xvector.py 41.7 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
Anthony Larcher committed
25
Copyright 2014-2020 Yevhenii Prokopalo, Anthony Larcher
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
30

import pdb
import traceback
Anthony Larcher's avatar
Anthony Larcher committed
31
import logging
Anthony Larcher's avatar
Anthony Larcher committed
32
import matplotlib.pyplot as plt
Anthony Larcher's avatar
Anthony Larcher committed
33
import multiprocessing
Anthony Larcher's avatar
Anthony Larcher committed
34
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
35
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
36
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
37
import shutil
38
import time
Anthony Larcher's avatar
Anthony Larcher committed
39
import torch
Anthony Larcher's avatar
Anthony Larcher committed
40
import torch.optim as optim
Anthony Larcher's avatar
Anthony Larcher committed
41
42
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
43
from torchvision import transforms
Anthony Larcher's avatar
Anthony Larcher committed
44
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
45
from .xsets import SideSet
Anthony Larcher's avatar
Anthony Larcher committed
46
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
47
from .res_net import RawPreprocessor, ResBlockWFMS
Anthony Larcher's avatar
Anthony Larcher committed
48
49
from ..bosaris import IdMap
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
50
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
51
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
52
from .sincnet import SincNet
Anthony Larcher's avatar
Anthony Larcher committed
53
#from torch.utils.tensorboard import SummaryWriter
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
54
55
56
from .loss import ArcLinear
from .loss import ArcFace
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
57

Anthony Larcher's avatar
Anthony Larcher committed
58
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
59

Anthony Larcher's avatar
Anthony Larcher committed
60
61
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
62
__copyright__ = "Copyright 2015-2020 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
63
64
65
66
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
67
68


Anthony Larcher's avatar
Anthony Larcher committed
69
70
logging.basicConfig(format='%(asctime)s %(message)s')

Anthony Larcher's avatar
Anthony Larcher committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

# Make PyTorch Deterministic
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
numpy.random.seed(0)


class GuruMeditation (torch.autograd.detect_anomaly):
    
    def __init__(self):
        super(GuruMeditation, self).__init__()

    def __enter__(self):
        super(GuruMeditation, self).__enter__()
        return self

    def __exit__(self, type, value, trace):
        super(GuruMeditation, self).__exit__()
        if isinstance(value, RuntimeError):
            traceback.print_tb(trace)
            halt(str(value))

    def halt(msg):
        print (msg)
        pdb.set_trace()









def select_n_random(data, labels, n=100):
    '''
    Selects n random datapoints and their corresponding labels from a dataset
    '''
    assert len(data) == len(labels)

    perm = torch.randperm(len(data))
    return data[perm][:n], labels[perm][:n]


def matplotlib_imshow(img, one_channel=False):
    if one_channel:
        img = img.mean(dim=0)
    img = img / 2 + 0.5     # unnormalize
    npimg = img.cpu().numpy()
    if one_channel:
        plt.imshow(npimg, cmap="Greys")
    else:
        plt.imshow(np.transpose(npimg, (1, 2, 0)))

def speech_to_probs(model, speech):
    '''
    Generates predictions and corresponding probabilities from a trained
    network and a list of images
    '''
    output = model(speech)
    # convert output probabilities to predicted class
    _, preds_tensor = torch.max(output, 1)
    preds = numpy.squeeze(preds_tensor.cpu().numpy())
    return preds, [torch.nn.functional.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]


def plot_classes_preds(model, speech, labels):
    '''
Anthony Larcher's avatar
Anthony Larcher committed
140

Anthony Larcher's avatar
Anthony Larcher committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    Generates matplotlib Figure using a trained network, along with images
    and labels from a batch, that shows the network's top prediction along
    with its probability, alongside the actual label, coloring this
    information based on whether the prediction was correct or not.
    Uses the "speech_to_probs" function.
    '''
    preds, probs = speech_to_probs(model, speech)
    # plot the images in the batch, along with predicted and true labels
    fig = plt.figure(figsize=(12, 48))
    for idx in numpy.arange(4):
         ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])
         #matplotlib_imshow(speech[idx], one_channel=True)
         ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
                                                           preds[idx],
                                                           probs[idx] * 100.0,
                                                           labels[idx]),
                                                           color=("green" if preds[idx]==labels[idx].item() else "red"))
    return fig



