xvector.py 55.6 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
Anthony Larcher committed
25
Copyright 2014-2020 Yevhenii Prokopalo, Anthony Larcher
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
30

import pdb
import traceback
Anthony Larcher's avatar
Anthony Larcher committed
31
import logging
Anthony Larcher's avatar
Anthony Larcher committed
32
import matplotlib.pyplot as plt
Anthony Larcher's avatar
Anthony Larcher committed
33
import multiprocessing
Anthony Larcher's avatar
Anthony Larcher committed
34
import os
Anthony Larcher's avatar
Anthony Larcher committed
35
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
36
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
37
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
38
import shutil
Anthony Larcher's avatar
Anthony Larcher committed
39
import sys
40
import time
Anthony Larcher's avatar
Anthony Larcher committed
41
import torch
Anthony Larcher's avatar
Anthony Larcher committed
42
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
43
44
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
45
from torchvision import transforms
Anthony Larcher's avatar
Anthony Larcher committed
46
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
47
from .xsets import SideSet
Anthony Larcher's avatar
debug    
Anthony Larcher committed
48
from .xsets import FileSet
Anthony Larcher's avatar
Anthony Larcher committed
49
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
50
from .res_net import RawPreprocessor, ResBlockWFMS
Anthony Larcher's avatar
Anthony Larcher committed
51
52
from ..bosaris import IdMap
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
53
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
54
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
55
from .sincnet import SincNet
Anthony Larcher's avatar
Anthony Larcher committed
56
#from torch.utils.tensorboard import SummaryWriter
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
57
58
59
from .loss import ArcLinear
from .loss import ArcFace
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
60

Anthony Larcher's avatar
debug    
Anthony Larcher committed
61
import torch.autograd.profiler as profiler
Anthony Larcher's avatar
debug    
Anthony Larcher committed
62
from torch.nn.parallel import DistributedDataParallel as DDP
Anthony Larcher's avatar
ddp    
Anthony Larcher committed
63
64
65
66
import torch.distributed as dist
import torch.multiprocessing as mp


Anthony Larcher's avatar
Anthony Larcher committed
67
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
68

Anthony Larcher's avatar
Anthony Larcher committed
69
70
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
71
__copyright__ = "Copyright 2015-2020 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
72
73
74
75
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
76
77


Anthony Larcher's avatar
Anthony Larcher committed
78
79
logging.basicConfig(format='%(asctime)s %(message)s')

Anthony Larcher's avatar
Anthony Larcher committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

# Make PyTorch Deterministic
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
numpy.random.seed(0)


class GuruMeditation (torch.autograd.detect_anomaly):
    
    def __init__(self):
        super(GuruMeditation, self).__init__()

    def __enter__(self):
        super(GuruMeditation, self).__enter__()
        return self

    def __exit__(self, type, value, trace):
        super(GuruMeditation, self).__exit__()
        if isinstance(value, RuntimeError):
            traceback.print_tb(trace)
            halt(str(value))

    def halt(msg):
        print (msg)
        pdb.set_trace()


def select_n_random(data, labels, n=100):
    '''
    Selects n random datapoints and their corresponding labels from a dataset
    '''
    assert len(data) == len(labels)

    perm = torch.randperm(len(data))
    return data[perm][:n], labels[perm][:n]


def matplotlib_imshow(img, one_channel=False):
    if one_channel:
        img = img.mean(dim=0)
    img = img / 2 + 0.5     # unnormalize
    npimg = img.cpu().numpy()
    if one_channel:
        plt.imshow(npimg, cmap="Greys")
    else:
        plt.imshow(np.transpose(npimg, (1, 2, 0)))

def speech_to_probs(model, speech):
    '''
    Generates predictions and corresponding probabilities from a trained
    network and a list of images
    '''
    output = model(speech)
    # convert output probabilities to predicted class
    _, preds_tensor = torch.max(output, 1)
    preds = numpy.squeeze(preds_tensor.cpu().numpy())
    return preds, [torch.nn.functional.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]


def plot_classes_preds(model, speech, labels):
    '''
Anthony Larcher's avatar
Anthony Larcher committed
142

