xvector.py 73.2 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
25
Copyright 2014-2021 Anthony Larcher, Yevhenii Prokopalo
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
30

import pdb
import traceback
Anthony Larcher's avatar
Anthony Larcher committed
31
import logging
Anthony Larcher's avatar
debug    
Anthony Larcher committed
32
import math
Anthony Larcher's avatar
Anthony Larcher committed
33
import os
Anthony Larcher's avatar
Anthony Larcher committed
34
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
35
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
36
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
37
import shutil
Anthony Larcher's avatar
Anthony Larcher committed
38
import sys
39
import time
Anthony Larcher's avatar
Anthony Larcher committed
40
import torch
Anthony Larcher's avatar
Anthony Larcher committed
41
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
42
43
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
44
from torchvision import transforms
Anthony Larcher's avatar
Anthony Larcher committed
45
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
46
from .xsets import SideSet
Anthony Larcher's avatar
debug    
Anthony Larcher committed
47
from .xsets import FileSet
Anthony Larcher's avatar
Anthony Larcher committed
48
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
49
from .xsets import IdMapSet_per_speaker
Anthony Larcher's avatar
debug    
Anthony Larcher committed
50
from .xsets import SpkSet
Anthony Larcher's avatar
Anthony Larcher committed
51
from .res_net import RawPreprocessor, ResBlockWFMS, ResBlock, PreResNet34
Anthony Larcher's avatar
Anthony Larcher committed
52
from ..bosaris import IdMap
Anthony Larcher's avatar
Anthony Larcher committed
53
54
55
56
from ..bosaris import Key
from ..bosaris import Ndx
from ..bosaris.detplot import rocch
from ..bosaris.detplot import rocch2eer
Anthony Larcher's avatar
Anthony Larcher committed
57
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
58
from ..iv_scoring import cosine_scoring
Anthony Larcher's avatar
Anthony Larcher committed
59
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
60
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
61
from .sincnet import SincNet
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
62
63
64
from .loss import ArcLinear
from .loss import ArcFace
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
65
from .loss import ArcMarginProduct
Anthony Larcher's avatar
Anthony Larcher committed
66

Anthony Larcher's avatar
ddp    
Anthony Larcher committed
67

Anthony Larcher's avatar
Anthony Larcher committed
68
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
69

Anthony Larcher's avatar
Anthony Larcher committed
70
71
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
72
__copyright__ = "Copyright 2015-2021 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
73
74
75
76
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
77
78


Anthony Larcher's avatar
Anthony Larcher committed
79
80
logging.basicConfig(format='%(asctime)s %(message)s')

Anthony Larcher's avatar
Anthony Larcher committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

# Make PyTorch Deterministic
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
numpy.random.seed(0)


class GuruMeditation (torch.autograd.detect_anomaly):
    
    def __init__(self):
        super(GuruMeditation, self).__init__()

    def __enter__(self):
        super(GuruMeditation, self).__enter__()
        return self

    def __exit__(self, type, value, trace):
        super(GuruMeditation, self).__exit__()
        if isinstance(value, RuntimeError):
            traceback.print_tb(trace)
Anthony Larcher's avatar
Anthony Larcher committed
102
            self.halt(str(value))
Anthony Larcher's avatar
Anthony Larcher committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

    def halt(msg):
        print (msg)
        pdb.set_trace()


def select_n_random(data, labels, n=100):
    '''
    Selects n random datapoints and their corresponding labels from a dataset
    '''
    assert len(data) == len(labels)

    perm = torch.randperm(len(data))
    return data[perm][:n], labels[perm][:n]


def matplotlib_imshow(img, one_channel=False):
    if one_channel:
        img = img.mean(dim=0)
    img = img / 2 + 0.5     # unnormalize
    npimg = img.cpu().numpy()
    if one_channel:
        plt.imshow(npimg, cmap="Greys")
    else:
Anthony Larcher's avatar
Anthony Larcher committed
127
        plt.imshow(numpy.transpose(npimg, (1, 2, 0)))
Anthony Larcher's avatar
Anthony Larcher committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

def speech_to_probs(model, speech):
    '''
    Generates predictions and corresponding probabilities from a trained
    network and a list of images
    '''
    output = model(speech)
    # convert output probabilities to predicted class
    _, preds_tensor = torch.max(output, 1)
    preds = numpy.squeeze(preds_tensor.cpu().numpy())
    return preds, [torch.nn.functional.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]


def plot_classes_preds(model, speech, labels):
    '''
Anthony Larcher's avatar
Anthony Larcher committed
143