162
def get_lr(optimizer):
Anthony Larcher's avatar
Anthony Larcher committed
163
164
165
166
167
    """

    :param optimizer:
    :return:
    """
168
169
170
171
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
172
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
173
174
175
176
177
178
179
180
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
181
182
183
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
184

Anthony Larcher's avatar
Anthony Larcher committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
class MeanStdPooling(torch.nn.Module):
    """
    Mean and Standard deviation pooling
    """
    def __init__(self):
        """

        """
        super(MeanStdPooling, self).__init__()
        pass

    def forward(self, x):
        """

        :param x:
        :return:
        """
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        return torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
205

Anthony Larcher's avatar
Anthony Larcher committed
206

Anthony Larcher's avatar
Anthony Larcher committed
207
208
209
210
211
212
213
214
215
216
217
class GruPooling(torch.nn.Module):
    """

    """
    def __init__(self, input_size, gru_node, nb_gru_layer):
        """

        :param input_size:
        :param gru_node:
        :param nb_gru_layer:
        """
Anthony Larcher's avatar
Anthony Larcher committed
218
        super(GruPooling, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
        self.lrelu_keras = torch.nn.LeakyReLU(negative_slope = 0.3)
        self.bn_before_gru = torch.nn.BatchNorm1d(num_features = input_size)
        self.gru = torch.nn.GRU(input_size = input_size,
                          hidden_size = gru_node,
                          num_layers = nb_gru_layer,
                          batch_first = True)

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = self.bn_before_gru(x)
        x = self.lrelu_keras(x)
        x = x.permute(0, 2, 1)  #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
        x = x[:,-1,:]

        return x

Anthony Larcher's avatar
Anthony Larcher committed
241

Anthony Larcher's avatar
Anthony Larcher committed
242
class Xtractor(torch.nn.Module):
243
244
245
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
246

Anthony Larcher's avatar
Anthony Larcher committed
247
248
249
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
250
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
251
252
253
                 norm_embedding=False,
                 aam_margin=0.5,
                 aam_s=0.5):
Anthony Larcher's avatar
Anthony Larcher committed
254
255
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
256
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
257
        """
Anthony Larcher's avatar
Anthony Larcher committed
258
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
259
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
260
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
261
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
262

Anthony Larcher's avatar
Anthony Larcher committed
263
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
264
265
266
267
268
269

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
270
            self.feature_size = 30
Anthony Larcher's avatar
Anthony Larcher committed
271
272
273
            self.activation = torch.nn.LeakyReLU(0.2)

            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
274

Anthony Larcher's avatar
xv    
Anthony Larcher committed
275
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
276
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
277
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
278
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
279
280
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
281
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
282
283
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
284
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
285
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
286
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
287
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
288
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
289
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
290
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
291
292
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
293
294
            self.stat_pooling = MeanStdPooling()

Anthony Larcher's avatar
xv    
Anthony Larcher committed
295
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
296
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
297
298
            ]))

Anthony Larcher's avatar
Anthony Larcher committed
299
300
            if self.loss == "aam":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
301
                  ("arclinear", ArcLinear(512, int(self.speaker_number), margin=aam_margin, s=aam_s))
Anthony Larcher's avatar
Anthony Larcher committed
302
303
304
305
                ]))
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
306
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
307
308
309
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
310
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
311
312
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
313

Anthony Larcher's avatar
Anthony Larcher committed
314
315
316
317
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002

Anthony Larcher's avatar
Anthony Larcher committed
318
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
319
320
321
322
323
324

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
325
326
327
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
328
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
329
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
330
331
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
349
350
351
352
353
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
354
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
355
356
357
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
358

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
359
360
361
362
363
364
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
365
        else:
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
366
367
368
369
370
371
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
372

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
373
            self.loss = cfg["training"]["loss"]
Anthony Larcher's avatar
Anthony Larcher committed
374
            if self.loss == "aam":
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
375
376
                self.aam_margin = cfg["training"]["aam_margin"]
                self.aam_s = cfg["training"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
377