Anthony Larcher's avatar
Anthony Larcher committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    Generates matplotlib Figure using a trained network, along with images
    and labels from a batch, that shows the network's top prediction along
    with its probability, alongside the actual label, coloring this
    information based on whether the prediction was correct or not.
    Uses the "speech_to_probs" function.
    '''
    preds, probs = speech_to_probs(model, speech)
    # plot the images in the batch, along with predicted and true labels
    fig = plt.figure(figsize=(12, 48))
    for idx in numpy.arange(4):
         ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])
         #matplotlib_imshow(speech[idx], one_channel=True)
         ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
                                                           preds[idx],
                                                           probs[idx] * 100.0,
                                                           labels[idx]),
                                                           color=("green" if preds[idx]==labels[idx].item() else "red"))
    return fig



164
def get_lr(optimizer):
Anthony Larcher's avatar
Anthony Larcher committed
165
166
167
168
169
    """

    :param optimizer:
    :return:
    """
170
171
172
173
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
174
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
175
176
177
178
179
180
181
182
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
183
184
185
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
186

Anthony Larcher's avatar
Anthony Larcher committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
class MeanStdPooling(torch.nn.Module):
    """
    Mean and Standard deviation pooling
    """
    def __init__(self):
        """

        """
        super(MeanStdPooling, self).__init__()
        pass

    def forward(self, x):
        """

        :param x:
        :return:
        """
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        return torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
207

Anthony Larcher's avatar
Anthony Larcher committed
208

Anthony Larcher's avatar
Anthony Larcher committed
209
210
211
212
213
214
215
216
217
218
219
class GruPooling(torch.nn.Module):
    """

    """
    def __init__(self, input_size, gru_node, nb_gru_layer):
        """

        :param input_size:
        :param gru_node:
        :param nb_gru_layer:
        """
Anthony Larcher's avatar
Anthony Larcher committed
220
        super(GruPooling, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        self.lrelu_keras = torch.nn.LeakyReLU(negative_slope = 0.3)
        self.bn_before_gru = torch.nn.BatchNorm1d(num_features = input_size)
        self.gru = torch.nn.GRU(input_size = input_size,
                          hidden_size = gru_node,
                          num_layers = nb_gru_layer,
                          batch_first = True)

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = self.bn_before_gru(x)
        x = self.lrelu_keras(x)
        x = x.permute(0, 2, 1)  #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
        x = x[:,-1,:]

        return x

Anthony Larcher's avatar
Anthony Larcher committed
243

Anthony Larcher's avatar
Anthony Larcher committed
244
class Xtractor(torch.nn.Module):
245
246
247
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
248

Anthony Larcher's avatar
Anthony Larcher committed
249
250
251
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
252
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
253
254
255
                 norm_embedding=False,
                 aam_margin=0.5,
                 aam_s=0.5):
Anthony Larcher's avatar
Anthony Larcher committed
256
257
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
258
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
259
        """
Anthony Larcher's avatar
Anthony Larcher committed
260
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
261
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
262
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
263
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
264

Anthony Larcher's avatar
Anthony Larcher committed
265
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
266
267
268
269
270
271

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
272
            self.feature_size = 30
Anthony Larcher's avatar
Anthony Larcher committed
273
274
275
            self.activation = torch.nn.LeakyReLU(0.2)

            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
276

Anthony Larcher's avatar
xv    
Anthony Larcher committed
277
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
278
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
279
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
280
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
281
282
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
283
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
284
285
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
286
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
287
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
288
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
289
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
290
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
291
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
292
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
293
294
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
295
296
            self.stat_pooling = MeanStdPooling()

Anthony Larcher's avatar
xv    
Anthony Larcher committed
297
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
298
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
299
300
            ]))

Anthony Larcher's avatar
Anthony Larcher committed
301
302
            if self.loss == "aam":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
303
                  ("arclinear", ArcLinear(512, int(self.speaker_number), margin=aam_margin, s=aam_s))
Anthony Larcher's avatar
Anthony Larcher committed
304
305
306
307
                ]))
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
308
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
309
310
311
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
312
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
313
314
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
315

Anthony Larcher's avatar
Anthony Larcher committed
316
317
318
319
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002

Anthony Larcher's avatar
Anthony Larcher committed
320
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
321
322
323
324
325
326