Anthony Larcher's avatar
Anthony Larcher committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    Generates matplotlib Figure using a trained network, along with images
    and labels from a batch, that shows the network's top prediction along
    with its probability, alongside the actual label, coloring this
    information based on whether the prediction was correct or not.
    Uses the "speech_to_probs" function.
    '''
    preds, probs = speech_to_probs(model, speech)
    # plot the images in the batch, along with predicted and true labels
    fig = plt.figure(figsize=(12, 48))
    for idx in numpy.arange(4):
         ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])
         #matplotlib_imshow(speech[idx], one_channel=True)
         ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
                                                           preds[idx],
                                                           probs[idx] * 100.0,
                                                           labels[idx]),
                                                           color=("green" if preds[idx]==labels[idx].item() else "red"))
    return fig


Anthony Larcher's avatar
debug    
Anthony Larcher committed
164
165
166
def test_metrics(model,
                 device,
                 speaker_number):
Anthony Larcher's avatar
Anthony Larcher committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
Anthony Larcher's avatar
debug    
Anthony Larcher committed
183
184
185
    idmap_test_filename = 'h5f/idmap_test.h5'
    ndx_test_filename = 'h5f/ndx_test.h5'
    key_test_filename = 'h5f/key_test.h5'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
186
    data_root_name='/lium/corpus/base/voxceleb1/test/wav'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
187
188
189

    transform_pipeline = dict()
    mfcc_config = dict()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
190
191
    mfcc_config['nb_filters'] = 81
    mfcc_config['nb_ceps'] = 80
Anthony Larcher's avatar
debug    
Anthony Larcher committed
192
193
194
195
    mfcc_config['lowfreq'] = 133.333
    mfcc_config['maxfreq'] = 6855.4976
    mfcc_config['win_time'] = 0.025
    mfcc_config['shift'] = 0.01
Anthony Larcher's avatar
debug    
Anthony Larcher committed
196
    mfcc_config['n_fft'] = 2048
Anthony Larcher's avatar
debug    
Anthony Larcher committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    transform_pipeline['MFCC'] = mfcc_config
    transform_pipeline['CMVN'] = {}

    xv_stat = extract_embeddings(idmap_name=idmap_test_filename,
                                 speaker_number=speaker_number,
                                 model_filename=model,
                                 data_root_name=data_root_name,
                                 device=device,
                                 transform_pipeline=transform_pipeline)

    scores = cosine_scoring(xv_stat,
                            xv_stat,
                            Ndx(ndx_test_filename),
                            wccn=None,
                            check_missing=True)

    tar, non = scores.get_tar_non(Key(key_test_filename))

    test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))

    return test_eer
Anthony Larcher's avatar
Anthony Larcher committed
218

Anthony Larcher's avatar
Anthony Larcher committed
219

220
def get_lr(optimizer):
Anthony Larcher's avatar
Anthony Larcher committed
221
222
223
224
225
    """

    :param optimizer:
    :return:
    """
226
227
228
229
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
230
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
231
232
233
234
235
236
237
238
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
239
240
241
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
242

Anthony Larcher's avatar
Anthony Larcher committed
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
class MeanStdPooling(torch.nn.Module):
    """
    Mean and Standard deviation pooling
    """
    def __init__(self):
        """

        """
        super(MeanStdPooling, self).__init__()
        pass

    def forward(self, x):
        """

        :param x:
        :return:
        """
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        return torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
263

Anthony Larcher's avatar
Anthony Larcher committed
264

Anthony Larcher's avatar
Anthony Larcher committed
265
266
267
268
269
270
271
272
273
274
275
class GruPooling(torch.nn.Module):
    """

    """
    def __init__(self, input_size, gru_node, nb_gru_layer):
        """

        :param input_size:
        :param gru_node:
        :param nb_gru_layer:
        """
Anthony Larcher's avatar
Anthony Larcher committed
276
        super(GruPooling, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        self.lrelu_keras = torch.nn.LeakyReLU(negative_slope = 0.3)
        self.bn_before_gru = torch.nn.BatchNorm1d(num_features = input_size)
        self.gru = torch.nn.GRU(input_size = input_size,
                          hidden_size = gru_node,
                          num_layers = nb_gru_layer,
                          batch_first = True)