Anthony Larcher's avatar
Anthony Larcher committed
378
379
380
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
381
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
382
383
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
384
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
385
386
387
388
389
390
391
392
393
394
395
396
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
397
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
398
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
399
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
400
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
401
402
403
404
405
406
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
407
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
408
409

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
410
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
411
            """
Anthony Larcher's avatar
Anthony Larcher committed
412
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
413
414
415
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
431
432
433
434
435
436
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
437
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
438
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
439
440
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
441
442
443
444
445
                    input_size = cfg["segmental"][k]["output_channels"]

                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
446
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
447
448
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
449
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
450
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
451

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
452
453
454
455
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
456
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
457
458
459
460
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
461
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
462

Anthony Larcher's avatar
Anthony Larcher committed
463
464
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
465
            """
Anthony Larcher's avatar
Anthony Larcher committed
466
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
467
            """
Anthony Larcher's avatar
Anthony Larcher committed
468
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
469
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
470
471
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
472
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
473
474
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
475
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
476
477
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
478
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
479
480

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
481
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
482

Anthony Larcher's avatar
Anthony Larcher committed
483
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
484
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
485
486

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
487
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
488

Anthony Larcher's avatar
Anthony Larcher committed
489
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
490
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
491

Anthony Larcher's avatar
Anthony Larcher committed
492
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
493
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
494
495
496
497
498
499
500
501
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
502
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
503
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
504

Anthony Larcher's avatar
Anthony Larcher committed
505
506
507
508
509
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
510

Anthony Larcher's avatar
Anthony Larcher committed
511
512
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
513

Anthony Larcher's avatar
Anthony Larcher committed
514
515
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
516

Anthony Larcher's avatar
Anthony Larcher committed
517
518
519
520
521
522
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
523
                self.norm_embedding = True
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
524
525
526
527
528
529
530
                #self.after_speaker_embedding = ArcLinear(input_size,
                #                                         self.speaker_number,
                #                                         margin=self.aam_margin,
                #                                         s=self.aam_s)
                self.after_speaker_embedding = ArcFace(embedding_size=input_size,
                                                       classnum=self.speaker_number,
                                                       s=64.,
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
531
                                                       m=0.5)
Anthony Larcher's avatar
Anthony Larcher committed
532

Anthony Larcher's avatar
Anthony Larcher committed
533
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
534

Anthony Larcher's avatar
Anthony Larcher committed
535

Anthony Larcher's avatar
Anthony Larcher committed
536
    def forward(self, x, is_eval=False, target=None):
537
538
539
        """

        :param x:
Anthony Larcher's avatar
Anthony Larcher committed
540
        :param is_eval:
541
542
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
543
544
545
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
546
        x = self.sequence_network(x)
547

Anthony Larcher's avatar
Anthony Larcher committed
548
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
549
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
550
551

        x = self.before_speaker_embedding(x)
552

Anthony Larcher's avatar
Anthony Larcher committed
553
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
554
            #x_norm = x.norm(p=2,dim=1, keepdim=True) / 10. # Why  10. ?
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
555
556
557
            #x_norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True, out=None, dtype=None)
            #x = torch.div(x, x_norm)
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
558

Anthony Larcher's avatar
Anthony Larcher committed
559
560
561
        if is_eval:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
562
563
        if self.loss == "cce":
            x = self.after_speaker_embedding(x)
Anthony Larcher's avatar
Anthony Larcher committed
564

Anthony Larcher's avatar
Anthony Larcher committed
565
566
567
568
569
570
        elif self.loss == "aam":
            if not is_eval:
                x = self.after_speaker_embedding(x,target=target)
            else:
                x = self.after_speaker_embedding(x, target=None)

Anthony Larcher's avatar
Anthony Larcher committed
571
        return x
Anthony Larcher's avatar
Anthony Larcher committed
572

573
574
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
575
576
577
578
579
580
581
582
583
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
584

