total_seg_df = pickle.load(open(args.batch_training_list, "rb"))

    speaker_dict = {}
    tmp = total_seg_df.speaker_id.unique()
    tmp.sort()
    for idx, spk in enumerate(tmp):
        speaker_dict[spk] = idx

    extract_transform = [CMVN(), ]
    extract_set = VoxDataset(total_seg_df, speaker_dict, None, transform=transforms.Compose(extract_transform),
                             spec_aug_ratio=args.spec_aug, temp_aug_ratio=args.temp_aug)
    extract_loader = DataLoader(extract_set, batch_size=1, shuffle=False, num_workers=5)
Anthony Larcher's avatar
Anthony Larcher committed
790

791
    #CREER UN TENSEUR DE LA BONNE TAILLE POUR STOCKER LES X-VECTEURS
Anthony Larcher's avatar
Anthony Larcher committed
792

793
794
795
796
    for batch_idx, (data, target, _, __) in enumerate(extract_loader):
        print("extrait x-vecteur numero {}".format(batch_idx))
        embedding = model.produce_embeddings(data.to(device))
        #REMPLIR LE TENSEUR AVEC LE NOUVEAU X-VECTEUR
Anthony Larcher's avatar
Anthony Larcher committed
797

798
799
    #FAIRE CORRESPONDRE LES SPK_ID AVEC LES X-VECTEURS
    #RENVOYER LE TENSEUR DE X-VECTEURS SUR LE CPU OU L ECRTIRE SUR LE DISQUE