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = self.bn_before_gru(x)
        x = self.lrelu_keras(x)
        x = x.permute(0, 2, 1)  #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
        x = x[:,-1,:]

        return x

Anthony Larcher's avatar
Anthony Larcher committed
299

Anthony Larcher's avatar
Anthony Larcher committed
300
class Xtractor(torch.nn.Module):
301
302
303
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
304

Anthony Larcher's avatar
Anthony Larcher committed
305
306
307
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
308
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
309
310
311
                 norm_embedding=False,
                 aam_margin=0.5,
                 aam_s=0.5):
Anthony Larcher's avatar
Anthony Larcher committed
312
313
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
314
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
315
        """
Anthony Larcher's avatar
Anthony Larcher committed
316
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
317
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
318
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
319
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
320

Anthony Larcher's avatar
Anthony Larcher committed
321
322
        print(f"Speaker number : {self.speaker_number}")

Anthony Larcher's avatar
Anthony Larcher committed
323
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
324

Anthony Larcher's avatar
Anthony Larcher committed
325
326
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
327
328
329
330
331
            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
332
            self.feature_size = 30
Anthony Larcher's avatar
Anthony Larcher committed
333
334
335
            self.activation = torch.nn.LeakyReLU(0.2)

            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
336

Anthony Larcher's avatar
xv    
Anthony Larcher committed
337
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
338
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
339
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
340
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
341
342
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
343
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
344
345
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
346
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
347
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
348
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
349
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
350
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
351
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
352
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
353
354
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
355
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
356
            self.stat_pooling_weight_decay = 0
Anthony Larcher's avatar
xv    
Anthony Larcher committed
357
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
358
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
359
360
            ]))

361
362
            self.embedding_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
363
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
364
365
366
367
368
                self.after_speaker_embedding = ArcMarginProduct(512,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)
Anthony Larcher's avatar
Anthony Larcher committed
369
370
371
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
372
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
373
374
375
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
376
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
377
378
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
379

Anthony Larcher's avatar
Anthony Larcher committed
380
381
382
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002
383
            self.embedding_size = 512
Anthony Larcher's avatar
Anthony Larcher committed
384

Anthony Larcher's avatar
Anthony Larcher committed
385
        elif model_archi == "resnet34":
Anthony Larcher's avatar
Anthony Larcher committed
386
            self.input_nbdim = 3
Anthony Larcher's avatar
Anthony Larcher committed
387
388
389
390
391
392
393
394
395
            self.preprocessor = None
            self.sequence_network = PreResNet34()

            self.before_speaker_embedding = torch.nn.Linear(in_features = 5120,
                                                            out_features = 256)

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

396
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
397

398
            self.loss = "aam"
Anthony Larcher's avatar
Anthony Larcher committed
399
400
401
402
403
            self.after_speaker_embedding = ArcMarginProduct(256,
                                                            int(self.speaker_number),
                                                            s = 30.0,
                                                            m = 0.50,
                                                            easy_margin = False)
Anthony Larcher's avatar
Anthony Larcher committed
404
405
406
407
408
409
410
411

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00


Anthony Larcher's avatar
Anthony Larcher committed
412
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
413
414
415
416
417
418

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
419
420
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
421
422
423
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
424
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
425
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
426
427
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
445
446
447
448
449
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
450
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
451
452
453
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
454

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
455
456
457
458
459
460
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
461
        else:
Anthony Larcher's avatar
Anthony Larcher committed
462
463
            is_first_resblock = True

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
464
465
466
467
468
469
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
470

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
471
            self.loss = cfg["training"]["loss"]
Anthony Larcher's avatar
Anthony Larcher committed
472
            if self.loss == "aam":
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
473
474
                self.aam_margin = cfg["training"]["aam_margin"]
                self.aam_s = cfg["training"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
475

Anthony Larcher's avatar
Anthony Larcher committed
476
477
478
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
479
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
480
481
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
482
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
483
484
485
486
487
488
489
490
491
492
493
494
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
495
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
496
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
497
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
498
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
499
500
501
502
503
504
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
505
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
506
507