Anthony Larcher's avatar
Anthony Larcher committed
585
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
586
           dataset_yaml,
Anthony Larcher's avatar
Anthony Larcher committed
587
588
           epochs=None,
           lr=None,
Anthony Larcher's avatar
Anthony Larcher committed
589
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
590
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
591
592
593
594
           loss=None,
           aam_margin=None,
           aam_s=None,
           patience=None,
Anthony Larcher's avatar
Anthony Larcher committed
595
           tmp_model_name=None,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
596
           best_model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
597
           multi_gpu=True,
598
           clipping=False,
Anthony Larcher's avatar
Anthony Larcher committed
599
           opt=None,
Anthony Larcher's avatar
Anthony Larcher committed
600
601
           reset_parts=[],
           freeze_parts=[],
Anthony Larcher's avatar
Anthony Larcher committed
602
           num_thread=None):
603
604
    """

Anthony Larcher's avatar
Anthony Larcher committed
605
606
607
608
609
610
    :param speaker_number:
    :param dataset_yaml:
    :param epochs:
    :param lr:
    :param model_yaml:
    :param model_name:
Anthony Larcher's avatar
Anthony Larcher committed
611
612
613
614
    :param loss:
    :param aam_margin:
    :param aam_s:
    :param patience:
Anthony Larcher's avatar
Anthony Larcher committed
615
616
617
618
    :param tmp_model_name:
    :param best_model_name:
    :param multi_gpu:
    :param clipping:
Anthony Larcher's avatar
Anthony Larcher committed
619
620
621
    :param opt:
    :param reset_parts:
    :param freeze_parts:
Anthony Larcher's avatar
Anthony Larcher committed
622
    :param num_thread:
623
624
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
625
626
627
628
    # Add for tensorboard
    # Writer will output to ./runs/ directory by default
    #writer = SummaryWriter("runs/xvectors_experiments_2")
    writer = None
Anthony Larcher's avatar
Anthony Larcher committed
629

Anthony Larcher's avatar
Anthony Larcher committed
630
631
632
    if num_thread is None:
        num_thread = multiprocessing.cpu_count()

Anthony Larcher's avatar
Anthony Larcher committed
633
    logging.critical(f"Start process at {time.strftime('%H:%M:%S', time.localtime())}")
634

Anthony Larcher's avatar
Anthony Larcher committed
635
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Anthony Larcher's avatar
Anthony Larcher committed
636

Anthony Larcher's avatar
Anthony Larcher committed
637
    # Start from scratch
Anthony Larcher's avatar
Anthony Larcher committed
638
    if model_name is None and model_yaml in ["xvector", "rawnet2"]:
Anthony Larcher's avatar
Anthony Larcher committed
639
        # Initialize a first model
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
640
        if model_yaml == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
641
            model = Xtractor(speaker_number, "xvector")
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
642
        elif model_yaml == "rawnet2":
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
643
            model = Xtractor(speaker_number, "rawnet2")
Anthony Larcher's avatar
Anthony Larcher committed
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
    else:
        with open(model_yaml, 'r') as fh:
            model_archi = yaml.load(fh, Loader=yaml.FullLoader)
            if epochs is None:
                epochs = model_archi["training"]["epochs"]
            if patience is None:
                patience = model_archi["training"]["patience"]
            if opt is None:
                opt = model_archi["training"]["opt"]
            if lr is None:
                lr = model_archi["training"]["lr"]
            if loss is None:
                loss = model_archi["training"]["loss"]
            if aam_margin is None and model_archi["training"]["loss"] == "aam":
                aam_margin = model_archi["training"]["aam_margin"]
            if aam_s is None and model_archi["training"]["loss"] == "aam":
                aam_s = model_archi["training"]["aam_s"]
            if tmp_model_name is None:
                tmp_model_name = model_archi["training"]["tmp_model_name"]
            if best_model_name is None:
                best_model_name = model_archi["training"]["best_model_name"]
            if multi_gpu is None:
                multi_gpu = model_archi["training"]["multi_gpu"]
            if clipping is None:
                clipping = model_archi["training"]["clipping"]

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
670
        if model_name is None:
Anthony Larcher's avatar
Anthony Larcher committed
671
672
673
            model = Xtractor(speaker_number, model_yaml)

         # If we start from an existing model
Anthony Larcher's avatar
Anthony Larcher committed
674
        else:
Anthony Larcher's avatar
Anthony Larcher committed
675
676
677
            # Load the model
            logging.critical(f"*** Load model from = {model_name}")
            checkpoint = torch.load(model_name)
Anthony Larcher's avatar
Anthony Larcher committed
678
            model = Xtractor(speaker_number, model_yaml)
Anthony Larcher's avatar
Anthony Larcher committed
679