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
327
328
329
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
330
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
331
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
332
333
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
351
352
353
354
355
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
356
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
357
358
359
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
360

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
361
362
363
364
365
366
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
367
        else:
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
368
369
370
371
372
373
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
374

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
375
            self.loss = cfg["training"]["loss"]
Anthony Larcher's avatar
Anthony Larcher committed
376
            if self.loss == "aam":
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
377
378
                self.aam_margin = cfg["training"]["aam_margin"]
                self.aam_s = cfg["training"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
379

Anthony Larcher's avatar
Anthony Larcher committed
380
381
382
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
383
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
384
385
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
386
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
387
388
389
390
391
392
393
394
395
396
397
398
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
399
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
400
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
401
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
402
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
403
404
405
406
407
408
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
409
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
410
411

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
412
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
413
            """
Anthony Larcher's avatar
Anthony Larcher committed
414
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
415
416
417
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
433
434
435
436
437
438
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
439
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
440
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
441
442
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
443
444
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
445
446
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
447
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
448
449
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
450
451
452
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
453
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
454
455
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
456
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
457
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
458

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
459
460
461
462
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
463
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
464
465
466
467
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
468
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
469

Anthony Larcher's avatar
Anthony Larcher committed
470
471
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
472
            """
Anthony Larcher's avatar
Anthony Larcher committed
473
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
474
            """
Anthony Larcher's avatar
Anthony Larcher committed
475
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
476
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
477
478
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
479
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
480
481
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
482
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
483
484
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
485
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
486
487

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
488
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
489

Anthony Larcher's avatar
Anthony Larcher committed
490
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
491
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
492
493

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
494
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
495

Anthony Larcher's avatar
Anthony Larcher committed
496
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
497
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
498

Anthony Larcher's avatar
Anthony Larcher committed
499
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
500
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
501
502
503
504
505
506
507
508
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
509
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
510
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
511

Anthony Larcher's avatar
Anthony Larcher committed
512
513
514
515
516
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
517

Anthony Larcher's avatar
Anthony Larcher committed
518
519
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
520

Anthony Larcher's avatar
Anthony Larcher committed
521
522
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
523

Anthony Larcher's avatar
Anthony Larcher committed
524
525
526
527
528
529
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
530
                self.norm_embedding = True
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
531
532
533
534
535
536
537
                #self.after_speaker_embedding = ArcLinear(input_size,
                #                                         self.speaker_number,
                #                                         margin=self.aam_margin,
                #                                         s=self.aam_s)
                self.after_speaker_embedding = ArcFace(embedding_size=input_size,
                                                       classnum=self.speaker_number,
                                                       s=64.,
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
538
                                                       m=0.5)
Anthony Larcher's avatar
Anthony Larcher committed
539

Anthony Larcher's avatar
Anthony Larcher committed
540
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
541

Anthony Larcher's avatar
Anthony Larcher committed
542

Anthony Larcher's avatar
Anthony Larcher committed
543
    def forward(self, x, is_eval=False, target=None):
544
545
546
        """

        :param x:
Anthony Larcher's avatar
Anthony Larcher committed
547
        :param is_eval:
548
549
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
550
551
552
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
553
        x = self.sequence_network(x)
554

Anthony Larcher's avatar
Anthony Larcher committed
555
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
556
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
557
558

        x = self.before_speaker_embedding(x)
559

Anthony Larcher's avatar
Anthony Larcher committed
560
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
561
            #x_norm = x.norm(p=2,dim=1, keepdim=True) / 10. # Why  10. ?
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
562
563
564
            #x_norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True, out=None, dtype=None)
            #x = torch.div(x, x_norm)
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
565

Anthony Larcher's avatar
Anthony Larcher committed
566
567
568
        if is_eval:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
569
570
        if self.loss == "cce":
            x = self.after_speaker_embedding(x)
Anthony Larcher's avatar
Anthony Larcher committed
571

Anthony Larcher's avatar
Anthony Larcher committed
572
573
574
575
576
577
        elif self.loss == "aam":
            if not is_eval:
                x = self.after_speaker_embedding(x,target=target)
            else:
                x = self.after_speaker_embedding(x, target=None)

Anthony Larcher's avatar
Anthony Larcher committed
578
        return x
Anthony Larcher's avatar
Anthony Larcher committed
579