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
508
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
509
            """
Anthony Larcher's avatar
Anthony Larcher committed
510
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
511
512
513
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
514
515
516
517
518
519
520
521
522
523
524
525
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

Anthony Larcher's avatar
Anthony Larcher committed
526
527
528
529
530
            if cfg["segmental"][list(cfg["segmental"].keys())[0]].startswith("conv2D"):
                self.input_nbdim = 3
            elif cfg["segmental"][list(cfg["segmental"].keys())[0]].startswith("conv"):
                self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
531
532
533
            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
534
535
536
537
538
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

Anthony Larcher's avatar
Anthony Larcher committed
539
540
541
542
543
                elif k.startswith("conv2D"):
                    segmental_layers.append((k, torch.nn.Conv2d(in_channels=1,
                                                                out_channels=entry_conv_out_channels,
                                                                kernel_size=entry_conv_kernel_size,
                                                                padding=3,
Anthony Larcher's avatar
Anthony Larcher committed
544
                                                                stride=1)))
Anthony Larcher's avatar
Anthony Larcher committed
545

Anthony Larcher's avatar
Anthony Larcher committed
546
                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
547
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
548
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
549
550
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
551
552
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
553
554
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
555
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
556
557
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
558
559
560
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
561
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
562
563
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
564
565
566
567
568
569
                elif k.startswith('resblock'):
                    segmental_layers.append((ResBlock(cfg["segmental"][k]["input_channel"],
                                                      cfg["segmental"][k]["output_channel"],
                                                      is_first_resblock)))
                    is_first_resblock = False

Anthony Larcher's avatar
Anthony Larcher committed
570
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
571
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
572

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
573
574
575
576
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
577
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
578
579
580
581
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
582
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
583

Anthony Larcher's avatar
Anthony Larcher committed
584
585
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
586
            """
Anthony Larcher's avatar
Anthony Larcher committed
587
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
588
            """
Anthony Larcher's avatar
Anthony Larcher committed
589
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
590
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
591
592
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
593
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
594
595
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
596
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
597
598
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
599
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
600
601

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
602
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
603

Anthony Larcher's avatar
Anthony Larcher committed
604
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
605
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
606
607

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
608
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
609

Anthony Larcher's avatar
Anthony Larcher committed
610
            self.embedding_size = input_size
Anthony Larcher's avatar
Anthony Larcher committed
611
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
612
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
613

Anthony Larcher's avatar
Anthony Larcher committed
614
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
615
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
616
617
618
619
620
621
622
623
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
624
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
625
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
626

Anthony Larcher's avatar
Anthony Larcher committed
627
628
629
630
631
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
632

Anthony Larcher's avatar
Anthony Larcher committed
633
634
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
635

Anthony Larcher's avatar
Anthony Larcher committed
636
637
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
638

Anthony Larcher's avatar
Anthony Larcher committed
639
640
641
642
643
644
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
645
646
647
648
649
650
651
                self.norm_embedding = True
                self.after_speaker_embedding = ArcMarginProduct(input_size,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)

Anthony Larcher's avatar
arcface    
Anthony Larcher committed
652
653
654
655
                #self.after_speaker_embedding = ArcLinear(input_size,
                #                                         self.speaker_number,
                #                                         margin=self.aam_margin,
                #                                         s=self.aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
656
657
658
659
                #self.after_speaker_embedding = ArcFace(embedding_size=input_size,
                #                                       classnum=self.speaker_number,
                #                                       s=64.,
                #                                       m=0.5)
Anthony Larcher's avatar
Anthony Larcher committed
660

Anthony Larcher's avatar
Anthony Larcher committed
661
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
662

Anthony Larcher's avatar
Anthony Larcher committed
663

664
    def forward(self, x, is_eval=False, target=None, extract_after_pooling=False):
665
666
667
        """

        :param x:
668
        :param is_eval: False for training
669
670
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
671
672
673
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
674
        x = self.sequence_network(x)
675

Anthony Larcher's avatar
Anthony Larcher committed
676
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
677
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
678

679
680
681
        if extract_after_pooling:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
682
        x = self.before_speaker_embedding(x)
683

Anthony Larcher's avatar
Anthony Larcher committed
684
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
685
            #x_norm = x.norm(p=2,dim=1, keepdim=True) / 10. # Why  10. ?
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
686
687
688
            #x_norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True, out=None, dtype=None)
            #x = torch.div(x, x_norm)
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
689