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
680
681
            """
            Here we remove all layers that we don't want to reload
Anthony Larcher's avatar
Anthony Larcher committed
682
        
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
683
684
685
686
687
688
689
690
691
692
693
694
695
            """
            pretrained_dict = checkpoint["model_state_dict"]
            for part in reset_parts:
                pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

            new_model_dict = model.state_dict()
            new_model_dict.update(pretrained_dict)
            model.load_state_dict(new_model_dict)

        # Freeze required layers
        for name, param in model.named_parameters():
            if name.split(".")[0] in freeze_parts:
                param.requires_grad = False
Anthony Larcher's avatar
Anthony Larcher committed
696

Anthony Larcher's avatar
Anthony Larcher committed
697
    print(model)
Anthony Larcher's avatar
Anthony Larcher committed
698

Anthony Larcher's avatar
Anthony Larcher committed
699
    if torch.cuda.device_count() > 1 and multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
700
701
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)
Anthony Larcher's avatar
Anthony Larcher committed
702
703
    else:
        print("Train on a single GPU")
Anthony Larcher's avatar
Anthony Larcher committed
704
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
705
706

    """
Anthony Larcher's avatar
Anthony Larcher committed
707
708
709
710
    Set the dataloaders according to the dataset_yaml
    
    First we load the dataframe from CSV file in order to split it for training and validation purpose
    Then we provide those two 
Anthony Larcher's avatar
Anthony Larcher committed
711
    """
Anthony Larcher's avatar
Anthony Larcher committed
712
713
714
715
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])
    training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"])
Anthony Larcher's avatar
Anthony Larcher committed
716
    torch.manual_seed(dataset_params['seed'])
717
718
719
    training_set = SideSet(dataset_yaml, 
                           set_type="train", 
                           dataset_df=training_df, 
Anthony Larcher's avatar
Anthony Larcher committed
720
721
                           chunk_per_segment=dataset_params['train']['chunk_per_segment'], 
                           overlap=dataset_params['train']['overlap'])
Anthony Larcher's avatar
Anthony Larcher committed
722
723
724
    training_loader = DataLoader(training_set,
                                 batch_size=dataset_params["batch_size"],
                                 shuffle=True,
Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
725
                                 drop_last=True,
Anthony Larcher's avatar
Anthony Larcher committed
726
                                 pin_memory=True,
Anthony Larcher's avatar
Anthony Larcher committed
727
                                 num_workers=num_thread)
728

Anthony Larcher's avatar
Anthony Larcher committed
729
730
731
    validation_set = SideSet(dataset_yaml, set_type="validation", dataset_df=validation_df)
    validation_loader = DataLoader(validation_set,
                                   batch_size=dataset_params["batch_size"],
Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
732
                                   drop_last=True,
Anthony Larcher's avatar
Anthony Larcher committed
733
                                   pin_memory=True,
Anthony Larcher's avatar
Anthony Larcher committed
734
                                   num_workers=num_thread)
Anthony Larcher's avatar
Anthony Larcher committed
735

Anthony Larcher's avatar
Anthony Larcher committed
736
737
738
739
740
741
    # Add for TensorBoard
    #dataiter = iter(training_loader)
    #data, labels = dataiter.next()
    #writer.add_graph(model, data)


Anthony Larcher's avatar
Anthony Larcher committed
742
743
744
    """
    Set the training options
    """
Anthony Larcher's avatar
Anthony Larcher committed
745
    if opt == 'adam':
Anthony Larcher's avatar
Anthony Larcher committed
746
        _optimizer = torch.optim.Adam
Anthony Larcher's avatar
Anthony Larcher committed
747
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
748
749
    elif opt == 'rmsprop':
        _optimizer = torch.optim.RMSprop
Anthony Larcher's avatar
Anthony Larcher committed
750
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
751
752
753
    else: # opt == 'sgd'
        _optimizer = torch.optim.SGD
        _options = {'lr': lr, 'momentum': 0.9}
Anthony Larcher's avatar
Anthony Larcher committed
754

Anthony Larcher's avatar
Anthony Larcher committed
755
756
757
758
759
760
761
762
763
764
765
766
767
768
    params = [
        {
            'params': [
                param for name, param in model.named_parameters() if 'bn' not in name
            ]
        },
        {
            'params': [
                param for name, param in model.named_parameters() if 'bn' in name
            ],
            'weight_decay': 0
        },
    ]

Anthony Larcher's avatar
Anthony Larcher committed
769
    param_list = []
Anthony Larcher's avatar
Anthony Larcher committed
770
    if type(model) is Xtractor:
Anthony Larcher's avatar
Anthony Larcher committed
771
772
773
774
775
776
777
        if model.preprocessor is not None:
            param_list.append({'params': model.preprocessor.parameters(), 'weight_decay': model.preprocessor_weight_decay})
        param_list.append({'params': model.sequence_network.parameters(), 'weight_decay': model.sequence_network_weight_decay})
        param_list.append({'params': model.stat_pooling.parameters(), 'weight_decay': model.stat_pooling_weight_decay})
        param_list.append({'params': model.before_speaker_embedding.parameters(), 'weight_decay': model.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.after_speaker_embedding.parameters(), 'weight_decay': model.after_speaker_embedding_weight_decay})

Anthony Larcher's avatar
Anthony Larcher committed
778
    else:
Anthony Larcher's avatar
Anthony Larcher committed
779
780
781
782
783
784
785
786
787
        if model.module.preprocessor is not None:
            param_list.append({'params': model.module.preprocessor.parameters(), 'weight_decay': model.module.preprocessor_weight_decay})
        param_list.append({'params': model.module.sequence_network.parameters(), 'weight_decay': model.module.sequence_network_weight_decay})
        param_list.append({'params': model.module.stat_pooling.parameters(), 'weight_decay': model.module.stat_pooling_weight_decay})
        param_list.append({'params': model.module.before_speaker_embedding.parameters(), 'weight_decay': model.module.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.module.after_speaker_embedding.parameters(), 'weight_decay': model.module.after_speaker_embedding_weight_decay})


    optimizer = _optimizer(param_list, **_options)
Anthony Larcher's avatar
Anthony Larcher committed
788
789
790
791
792
793

    #optimizer = torch.optim.SGD(params,
    #                            lr=lr,
    #                            momentum=0.9,
    #                            weight_decay=0.0005)
    #print(f"Learning rate = {lr}")
Anthony Larcher's avatar
Anthony Larcher committed
794

Anthony Larcher's avatar
Anthony Larcher committed
795
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', verbose=True)
796

Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
797
    best_accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
798
    best_accuracy_epoch = 1
Anthony Larcher's avatar
Anthony Larcher committed
799
    curr_patience = patience
Anthony Larcher's avatar
Anthony Larcher committed
800
    for epoch in range(1, epochs + 1):
801
        # Process one epoch and return the current model
Anthony Larcher's avatar
Anthony Larcher committed
802
803
804
        if curr_patience == 0:
            print(f"Stopping at epoch {epoch} for cause of patience")
            break
Anthony Larcher's avatar
Anthony Larcher committed
805
806
807
808
809
810
        model = train_epoch(model,
                            epoch,
                            training_loader,
                            optimizer,
                            dataset_params["log_interval"],
                            device=device,
Anthony Larcher's avatar
Anthony Larcher committed
811
812
                            clipping=clipping,
                            tb_writer=writer)
813
814

        # Add the cross validation here
Anthony Larcher's avatar
Anthony Larcher committed
815
        accuracy, val_loss = cross_validation(model, validation_loader, device=device)
Anthony Larcher's avatar
Anthony Larcher committed
816
        logging.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Cross validation accuracy = {accuracy} %")
817
818
819
820

        # Decrease learning rate according to the scheduler policy
        scheduler.step(val_loss)

Anthony Larcher's avatar
Anthony Larcher committed
821
822
823
824
        # remember best accuracy and save checkpoint
        is_best = accuracy > best_accuracy
        best_accuracy = max(accuracy, best_accuracy)

Anthony Larcher's avatar
Anthony Larcher committed
825
826
827
828
829
830
        if type(model) is Xtractor:
            save_checkpoint({
                'epoch': epoch,
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'accuracy': best_accuracy,
Anthony Larcher's avatar
Anthony Larcher committed
831
832
                'scheduler': scheduler,
                'speaker_number' : speaker_number,
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
833
                'model_archi': model_archi
Anthony Larcher's avatar
Anthony Larcher committed
834
835
836
837
838
839
840
            }, is_best, filename=tmp_model_name+".pt", best_filename=best_model_name+'.pt')
        else:
            save_checkpoint({
                'epoch': epoch,
                'model_state_dict': model.module.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'accuracy': best_accuracy,
Anthony Larcher's avatar
Anthony Larcher committed
841
842
                'scheduler': scheduler,
                'speaker_number': speaker_number,
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
843
                'model_archi': model_archi
Anthony Larcher's avatar
Anthony Larcher committed
844
            }, is_best, filename=tmp_model_name+".pt", best_filename=best_model_name+'.pt')
Anthony Larcher's avatar
Anthony Larcher committed
845
846
847

        if is_best:
            best_accuracy_epoch = epoch
Anthony Larcher's avatar
Anthony Larcher committed
848
849
850
            curr_patience = patience
        else:
            curr_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
851
    #writer.close()
852

853
854
855
    for ii in range(torch.cuda.device_count()):
        print(torch.cuda.memory_summary(ii))

Anthony Larcher's avatar
Anthony Larcher committed
856
    logging.critical(f"Best accuracy {best_accuracy * 100.} obtained at epoch {best_accuracy_epoch}")
857

Anthony Larcher's avatar
Anthony Larcher committed
858
def train_epoch(model, epoch, training_loader, optimizer, log_interval, device, clipping=False, tb_writer=None):
859
860
861
862
    """

    :param model:
    :param epoch:
Anthony Larcher's avatar
Anthony Larcher committed
863
    :param training_loader:
864
    :param optimizer:
Anthony Larcher's avatar
Anthony Larcher committed
865
866
867
    :param log_interval:
    :param device:
    :param clipping:
868
869
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
870
    model.train()
Anthony Larcher's avatar
Anthony Larcher committed
871
    criterion = torch.nn.CrossEntropyLoss(reduction='mean')
872

Anthony Larcher's avatar
Anthony Larcher committed
873
874
875
876
877
    if isinstance(model, Xtractor):
        loss_criteria = model.loss
    else:
        loss_criteria = model.module.loss

878
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
879
    running_loss = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
880
    for batch_idx, (data, target) in enumerate(training_loader):
881
        target = target.squeeze()
Anthony Larcher's avatar
Anthony Larcher committed
882
        target = target.to(device)
883
        optimizer.zero_grad()
Anthony Larcher's avatar
Anthony Larcher committed
884
885
886
887
888
889

        if loss_criteria == 'aam':
            output = model(data.to(device), target=target)
        else:
            output = model(data.to(device), target=None)

Anthony Larcher's avatar
Anthony Larcher committed
890
        #with GuruMeditation():
Anthony Larcher's avatar
Anthony Larcher committed
891
        loss = criterion(output, target)
Anthony Larcher's avatar
Anthony Larcher committed
892
893
894
895
896
897
898
899
        if not torch.isnan(loss):
            loss.backward()
            if clipping:
                torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
            running_loss += loss.item()
            optimizer.step()

            running_loss += loss.item()
Anthony Larcher's avatar
Anthony Larcher committed
900
            accuracy += (torch.argmax(output.data, 1) == target).sum()
Anthony Larcher's avatar
Anthony Larcher committed
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
            if batch_idx % log_interval == 0:
                batch_size = target.shape[0]
                logging.critical('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                    epoch, batch_idx + 1, training_loader.__len__(),
                    100. * batch_idx / training_loader.__len__(), loss.item(),
                    100.0 * accuracy.item() / ((batch_idx + 1) * batch_size)))
                #tb_writer.add_scalar('training loss',
                #                     running_loss / log_interval,
                #                     epoch * len(training_loader) + batch_idx)
                #tb_writer.add_scalar('training_accuracy',
                #                      100.0 * accuracy.item() / ((batch_idx + 1) * batch_size),
                #                      epoch * len(training_loader) + batch_idx)

                # ...log a Matplotlib Figure showing the model's predictions on a
                # random mini-batch
                #tb_writer.add_figure('predictions vs. actuals',
                #                     plot_classes_preds(model, data.to(device), target.to(device)),
                #                     global_step=epoch * len(training_loader) + batch_idx)

920
921
922
923
924
925
926
927
928
929
930
931
932
        else:
            save_checkpoint({
                             'epoch': epoch,
                             'model_state_dict': model.state_dict(),
                             'optimizer_state_dict': optimizer.state_dict(),
                             'accuracy': 0.0,
                             'scheduler': 0.0
                             }, False, filename="model_loss_NAN.pt", best_filename='toto.pt')
            with open("batch_loss_NAN.pkl", "wb") as fh:
                pickle.dump(data.cpu(), fh)
            import sys
            sys.exit()
        running_loss = 0.0
933
934
935
    return model


Anthony Larcher's avatar
Anthony Larcher committed
936
def cross_validation(model, validation_loader, device):
937
938
939
    """

    :param model:
Anthony Larcher's avatar
Anthony Larcher committed
940
941
    :param validation_loader:
    :param device:
942
943
944
945
    :return:
    """
    model.eval()

Anthony Larcher's avatar
Anthony Larcher committed
946
947
948
949
950
    if isinstance(model, Xtractor):
        loss_criteria = model.loss
    else:
        loss_criteria = model.module.loss

951
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
952
    loss = 0.0
953
    criterion = torch.nn.CrossEntropyLoss()
Anthony Larcher's avatar
Anthony Larcher committed
954
955
956
957
    with torch.no_grad():
        for batch_idx, (data, target) in enumerate(validation_loader):
            batch_size = target.shape[0]
            target = target.squeeze()
Anthony Larcher's avatar
Anthony Larcher committed
958
959
960
961
962
963

            if loss_criteria == "aam":
                output = model(data.to(device), target=target)
            else:
                output = model(data.to(device), target=None)

Anthony Larcher's avatar
Anthony Larcher committed
964
            accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
965

Anthony Larcher's avatar
Anthony Larcher committed
966
            loss += criterion(output, target.to(device))
Anthony Larcher's avatar
Anthony Larcher committed
967

Anthony Larcher's avatar
Anthony Larcher committed
968
969
970
971
    return 100. * accuracy.cpu().numpy() / ((batch_idx + 1) * batch_size), \
           loss.cpu().numpy() / ((batch_idx + 1) * batch_size)


Anthony Larcher's avatar
Anthony Larcher committed
972
973
def extract_embeddings(idmap_name,
                       model_filename,
Anthony Larcher's avatar
Anthony Larcher committed
974
                       data_root_name,
Anthony Larcher's avatar
Anthony Larcher committed
975
                       device,
Anthony Larcher's avatar
Anthony Larcher committed
976
977
                       model_yaml=None,
                       speaker_number=None,
Anthony Larcher's avatar
Anthony Larcher committed
978
                       file_extension="wav",
979
                       transform_pipeline=None,
980
981
                       frame_shift=0.01,
                       frame_duration=0.025,
982
                       num_thread=1):
983
984
985
    # Load the model
    if isinstance(model_filename, str):
        checkpoint = torch.load(model_filename)
Anthony Larcher's avatar
Anthony Larcher committed
986
987
988
        if speaker_number is None:
            speaker_number = checkpoint["speaker_number"]
        if model_yaml is None:
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
989
990
            model_archi = checkpoint["model_archi"]
        model = Xtractor(speaker_number, model_archi=model_archi)
991
992
993
        model.load_state_dict(checkpoint["model_state_dict"])
    else:
        model = model_filename
Anthony Larcher's avatar
Anthony Larcher committed
994

Anthony Larcher's avatar
Anthony Larcher committed
995
    if isinstance(idmap_name, IdMap):
996
997
998
999
        idmap = idmap_name
    else:
        idmap = IdMap(idmap_name)

1000
    min_duration = (model.context_size() - 1) * frame_shift + frame_duration
For faster browsing, not all history is shown. View entire blame