580
581
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
582
583
584
585
586
587
588
589
590
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
591

Anthony Larcher's avatar
Anthony Larcher committed
592
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
593
           dataset_yaml,
Anthony Larcher's avatar
Anthony Larcher committed
594
595
           epochs=None,
           lr=None,
Anthony Larcher's avatar
Anthony Larcher committed
596
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
597
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
598
599
600
601
           loss=None,
           aam_margin=None,
           aam_s=None,
           patience=None,
Anthony Larcher's avatar
Anthony Larcher committed
602
           tmp_model_name=None,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
603
           best_model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
604
           multi_gpu=True,
605
           clipping=False,
Anthony Larcher's avatar
Anthony Larcher committed
606
           opt=None,
Anthony Larcher's avatar
Anthony Larcher committed
607
608
           reset_parts=[],
           freeze_parts=[],
Anthony Larcher's avatar
Anthony Larcher committed
609
610
611
612
           num_thread=None,
           write_batches_to_disk=False,
           load_batches_from_disk=False,
           tmp_batch_dir=None):
613
614
    """

Anthony Larcher's avatar
Anthony Larcher committed
615
616
617
618
619
620
    :param speaker_number:
    :param dataset_yaml:
    :param epochs:
    :param lr:
    :param model_yaml:
    :param model_name:
Anthony Larcher's avatar
Anthony Larcher committed
621
622
623
624
    :param loss:
    :param aam_margin:
    :param aam_s:
    :param patience:
Anthony Larcher's avatar
Anthony Larcher committed
625
626
627
628
    :param tmp_model_name:
    :param best_model_name:
    :param multi_gpu:
    :param clipping:
Anthony Larcher's avatar
Anthony Larcher committed
629
630
631
    :param opt:
    :param reset_parts:
    :param freeze_parts:
Anthony Larcher's avatar
Anthony Larcher committed
632
    :param num_thread:
633
634
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
635
636
637
638
    # Add for tensorboard
    # Writer will output to ./runs/ directory by default
    #writer = SummaryWriter("runs/xvectors_experiments_2")
    writer = None
Anthony Larcher's avatar
Anthony Larcher committed
639

Anthony Larcher's avatar
Anthony Larcher committed
640
641
642
    if write_batches_to_disk:
        load_batches_from_disk = True

Anthony Larcher's avatar
Anthony Larcher committed
643
644
645
    if num_thread is None:
        num_thread = multiprocessing.cpu_count()

Anthony Larcher's avatar
Anthony Larcher committed
646
    logging.critical(f"Use {num_thread} cpus")
Anthony Larcher's avatar
Anthony Larcher committed
647
    logging.critical(f"Start process at {time.strftime('%H:%M:%S', time.localtime())}")
648

Anthony Larcher's avatar
Anthony Larcher committed
649
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Anthony Larcher's avatar
Anthony Larcher committed
650
    # Start from scratch
Anthony Larcher's avatar
Anthony Larcher committed
651
    if model_name is None and model_yaml in ["xvector", "rawnet2"]:
Anthony Larcher's avatar
Anthony Larcher committed
652
        # Initialize a first model
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
653
        if model_yaml == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
654
            model = Xtractor(speaker_number, "xvector")
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
655
        elif model_yaml == "rawnet2":
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
656
            model = Xtractor(speaker_number, "rawnet2")
Anthony Larcher's avatar
Anthony Larcher committed
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
    else:
        with open(model_yaml, 'r') as fh:
            model_archi = yaml.load(fh, Loader=yaml.FullLoader)
            if epochs is None:
                epochs = model_archi["training"]["epochs"]
            if patience is None:
                patience = model_archi["training"]["patience"]
            if opt is None:
                opt = model_archi["training"]["opt"]
            if lr is None:
                lr = model_archi["training"]["lr"]
            if loss is None:
                loss = model_archi["training"]["loss"]
            if aam_margin is None and model_archi["training"]["loss"] == "aam":
                aam_margin = model_archi["training"]["aam_margin"]
            if aam_s is None and model_archi["training"]["loss"] == "aam":
                aam_s = model_archi["training"]["aam_s"]
            if tmp_model_name is None:
                tmp_model_name = model_archi["training"]["tmp_model_name"]
            if best_model_name is None:
                best_model_name = model_archi["training"]["best_model_name"]
            if multi_gpu is None:
                multi_gpu = model_archi["training"]["multi_gpu"]
            if clipping is None:
                clipping = model_archi["training"]["clipping"]

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
683
        if model_name is None:
Anthony Larcher's avatar
Anthony Larcher committed
684
685
686
            model = Xtractor(speaker_number, model_yaml)

         # If we start from an existing model
Anthony Larcher's avatar
Anthony Larcher committed
687
        else:
Anthony Larcher's avatar
Anthony Larcher committed
688
689
690
            # Load the model
            logging.critical(f"*** Load model from = {model_name}")
            checkpoint = torch.load(model_name)
Anthony Larcher's avatar
Anthony Larcher committed
691
            model = Xtractor(speaker_number, model_yaml)
Anthony Larcher's avatar
Anthony Larcher committed
692

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
693
694
            """
            Here we remove all layers that we don't want to reload
Anthony Larcher's avatar
Anthony Larcher committed
695
        
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
696
697
698
699
700
701
702
703
704
705
706
707
708
            """
            pretrained_dict = checkpoint["model_state_dict"]
            for part in reset_parts:
                pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

            new_model_dict = model.state_dict()
            new_model_dict.update(pretrained_dict)
            model.load_state_dict(new_model_dict)

        # Freeze required layers
        for name, param in model.named_parameters():
            if name.split(".")[0] in freeze_parts:
                param.requires_grad = False
Anthony Larcher's avatar
Anthony Larcher committed
709

Anthony Larcher's avatar
Anthony Larcher committed
710
    print(model)
Anthony Larcher's avatar
Anthony Larcher committed
711

Anthony Larcher's avatar
Anthony Larcher committed
712
    if torch.cuda.device_count() > 1 and multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
713
714
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)
Anthony Larcher's avatar
Anthony Larcher committed
715
        #model = DDP(model)
Anthony Larcher's avatar
Anthony Larcher committed
716
717
    else:
        print("Train on a single GPU")
Anthony Larcher's avatar
Anthony Larcher committed
718
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
719

Anthony Larcher's avatar
debug    
Anthony Larcher committed
720
721
722
723
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])

Anthony Larcher's avatar
Anthony Larcher committed
724
725
726
    if load_batches_from_disk:
        train_batch_fn_format = tmp_batch_dir + "/train/train_{}_batch.h5"
        val_batch_fn_format = tmp_batch_dir + "/val/val_{}_batch.h5"
727

Anthony Larcher's avatar
Anthony Larcher committed
728
729
730
731
732
733
734
    if not load_batches_from_disk or write_batches_to_disk:
        """
        Set the dataloaders according to the dataset_yaml
        
        First we load the dataframe from CSV file in order to split it for training and validation purpose
        Then we provide those two 
        """
Anthony Larcher's avatar
Anthony Larcher committed
735

Anthony Larcher's avatar
minor    
Anthony Larcher committed
736
        if write_batches_to_disk or dataset_params["batch_size"] > 1:
Anthony Larcher's avatar
Anthony Larcher committed
737
738
739
740
            output_format = "numpy"
        else:
            output_format = "pytorch"

Anthony Larcher's avatar
Anthony Larcher committed
741
742
743
744
745
746
        training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"])
        torch.manual_seed(dataset_params['seed'])
        training_set = SideSet(dataset_yaml,
                               set_type="train",
                               dataset_df=training_df,
                               chunk_per_segment=dataset_params['train']['chunk_per_segment'],
Anthony Larcher's avatar
Anthony Larcher committed
747
748
                               overlap=dataset_params['train']['overlap'],
                               output_format=output_format)
Anthony Larcher's avatar
Anthony Larcher committed
749

Anthony Larcher's avatar
Anthony Larcher committed
750
751
752
753
        validation_set = SideSet(dataset_yaml,
                                 set_type="validation",
                                 dataset_df=validation_df,
                                 output_format=output_format)
Anthony Larcher's avatar
Anthony Larcher committed
754
755


Anthony Larcher's avatar
Anthony Larcher committed
756
        if write_batches_to_disk:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
757
            logging.critical("Start writing batches on disk")
Anthony Larcher's avatar
Anthony Larcher committed
758
759
            training_set.write_to_disk(dataset_params["batch_size"], train_batch_fn_format, num_thread)
            validation_set.write_to_disk(dataset_params["batch_size"], val_batch_fn_format, num_thread)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
760
            logging.critical("---> Done")
Anthony Larcher's avatar
Anthony Larcher committed
761
762

    if load_batches_from_disk:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
        training_set = FileSet(train_batch_fn_format)
        validation_set = FileSet(train_batch_fn_format)
        batch_size = 1
    else:
        batch_size = dataset_params["batch_size"]


    print(f"Size of batches = {batch_size}")
    training_loader = DataLoader(training_set,
                                 batch_size=batch_size,
                                 shuffle=True,
                                 drop_last=True,
                                 pin_memory=True,
                                 num_workers=num_thread)

    validation_loader = DataLoader(validation_set,
                                   batch_size=batch_size,
                                   drop_last=True,
                                   pin_memory=True,
                                   num_workers=num_thread)

Anthony Larcher's avatar
Anthony Larcher committed
784

Anthony Larcher's avatar
Anthony Larcher committed
785
786
787
    """
    Set the training options
    """
Anthony Larcher's avatar
Anthony Larcher committed
788
    if opt == 'adam':
Anthony Larcher's avatar
Anthony Larcher committed
789
        _optimizer = torch.optim.Adam
Anthony Larcher's avatar
Anthony Larcher committed
790
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
791
792
    elif opt == 'rmsprop':
        _optimizer = torch.optim.RMSprop
Anthony Larcher's avatar
Anthony Larcher committed
793
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
794
795
796
    else: # opt == 'sgd'
        _optimizer = torch.optim.SGD
        _options = {'lr': lr, 'momentum': 0.9}
Anthony Larcher's avatar
Anthony Larcher committed
797

Anthony Larcher's avatar
debug    
Anthony Larcher committed
798
799
800
801
802
803
804
805
806
807
808
809
810
    #params = [
    #    {
    #        'params': [
    #            param for name, param in model.named_parameters() if 'bn' not in name
    #        ]
    #    },
    #    {
    #        'params': [
    #            param for name, param in model.named_parameters() if 'bn' in name
    #        ],
    #        'weight_decay': 0
    #    },
    #]
Anthony Larcher's avatar
Anthony Larcher committed
811

Anthony Larcher's avatar
Anthony Larcher committed
812
    param_list = []
Anthony Larcher's avatar
Anthony Larcher committed
813
    if type(model) is Xtractor:
Anthony Larcher's avatar
Anthony Larcher committed
814
815
816
817
818
819
820
        if model.preprocessor is not None:
            param_list.append({'params': model.preprocessor.parameters(), 'weight_decay': model.preprocessor_weight_decay})
        param_list.append({'params': model.sequence_network.parameters(), 'weight_decay': model.sequence_network_weight_decay})
        param_list.append({'params': model.stat_pooling.parameters(), 'weight_decay': model.stat_pooling_weight_decay})
        param_list.append({'params': model.before_speaker_embedding.parameters(), 'weight_decay': model.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.after_speaker_embedding.parameters(), 'weight_decay': model.after_speaker_embedding_weight_decay})

Anthony Larcher's avatar
Anthony Larcher committed
821
    else:
Anthony Larcher's avatar
Anthony Larcher committed
822
823
824
825
826
827
828
829
830
        if model.module.preprocessor is not None:
            param_list.append({'params': model.module.preprocessor.parameters(), 'weight_decay': model.module.preprocessor_weight_decay})
        param_list.append({'params': model.module.sequence_network.parameters(), 'weight_decay': model.module.sequence_network_weight_decay})
        param_list.append({'params': model.module.stat_pooling.parameters(), 'weight_decay': model.module.stat_pooling_weight_decay})
        param_list.append({'params': model.module.before_speaker_embedding.parameters(), 'weight_decay': model.module.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.module.after_speaker_embedding.parameters(), 'weight_decay': model.module.after_speaker_embedding_weight_decay})


    optimizer = _optimizer(param_list, **_options)
Anthony Larcher's avatar
Anthony Larcher committed
831
832
833
834
835
836

    #optimizer = torch.optim.SGD(params,
    #                            lr=lr,
    #                            momentum=0.9,
    #                            weight_decay=0.0005)
    #print(f"Learning rate = {lr}")
Anthony Larcher's avatar
Anthony Larcher committed
837

Anthony Larcher's avatar
Anthony Larcher committed
838
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', verbose=True)
839

Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
840
    best_accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
841
    best_accuracy_epoch = 1
Anthony Larcher's avatar
Anthony Larcher committed
842
    curr_patience = patience
Anthony Larcher's avatar
Anthony Larcher committed
843
    for epoch in range(1, epochs + 1):
844
        # Process one epoch and return the current model
Anthony Larcher's avatar
Anthony Larcher committed
845
846
847
        if curr_patience == 0:
            print(f"Stopping at epoch {epoch} for cause of patience")
            break
Anthony Larcher's avatar
Anthony Larcher committed
848
849
850
851
852
853
        model = train_epoch(model,
                            epoch,
                            training_loader,
                            optimizer,
                            dataset_params["log_interval"],
                            device=device,
Anthony Larcher's avatar
Anthony Larcher committed
854
855
                            clipping=clipping,
                            tb_writer=writer)
856
857

        # Add the cross validation here
Anthony Larcher's avatar
Anthony Larcher committed
858
        accuracy, val_loss = cross_validation(model, validation_loader, device=device)
Anthony Larcher's avatar
Anthony Larcher committed
859
        logging.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Cross validation accuracy = {accuracy} %")
860
861
862
863

        # Decrease learning rate according to the scheduler policy
        scheduler.step(val_loss)

Anthony Larcher's avatar
Anthony Larcher committed
864
865
866
867
        # remember best accuracy and save checkpoint
        is_best = accuracy > best_accuracy
        best_accuracy = max(accuracy, best_accuracy)

Anthony Larcher's avatar
Anthony Larcher committed
868
869
870
871
872
873
        if type(model) is Xtractor:
            save_checkpoint({
                'epoch': epoch,
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'accuracy': best_accuracy,
Anthony Larcher's avatar
Anthony Larcher committed
874
875
                'scheduler': scheduler,
                'speaker_number' : speaker_number,
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
876
                'model_archi': model_archi
Anthony Larcher's avatar
Anthony Larcher committed
877
878
879
880
881
882
883
            }, is_best, filename=tmp_model_name+".pt", best_filename=best_model_name+'.pt')
        else:
            save_checkpoint({
                'epoch': epoch,
                'model_state_dict': model.module.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'accuracy': best_accuracy,
Anthony Larcher's avatar
Anthony Larcher committed
884
885
                'scheduler': scheduler,
                'speaker_number': speaker_number,
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
886
                'model_archi': model_archi
Anthony Larcher's avatar
Anthony Larcher committed
887
            }, is_best, filename=tmp_model_name+".pt", best_filename=best_model_name+'.pt')
Anthony Larcher's avatar
Anthony Larcher committed
888
889
890

        if is_best:
            best_accuracy_epoch = epoch
Anthony Larcher's avatar
Anthony Larcher committed
891
892
893
            curr_patience = patience
        else:
            curr_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
894
    #writer.close()
895

896
897
898
    for ii in range(torch.cuda.device_count()):
        print(torch.cuda.memory_summary(ii))

Anthony Larcher's avatar
Anthony Larcher committed
899
    logging.critical(f"Best accuracy {best_accuracy * 100.} obtained at epoch {best_accuracy_epoch}")
900

Anthony Larcher's avatar
Anthony Larcher committed
901
def train_epoch(model, epoch, training_loader, optimizer, log_interval, device, clipping=False, tb_writer=None):
902
903
904
905
    """

    :param model:
    :param epoch:
Anthony Larcher's avatar
Anthony Larcher committed
906
    :param training_loader:
907
    :param optimizer:
Anthony Larcher's avatar
Anthony Larcher committed
908
909
910
    :param log_interval:
    :param device:
    :param clipping:
911
912
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
913
    model.train()
Anthony Larcher's avatar
Anthony Larcher committed
914
    criterion = torch.nn.CrossEntropyLoss(reduction='mean')
915

Anthony Larcher's avatar
Anthony Larcher committed
916
917
918
919
920
    if isinstance(model, Xtractor):
        loss_criteria = model.loss
    else:
        loss_criteria = model.module.loss

921
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
922
    running_loss = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
923
    for batch_idx, (data, target) in enumerate(training_loader):
Anthony Larcher's avatar
debug    
Anthony Larcher committed
924
        data = data.squeeze().to(device)
925
        target = target.squeeze()
Anthony Larcher's avatar
Anthony Larcher committed
926
        target = target.to(device)
927
        optimizer.zero_grad()
Anthony Larcher's avatar
Anthony Larcher committed
928
929

        if loss_criteria == 'aam':
Anthony Larcher's avatar
debug    
Anthony Larcher committed
930
            output = model(data, target=target)
Anthony Larcher's avatar
Anthony Larcher committed
931
        else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
932
            output = model(data, target=None)
Anthony Larcher's avatar
Anthony Larcher committed
933

Anthony Larcher's avatar
Anthony Larcher committed
934
        #with GuruMeditation():
Anthony Larcher's avatar
Anthony Larcher committed
935
        loss = criterion(output, target)
Anthony Larcher's avatar
Anthony Larcher committed
936
937
938
939
940
941
942
943
        if not torch.isnan(loss):
            loss.backward()
            if clipping:
                torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
            running_loss += loss.item()
            optimizer.step()

            running_loss += loss.item()
Anthony Larcher's avatar
Anthony Larcher committed
944
            accuracy += (torch.argmax(output.data, 1) == target).sum()
Anthony Larcher's avatar
Anthony Larcher committed
945
946
            if batch_idx % log_interval == 0:
                batch_size = target.shape[0]
Anthony Larcher's avatar
debug    
Anthony Larcher committed
947
948
                logging.critical('{}, Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                    time.strftime('%H:%M:%S', time.localtime()),
Anthony Larcher's avatar
Anthony Larcher committed
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
                    epoch, batch_idx + 1, training_loader.__len__(),
                    100. * batch_idx / training_loader.__len__(), loss.item(),
                    100.0 * accuracy.item() / ((batch_idx + 1) * batch_size)))
                #tb_writer.add_scalar('training loss',
                #                     running_loss / log_interval,
                #                     epoch * len(training_loader) + batch_idx)
                #tb_writer.add_scalar('training_accuracy',
                #                      100.0 * accuracy.item() / ((batch_idx + 1) * batch_size),
                #                      epoch * len(training_loader) + batch_idx)

                # ...log a Matplotlib Figure showing the model's predictions on a
                # random mini-batch
                #tb_writer.add_figure('predictions vs. actuals',
                #                     plot_classes_preds(model, data.to(device), target.to(device)),
                #                     global_step=epoch * len(training_loader) + batch_idx)

965
966
967
968
969
970
971
972
973
974
975
976
977
        else:
            save_checkpoint({
                             'epoch': epoch,
                             'model_state_dict': model.state_dict(),
                             'optimizer_state_dict': optimizer.state_dict(),
                             'accuracy': 0.0,
                             'scheduler': 0.0
                             }, False, filename="model_loss_NAN.pt", best_filename='toto.pt')
            with open("batch_loss_NAN.pkl", "wb") as fh:
                pickle.dump(data.cpu(), fh)
            import sys
            sys.exit()
        running_loss = 0.0
978
979
980
    return model


Anthony Larcher's avatar
Anthony Larcher committed
981
def cross_validation(model, validation_loader, device):
982
983
984
    """

    :param model:
Anthony Larcher's avatar
Anthony Larcher committed
985
986
    :param validation_loader:
    :param device:
987
988
989
990
    :return:
    """
    model.eval()

Anthony Larcher's avatar
Anthony Larcher committed
991
992
993
994
995
    if isinstance(model, Xtractor):
        loss_criteria = model.loss
    else:
        loss_criteria = model.module.loss

996
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
997
    loss = 0.0
998
    criterion = torch.nn.CrossEntropyLoss()
Anthony Larcher's avatar
Anthony Larcher committed
999
1000
    with torch.no_grad():
        for batch_idx, (data, target) in enumerate(validation_loader):
For faster browsing, not all history is shown. View entire blame