Anthony Larcher's avatar
Anthony Larcher committed
690
        if self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
691
692
693
694
            if is_eval:
                return self.after_speaker_embedding(x), x
            else:
                return self.after_speaker_embedding(x)
Anthony Larcher's avatar
Anthony Larcher committed
695

Anthony Larcher's avatar
Anthony Larcher committed
696
697
        elif self.loss == "aam":
            if not is_eval:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
698
                x = self.after_speaker_embedding(torch.nn.functional.normalize(x, dim=1), target=target), torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
699
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
700
                x = self.after_speaker_embedding(torch.nn.functional.normalize(x, dim=1), target=None), torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
701

Anthony Larcher's avatar
Anthony Larcher committed
702
        return x
Anthony Larcher's avatar
Anthony Larcher committed
703

704
705
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
706
707
708
709
710
711
712
713
714
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
715

Anthony Larcher's avatar
Anthony Larcher committed
716
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
717
           dataset_yaml,
Anthony Larcher's avatar
Anthony Larcher committed
718
719
           epochs=None,
           lr=None,
Anthony Larcher's avatar
Anthony Larcher committed
720
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
721
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
722
723
724
725
           loss=None,
           aam_margin=None,
           aam_s=None,
           patience=None,
Anthony Larcher's avatar
Anthony Larcher committed
726
           tmp_model_name=None,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
727
           best_model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
728
           multi_gpu=True,
729
           clipping=False,
Anthony Larcher's avatar
Anthony Larcher committed
730
           opt=None,
Anthony Larcher's avatar
Anthony Larcher committed
731
732
           reset_parts=[],
           freeze_parts=[],
Anthony Larcher's avatar
Anthony Larcher committed
733
734
735
736
           num_thread=None,
           write_batches_to_disk=False,
           load_batches_from_disk=False,
           tmp_batch_dir=None):
737
738
    """

Anthony Larcher's avatar
Anthony Larcher committed
739
740
741
742
743
744
    :param speaker_number:
    :param dataset_yaml:
    :param epochs:
    :param lr:
    :param model_yaml:
    :param model_name:
Anthony Larcher's avatar
Anthony Larcher committed
745
746
747
748
    :param loss:
    :param aam_margin:
    :param aam_s:
    :param patience:
Anthony Larcher's avatar
Anthony Larcher committed
749
750
751
752
    :param tmp_model_name:
    :param best_model_name:
    :param multi_gpu:
    :param clipping:
Anthony Larcher's avatar
Anthony Larcher committed
753
754
755
    :param opt:
    :param reset_parts:
    :param freeze_parts:
Anthony Larcher's avatar
Anthony Larcher committed
756
    :param num_thread:
757
758
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
759
760
761
762
    # Add for tensorboard
    # Writer will output to ./runs/ directory by default
    #writer = SummaryWriter("runs/xvectors_experiments_2")
    writer = None
Anthony Larcher's avatar
Anthony Larcher committed
763

Anthony Larcher's avatar
Anthony Larcher committed
764
765
766
    if write_batches_to_disk:
        load_batches_from_disk = True

Anthony Larcher's avatar
Anthony Larcher committed
767
    if num_thread is None:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
768
769
        import multiprocessing

Anthony Larcher's avatar
Anthony Larcher committed
770
771
        num_thread = multiprocessing.cpu_count()

Anthony Larcher's avatar
Anthony Larcher committed
772
    logging.critical(f"Use {num_thread} cpus")
Anthony Larcher's avatar
Anthony Larcher committed
773
    logging.critical(f"Start process at {time.strftime('%H:%M:%S', time.localtime())}")
774

Anthony Larcher's avatar
Anthony Larcher committed
775
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Anthony Larcher's avatar
Anthony Larcher committed
776
    # Start from scratch
777
    if model_name is None and model_yaml in ["xvector", "rawnet2", "resnet34"]:
Anthony Larcher's avatar
Anthony Larcher committed
778
        # Initialize a first model
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
779
        if model_yaml == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
780
            model = Xtractor(speaker_number, "xvector", loss=loss)
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
781
        elif model_yaml == "rawnet2":
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
782
            model = Xtractor(speaker_number, "rawnet2")
783
784
        elif model_yaml == "resnet34":
            model = Xtractor(speaker_number, "resnet34")
Anthony Larcher's avatar
Anthony Larcher committed
785
        model_archi = model_yaml
Anthony Larcher's avatar
Anthony Larcher committed
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
    else:
        with open(model_yaml, 'r') as fh:
            model_archi = yaml.load(fh, Loader=yaml.FullLoader)
            if epochs is None:
                epochs = model_archi["training"]["epochs"]
            if patience is None:
                patience = model_archi["training"]["patience"]
            if opt is None:
                opt = model_archi["training"]["opt"]
            if lr is None:
                lr = model_archi["training"]["lr"]
            if loss is None:
                loss = model_archi["training"]["loss"]
            if aam_margin is None and model_archi["training"]["loss"] == "aam":
                aam_margin = model_archi["training"]["aam_margin"]
            if aam_s is None and model_archi["training"]["loss"] == "aam":
                aam_s = model_archi["training"]["aam_s"]
            if tmp_model_name is None:
                tmp_model_name = model_archi["training"]["tmp_model_name"]
            if best_model_name is None:
                best_model_name = model_archi["training"]["best_model_name"]
            if multi_gpu is None:
                multi_gpu = model_archi["training"]["multi_gpu"]
            if clipping is None:
                clipping = model_archi["training"]["clipping"]

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
812
        if model_name is None:
Anthony Larcher's avatar
Anthony Larcher committed
813
814
815
            model = Xtractor(speaker_number, model_yaml)

         # If we start from an existing model
Anthony Larcher's avatar
Anthony Larcher committed
816
        else:
Anthony Larcher's avatar
Anthony Larcher committed
817
818
819
            # Load the model
            logging.critical(f"*** Load model from = {model_name}")
            checkpoint = torch.load(model_name)
Anthony Larcher's avatar
Anthony Larcher committed
820
            model = Xtractor(speaker_number, model_yaml)
Anthony Larcher's avatar
Anthony Larcher committed
821

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
822
823
            """
            Here we remove all layers that we don't want to reload
Anthony Larcher's avatar
Anthony Larcher committed
824
        
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
825
826
827
828
829
830
831
832
833
834
835
836
837
            """
            pretrained_dict = checkpoint["model_state_dict"]
            for part in reset_parts:
                pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

            new_model_dict = model.state_dict()
            new_model_dict.update(pretrained_dict)
            model.load_state_dict(new_model_dict)

        # Freeze required layers
        for name, param in model.named_parameters():
            if name.split(".")[0] in freeze_parts:
                param.requires_grad = False
Anthony Larcher's avatar
Anthony Larcher committed
838

Anthony Larcher's avatar
Anthony Larcher committed
839
    print(model)
Anthony Larcher's avatar
Anthony Larcher committed
840
    embedding_size = model.embedding_size
Anthony Larcher's avatar
Anthony Larcher committed
841

Anthony Larcher's avatar
Anthony Larcher committed
842
    if torch.cuda.device_count() > 1 and multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
843
844
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)
Anthony Larcher's avatar
Anthony Larcher committed
845
        #model = DDP(model)
Anthony Larcher's avatar
Anthony Larcher committed
846
847
    else:
        print("Train on a single GPU")
Anthony Larcher's avatar
Anthony Larcher committed
848
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
849

Anthony Larcher's avatar
debug    
Anthony Larcher committed
850
851
852
853
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])

Anthony Larcher's avatar
Anthony Larcher committed
854
855
856
    if load_batches_from_disk:
        train_batch_fn_format = tmp_batch_dir + "/train/train_{}_batch.h5"
        val_batch_fn_format = tmp_batch_dir + "/val/val_{}_batch.h5"
857

Anthony Larcher's avatar
Anthony Larcher committed
858
859
860
861
862
863
864
    if not load_batches_from_disk or write_batches_to_disk:
        """
        Set the dataloaders according to the dataset_yaml
        
        First we load the dataframe from CSV file in order to split it for training and validation purpose
        Then we provide those two 
        """
Anthony Larcher's avatar
Anthony Larcher committed
865

Anthony Larcher's avatar
minor    
Anthony Larcher committed
866
        if write_batches_to_disk or dataset_params["batch_size"] > 1:
Anthony Larcher's avatar
Anthony Larcher committed
867
868
869
870
            output_format = "numpy"
        else:
            output_format = "pytorch"

Anthony Larcher's avatar
Anthony Larcher committed
871
872
        training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"])
        torch.manual_seed(dataset_params['seed'])
Anthony Larcher's avatar
spkset    
Anthony Larcher committed
873
874
875
876
877
878
        training_set = SpkSet(dataset_yaml,
                              set_type="train",
                              dataset_df=training_df,
                              overlap=dataset_params['train']['overlap'],
                              output_format="pytorch",
                              windowed=True)
Anthony Larcher's avatar
Anthony Larcher committed
879

Anthony Larcher's avatar
Anthony Larcher committed
880
881
882
883
        validation_set = SideSet(dataset_yaml,
                                 set_type="validation",
                                 dataset_df=validation_df,
                                 output_format=output_format)
Anthony Larcher's avatar
Anthony Larcher committed
884
885


Anthony Larcher's avatar
Anthony Larcher committed
886
        if write_batches_to_disk:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
887
            logging.critical("Start writing batches on disk")
Anthony Larcher's avatar
Anthony Larcher committed
888
889
            training_set.write_to_disk(dataset_params["batch_size"], train_batch_fn_format, num_thread)
            validation_set.write_to_disk(dataset_params["batch_size"], val_batch_fn_format, num_thread)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
890
            logging.critical("---> Done")
Anthony Larcher's avatar
Anthony Larcher committed
891
892

    if load_batches_from_disk:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
893
894
895
896
897
898
899
900
901
902
903
904
905
        training_set = FileSet(train_batch_fn_format)
        validation_set = FileSet(train_batch_fn_format)
        batch_size = 1
    else:
        batch_size = dataset_params["batch_size"]


    print(f"Size of batches = {batch_size}")
    training_loader = DataLoader(training_set,
                                 batch_size=batch_size,
                                 shuffle=True,
                                 drop_last=True,
                                 pin_memory=True,
Anthony Larcher's avatar
spkset    
Anthony Larcher committed
906
                                 num_workers=num_thread,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
907
                                 persistent_workers=False)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
908
909
910
911
912

    validation_loader = DataLoader(validation_set,
                                   batch_size=batch_size,
                                   drop_last=True,
                                   pin_memory=True,
Anthony Larcher's avatar
spkset    
Anthony Larcher committed
913
                                   num_workers=num_thread,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
914
                                   persistent_workers=False)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
915

Anthony Larcher's avatar
Anthony Larcher committed
916
917
918
    """
    Set the training options
    """
Anthony Larcher's avatar
Anthony Larcher committed
919
    if opt == 'adam':
Anthony Larcher's avatar
Anthony Larcher committed
920
        _optimizer = torch.optim.Adam
Anthony Larcher's avatar
Anthony Larcher committed
921
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
922
923
    elif opt == 'rmsprop':
        _optimizer = torch.optim.RMSprop
Anthony Larcher's avatar
Anthony Larcher committed
924
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
925
926
927
    else: # opt == 'sgd'
        _optimizer = torch.optim.SGD
        _options = {'lr': lr, 'momentum': 0.9}
Anthony Larcher's avatar
Anthony Larcher committed
928

Anthony Larcher's avatar
Anthony Larcher committed
929
    param_list = []
Anthony Larcher's avatar
Anthony Larcher committed
930
    if type(model) is Xtractor:
Anthony Larcher's avatar
Anthony Larcher committed
931
932
933
934
935
936
937
        if model.preprocessor is not None:
            param_list.append({'params': model.preprocessor.parameters(), 'weight_decay': model.preprocessor_weight_decay})
        param_list.append({'params': model.sequence_network.parameters(), 'weight_decay': model.sequence_network_weight_decay})
        param_list.append({'params': model.stat_pooling.parameters(), 'weight_decay': model.stat_pooling_weight_decay})
        param_list.append({'params': model.before_speaker_embedding.parameters(), 'weight_decay': model.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.after_speaker_embedding.parameters(), 'weight_decay': model.after_speaker_embedding_weight_decay})

Anthony Larcher's avatar
Anthony Larcher committed
938
    else:
Anthony Larcher's avatar
Anthony Larcher committed
939
940
941
942
943
944
945
946
        if model.module.preprocessor is not None:
            param_list.append({'params': model.module.preprocessor.parameters(), 'weight_decay': model.module.preprocessor_weight_decay})
        param_list.append({'params': model.module.sequence_network.parameters(), 'weight_decay': model.module.sequence_network_weight_decay})
        param_list.append({'params': model.module.stat_pooling.parameters(), 'weight_decay': model.module.stat_pooling_weight_decay})
        param_list.append({'params': model.module.before_speaker_embedding.parameters(), 'weight_decay': model.module.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.module.after_speaker_embedding.parameters(), 'weight_decay': model.module.after_speaker_embedding_weight_decay})

    optimizer = _optimizer(param_list, **_options)
Anthony Larcher's avatar
Anthony Larcher committed
947
    scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
Anthony Larcher's avatar
Anthony Larcher committed
948
                                                     milestones=numpy.arange(50000,160000,10000),
Anthony Larcher's avatar
Anthony Larcher committed
949
950
                                                     gamma=0.1,
                                                     last_epoch=-1,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
951
                                                     verbose=False)
952

Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
953
    best_accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
954
    best_accuracy_epoch = 1
Anthony Larcher's avatar
spkset    
Anthony Larcher committed
955
    best_eer = 100
Anthony Larcher's avatar
Anthony Larcher committed
956
    curr_patience = patience
Anthony Larcher's avatar
eer    
Anthony Larcher committed
957
958
    
    logging.critical("Compute EER before starting")
Anthony Larcher's avatar
debug    
Anthony Larcher committed
959
960
961
962
963
    val_acc, val_loss, val_eer = cross_validation(model,
                                                  validation_loader,
                                                  device,
                                                  [validation_set.__len__(),
                                                   embedding_size])
Anthony Larcher's avatar
Anthony Larcher committed
964

Anthony Larcher's avatar
debug    
Anthony Larcher committed
965
    test_eer = test_metrics(model, device, speaker_number)
Anthony Larcher's avatar
Anthony Larcher committed
966

Anthony Larcher's avatar
debug    
Anthony Larcher committed
967
968
    logging.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Initial metrics - Cross validation accuracy = {val_acc} %, EER = {val_eer * 100} %")
    logging.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Initial metrics - Test EER = {test_eer * 100} %")
Anthony Larcher's avatar
Anthony Larcher committed
969

Anthony Larcher's avatar
Anthony Larcher committed
970
    for epoch in range(1, epochs + 1):
971
        # Process one epoch and return the current model
Anthony Larcher's avatar
Anthony Larcher committed
972
973
974
        if curr_patience == 0:
            print(f"Stopping at epoch {epoch} for cause of patience")
            break
Anthony Larcher's avatar
Anthony Larcher committed
975
976
977
978
        model = train_epoch(model,
                            epoch,
                            training_loader,
                            optimizer,
Anthony Larcher's avatar
Anthony Larcher committed
979
                            scheduler,
Anthony Larcher's avatar
Anthony Larcher committed
980
981
                            dataset_params["log_interval"],
                            device=device,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
982
                            clipping=clipping)
983
984

        # Add the cross validation here
Anthony Larcher's avatar
debug    
Anthony Larcher committed
985
986
        if math.fmod(epoch, 136) == 0:
            val_acc, val_loss, val_eer = cross_validation(model, validation_loader, device, [validation_set.__len__(), embedding_size])
Anthony Larcher's avatar
Anthony Larcher committed
987

Anthony Larcher's avatar
debug    
Anthony Larcher committed
988
            test_eer = test_metrics(model, device, speaker_number)
989

Anthony Larcher's avatar
debug    
Anthony Larcher committed
990
991
            logging.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Training metrics - Cross validation accuracy = {val_acc} %, EER = {val_eer * 100} %")
            logging.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Training metrics - Test EER = {test_eer * 100} %")
Anthony Larcher's avatar
Anthony Larcher committed
992

Anthony Larcher's avatar
debug    
Anthony Larcher committed
993
994
            # Decrease learning rate according to the scheduler policy
            #scheduler.step(val_loss)
995

Anthony Larcher's avatar
debug    
Anthony Larcher committed
996
997
998
            # remember best accuracy and save checkpoint
            is_best = val_acc > best_accuracy
            best_accuracy = max(val_acc, best_accuracy)
Anthony Larcher's avatar
Anthony Larcher committed
999

Anthony Larcher's avatar
debug    
Anthony Larcher committed
1000
            if tmp_model_name is None: