xvector.py 41.7 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
Anthony Larcher committed
25
Copyright 2014-2020 Yevhenii Prokopalo, Anthony Larcher
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
30

import pdb
import traceback
Anthony Larcher's avatar
Anthony Larcher committed
31
import logging
Anthony Larcher's avatar
Anthony Larcher committed
32
import matplotlib.pyplot as plt
Anthony Larcher's avatar
Anthony Larcher committed
33
import multiprocessing
Anthony Larcher's avatar
Anthony Larcher committed
34
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
35
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
36
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
37
import shutil
38
import time
Anthony Larcher's avatar
Anthony Larcher committed
39
import torch
Anthony Larcher's avatar
Anthony Larcher committed
40
import torch.optim as optim
Anthony Larcher's avatar
Anthony Larcher committed
41
42
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
43
from torchvision import transforms
Anthony Larcher's avatar
Anthony Larcher committed
44
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
45
from .xsets import SideSet
Anthony Larcher's avatar
Anthony Larcher committed
46
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
47
from .res_net import RawPreprocessor, ResBlockWFMS
Anthony Larcher's avatar
Anthony Larcher committed
48
49
from ..bosaris import IdMap
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
50
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
51
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
52
from .sincnet import SincNet
Anthony Larcher's avatar
Anthony Larcher committed
53
#from torch.utils.tensorboard import SummaryWriter
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
54
from .loss import ArcLinear, ArcFace
Anthony Larcher's avatar
Anthony Larcher committed
55

Anthony Larcher's avatar
Anthony Larcher committed
56
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
57

Anthony Larcher's avatar
Anthony Larcher committed
58
59
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
60
__copyright__ = "Copyright 2015-2020 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
61
62
63
64
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
65
66


Anthony Larcher's avatar
Anthony Larcher committed
67
68
logging.basicConfig(format='%(asctime)s %(message)s')

Anthony Larcher's avatar
Anthony Larcher committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

# Make PyTorch Deterministic
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
numpy.random.seed(0)


class GuruMeditation (torch.autograd.detect_anomaly):
    
    def __init__(self):
        super(GuruMeditation, self).__init__()

    def __enter__(self):
        super(GuruMeditation, self).__enter__()
        return self

    def __exit__(self, type, value, trace):
        super(GuruMeditation, self).__exit__()
        if isinstance(value, RuntimeError):
            traceback.print_tb(trace)
            halt(str(value))

    def halt(msg):
        print (msg)
        pdb.set_trace()









def select_n_random(data, labels, n=100):
    '''
    Selects n random datapoints and their corresponding labels from a dataset
    '''
    assert len(data) == len(labels)

    perm = torch.randperm(len(data))
    return data[perm][:n], labels[perm][:n]


def matplotlib_imshow(img, one_channel=False):
    if one_channel:
        img = img.mean(dim=0)
    img = img / 2 + 0.5     # unnormalize
    npimg = img.cpu().numpy()
    if one_channel:
        plt.imshow(npimg, cmap="Greys")
    else:
        plt.imshow(np.transpose(npimg, (1, 2, 0)))

def speech_to_probs(model, speech):
    '''
    Generates predictions and corresponding probabilities from a trained
    network and a list of images
    '''
    output = model(speech)
    # convert output probabilities to predicted class
    _, preds_tensor = torch.max(output, 1)
    preds = numpy.squeeze(preds_tensor.cpu().numpy())
    return preds, [torch.nn.functional.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]


def plot_classes_preds(model, speech, labels):
    '''
Anthony Larcher's avatar
Anthony Larcher committed
138

Anthony Larcher's avatar
Anthony Larcher committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    Generates matplotlib Figure using a trained network, along with images
    and labels from a batch, that shows the network's top prediction along
    with its probability, alongside the actual label, coloring this
    information based on whether the prediction was correct or not.
    Uses the "speech_to_probs" function.
    '''
    preds, probs = speech_to_probs(model, speech)
    # plot the images in the batch, along with predicted and true labels
    fig = plt.figure(figsize=(12, 48))
    for idx in numpy.arange(4):
         ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])
         #matplotlib_imshow(speech[idx], one_channel=True)
         ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
                                                           preds[idx],
                                                           probs[idx] * 100.0,
                                                           labels[idx]),
                                                           color=("green" if preds[idx]==labels[idx].item() else "red"))
    return fig



160
def get_lr(optimizer):
Anthony Larcher's avatar
Anthony Larcher committed
161
162
163
164
165
    """

    :param optimizer:
    :return:
    """
166
167
168
169
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
170
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
171
172
173
174
175
176
177
178
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
179
180
181
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
182

Anthony Larcher's avatar
Anthony Larcher committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
class MeanStdPooling(torch.nn.Module):
    """
    Mean and Standard deviation pooling
    """
    def __init__(self):
        """

        """
        super(MeanStdPooling, self).__init__()
        pass

    def forward(self, x):
        """

        :param x:
        :return:
        """
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        return torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
203

Anthony Larcher's avatar
Anthony Larcher committed
204

Anthony Larcher's avatar
Anthony Larcher committed
205
206
207
208
209
210
211
212
213
214
215
class GruPooling(torch.nn.Module):
    """

    """
    def __init__(self, input_size, gru_node, nb_gru_layer):
        """

        :param input_size:
        :param gru_node:
        :param nb_gru_layer:
        """
Anthony Larcher's avatar
Anthony Larcher committed
216
        super(GruPooling, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        self.lrelu_keras = torch.nn.LeakyReLU(negative_slope = 0.3)
        self.bn_before_gru = torch.nn.BatchNorm1d(num_features = input_size)
        self.gru = torch.nn.GRU(input_size = input_size,
                          hidden_size = gru_node,
                          num_layers = nb_gru_layer,
                          batch_first = True)

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = self.bn_before_gru(x)
        x = self.lrelu_keras(x)
        x = x.permute(0, 2, 1)  #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
        x = x[:,-1,:]

        return x

Anthony Larcher's avatar
Anthony Larcher committed
239

Anthony Larcher's avatar
Anthony Larcher committed
240
class Xtractor(torch.nn.Module):
241
242
243
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
244

Anthony Larcher's avatar
Anthony Larcher committed
245
246
247
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
248
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
249
250
251
                 norm_embedding=False,
                 aam_margin=0.5,
                 aam_s=0.5):
Anthony Larcher's avatar
Anthony Larcher committed
252
253
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
254
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
255
        """
Anthony Larcher's avatar
Anthony Larcher committed
256
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
257
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
258
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
259
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
260

Anthony Larcher's avatar
Anthony Larcher committed
261
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
262
263
264
265
266
267

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
268
            self.feature_size = 30
Anthony Larcher's avatar
Anthony Larcher committed
269
270
271
            self.activation = torch.nn.LeakyReLU(0.2)

            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
272

Anthony Larcher's avatar
xv    
Anthony Larcher committed
273
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
274
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
275
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
276
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
277
278
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
279
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
280
281
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
282
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
283
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
284
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
285
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
286
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
287
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
288
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
289
290
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
291
292
            self.stat_pooling = MeanStdPooling()

Anthony Larcher's avatar
xv    
Anthony Larcher committed
293
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
294
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
295
296
            ]))

Anthony Larcher's avatar
Anthony Larcher committed
297
298
            if self.loss == "aam":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
299
                  ("arclinear", ArcLinear(512, int(self.speaker_number), margin=aam_margin, s=aam_s))
Anthony Larcher's avatar
Anthony Larcher committed
300
301
302
303
                ]))
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
304
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
305
306
307
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
308
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
309
310
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
311

Anthony Larcher's avatar
Anthony Larcher committed
312
313
314
315
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002

Anthony Larcher's avatar
Anthony Larcher committed
316
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
317
318
319
320
321
322

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
323
324
325
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
326
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
327
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
328
329
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
347
348
349
350
351
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
352
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
353
354
355
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
356

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
357
358
359
360
361
362
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
363
        else:
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
364
365
366
367
368
369
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
370

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
371
            self.loss = cfg["training"]["loss"]
Anthony Larcher's avatar
Anthony Larcher committed
372
            if self.loss == "aam":
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
373
374
                self.aam_margin = cfg["training"]["aam_margin"]
                self.aam_s = cfg["training"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
375

Anthony Larcher's avatar
Anthony Larcher committed
376
377
378
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
379
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
380
381
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
382
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
383
384
385
386
387
388
389
390
391
392
393
394
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
395
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
396
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
397
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
398
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
399
400
401
402
403
404
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
405
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
406
407

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
408
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
409
            """
Anthony Larcher's avatar
Anthony Larcher committed
410
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
411
412
413
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
429
430
431
432
433
434
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
435
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
436
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
437
438
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
439
440
441
442
443
                    input_size = cfg["segmental"][k]["output_channels"]

                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
444
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
445
446
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
447
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
448
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
449

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
450
451
452
453
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
454
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
455
456
457
458
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
459
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
460

Anthony Larcher's avatar
Anthony Larcher committed
461
462
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
463
            """
Anthony Larcher's avatar
Anthony Larcher committed
464
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
465
            """
Anthony Larcher's avatar
Anthony Larcher committed
466
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
467
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
468
469
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
470
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
471
472
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
473
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
474
475
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
476
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
477
478

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
479
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
480

Anthony Larcher's avatar
Anthony Larcher committed
481
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
482
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
483
484

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
485
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
486

Anthony Larcher's avatar
Anthony Larcher committed
487
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
488
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
489

Anthony Larcher's avatar
Anthony Larcher committed
490
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
491
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
492
493
494
495
496
497
498
499
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
500
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
501
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
502

Anthony Larcher's avatar
Anthony Larcher committed
503
504
505
506
507
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
508

Anthony Larcher's avatar
Anthony Larcher committed
509
510
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
511

Anthony Larcher's avatar
Anthony Larcher committed
512
513
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
514

Anthony Larcher's avatar
Anthony Larcher committed
515
516
517
518
519
520
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
521
                self.norm_embedding = True
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
522
523
524
525
526
527
528
529
                #self.after_speaker_embedding = ArcLinear(input_size,
                #                                         self.speaker_number,
                #                                         margin=self.aam_margin,
                #                                         s=self.aam_s)
                self.after_speaker_embedding = ArcFace(embedding_size=input_size,
                                                       classnum=self.speaker_number,
                                                       s=64.,
                                                       margin=0.5)
Anthony Larcher's avatar
Anthony Larcher committed
530

Anthony Larcher's avatar
Anthony Larcher committed
531
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
532

Anthony Larcher's avatar
Anthony Larcher committed
533

Anthony Larcher's avatar
Anthony Larcher committed
534
    def forward(self, x, is_eval=False, target=None):
535
536
537
        """

        :param x:
Anthony Larcher's avatar
Anthony Larcher committed
538
        :param is_eval:
539
540
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
541
542
543
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
544
        x = self.sequence_network(x)
545

Anthony Larcher's avatar
Anthony Larcher committed
546
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
547
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
548
549

        x = self.before_speaker_embedding(x)
550

Anthony Larcher's avatar
Anthony Larcher committed
551
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
552
553
            #x_norm = x.norm(p=2,dim=1, keepdim=True) / 10. # Why  10. ?
            x_norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True, out=None, dtype=None)
Anthony Larcher's avatar
Anthony Larcher committed
554
555
            x = torch.div(x, x_norm)

Anthony Larcher's avatar
Anthony Larcher committed
556
557
558
        if is_eval:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
559
560
        if self.loss == "cce":
            x = self.after_speaker_embedding(x)
Anthony Larcher's avatar
Anthony Larcher committed
561

Anthony Larcher's avatar
Anthony Larcher committed
562
563
564
565
566
567
        elif self.loss == "aam":
            if not is_eval:
                x = self.after_speaker_embedding(x,target=target)
            else:
                x = self.after_speaker_embedding(x, target=None)

Anthony Larcher's avatar
Anthony Larcher committed
568
        return x
Anthony Larcher's avatar
Anthony Larcher committed
569

570
571
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
572
573
574
575
576
577
578
579
580
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
581

Anthony Larcher's avatar
Anthony Larcher committed
582
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
583
           dataset_yaml,
Anthony Larcher's avatar
Anthony Larcher committed
584
585
           epochs=None,
           lr=None,
Anthony Larcher's avatar
Anthony Larcher committed
586
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
587
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
588
589
590
591
           loss=None,
           aam_margin=None,
           aam_s=None,
           patience=None,
Anthony Larcher's avatar
Anthony Larcher committed
592
           tmp_model_name=None,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
593
           best_model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
594
           multi_gpu=True,
595
           clipping=False,
Anthony Larcher's avatar
Anthony Larcher committed
596
           opt=None,
Anthony Larcher's avatar
Anthony Larcher committed
597
598
           reset_parts=[],
           freeze_parts=[],
Anthony Larcher's avatar
Anthony Larcher committed
599
           num_thread=None):
600
601
    """

Anthony Larcher's avatar
Anthony Larcher committed
602
603
604
605
606
607
    :param speaker_number:
    :param dataset_yaml:
    :param epochs:
    :param lr:
    :param model_yaml:
    :param model_name:
Anthony Larcher's avatar
Anthony Larcher committed
608
609
610
611
    :param loss:
    :param aam_margin:
    :param aam_s:
    :param patience:
Anthony Larcher's avatar
Anthony Larcher committed
612
613
614
615
    :param tmp_model_name:
    :param best_model_name:
    :param multi_gpu:
    :param clipping:
Anthony Larcher's avatar
Anthony Larcher committed
616
617
618
    :param opt:
    :param reset_parts:
    :param freeze_parts:
Anthony Larcher's avatar
Anthony Larcher committed
619
    :param num_thread:
620
621
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
622
623
624
625
    # Add for tensorboard
    # Writer will output to ./runs/ directory by default
    #writer = SummaryWriter("runs/xvectors_experiments_2")
    writer = None
Anthony Larcher's avatar
Anthony Larcher committed
626

Anthony Larcher's avatar
Anthony Larcher committed
627
628
629
    if num_thread is None:
        num_thread = multiprocessing.cpu_count()

Anthony Larcher's avatar
Anthony Larcher committed
630
    logging.critical(f"Start process at {time.strftime('%H:%M:%S', time.localtime())}")
631

Anthony Larcher's avatar
Anthony Larcher committed
632
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Anthony Larcher's avatar
Anthony Larcher committed
633

Anthony Larcher's avatar
Anthony Larcher committed
634
    # Start from scratch
Anthony Larcher's avatar
Anthony Larcher committed
635
    if model_name is None and model_yaml in ["xvector", "rawnet2"]:
Anthony Larcher's avatar
Anthony Larcher committed
636
        # Initialize a first model
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
637
        if model_yaml == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
638
            model = Xtractor(speaker_number, "xvector")
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
639
        elif model_yaml == "rawnet2":
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
640
            model = Xtractor(speaker_number, "rawnet2")
Anthony Larcher's avatar
Anthony Larcher committed
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
    else:
        with open(model_yaml, 'r') as fh:
            model_archi = yaml.load(fh, Loader=yaml.FullLoader)
            if epochs is None:
                epochs = model_archi["training"]["epochs"]
            if patience is None:
                patience = model_archi["training"]["patience"]
            if opt is None:
                opt = model_archi["training"]["opt"]
            if lr is None:
                lr = model_archi["training"]["lr"]
            if loss is None:
                loss = model_archi["training"]["loss"]
            if aam_margin is None and model_archi["training"]["loss"] == "aam":
                aam_margin = model_archi["training"]["aam_margin"]
            if aam_s is None and model_archi["training"]["loss"] == "aam":
                aam_s = model_archi["training"]["aam_s"]
            if tmp_model_name is None:
                tmp_model_name = model_archi["training"]["tmp_model_name"]
            if best_model_name is None:
                best_model_name = model_archi["training"]["best_model_name"]
            if multi_gpu is None:
                multi_gpu = model_archi["training"]["multi_gpu"]
            if clipping is None:
                clipping = model_archi["training"]["clipping"]

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
667
        if model_name is None:
Anthony Larcher's avatar
Anthony Larcher committed
668
669
670
            model = Xtractor(speaker_number, model_yaml)

         # If we start from an existing model
Anthony Larcher's avatar
Anthony Larcher committed
671
        else:
Anthony Larcher's avatar
Anthony Larcher committed
672
673
674
            # Load the model
            logging.critical(f"*** Load model from = {model_name}")
            checkpoint = torch.load(model_name)
Anthony Larcher's avatar
Anthony Larcher committed
675
            model = Xtractor(speaker_number, model_yaml)
Anthony Larcher's avatar
Anthony Larcher committed
676

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
677
678
            """
            Here we remove all layers that we don't want to reload
Anthony Larcher's avatar
Anthony Larcher committed
679
        
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
680
681
682
683
684
685
686
687
688
689
690
691
692
            """
            pretrained_dict = checkpoint["model_state_dict"]
            for part in reset_parts:
                pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

            new_model_dict = model.state_dict()
            new_model_dict.update(pretrained_dict)
            model.load_state_dict(new_model_dict)

        # Freeze required layers
        for name, param in model.named_parameters():
            if name.split(".")[0] in freeze_parts:
                param.requires_grad = False
Anthony Larcher's avatar
Anthony Larcher committed
693

Anthony Larcher's avatar
Anthony Larcher committed
694
    print(model)
Anthony Larcher's avatar
Anthony Larcher committed
695

Anthony Larcher's avatar
Anthony Larcher committed
696
    if torch.cuda.device_count() > 1 and multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
697
698
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)
Anthony Larcher's avatar
Anthony Larcher committed
699
700
    else:
        print("Train on a single GPU")
Anthony Larcher's avatar
Anthony Larcher committed
701
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
702
703

    """
Anthony Larcher's avatar
Anthony Larcher committed
704
705
706
707
    Set the dataloaders according to the dataset_yaml
    
    First we load the dataframe from CSV file in order to split it for training and validation purpose
    Then we provide those two 
Anthony Larcher's avatar
Anthony Larcher committed
708
    """
Anthony Larcher's avatar
Anthony Larcher committed
709
710
711
712
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])
    training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"])
Anthony Larcher's avatar
Anthony Larcher committed
713
    torch.manual_seed(dataset_params['seed'])
714
715
716
    training_set = SideSet(dataset_yaml, 
                           set_type="train", 
                           dataset_df=training_df, 
Anthony Larcher's avatar
Anthony Larcher committed
717
718
                           chunk_per_segment=dataset_params['train']['chunk_per_segment'], 
                           overlap=dataset_params['train']['overlap'])
Anthony Larcher's avatar
Anthony Larcher committed
719
720
721
    training_loader = DataLoader(training_set,
                                 batch_size=dataset_params["batch_size"],
                                 shuffle=True,
Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
722
                                 drop_last=True,
Anthony Larcher's avatar
Anthony Larcher committed
723
                                 pin_memory=True,
Anthony Larcher's avatar
Anthony Larcher committed
724
                                 num_workers=num_thread)
725

Anthony Larcher's avatar
Anthony Larcher committed
726
727
728
    validation_set = SideSet(dataset_yaml, set_type="validation", dataset_df=validation_df)
    validation_loader = DataLoader(validation_set,
                                   batch_size=dataset_params["batch_size"],
Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
729
                                   drop_last=True,
Anthony Larcher's avatar
Anthony Larcher committed
730
                                   pin_memory=True,
Anthony Larcher's avatar
Anthony Larcher committed
731
                                   num_workers=num_thread)
Anthony Larcher's avatar
Anthony Larcher committed
732

Anthony Larcher's avatar
Anthony Larcher committed
733
734
735
736
737
738
    # Add for TensorBoard
    #dataiter = iter(training_loader)
    #data, labels = dataiter.next()
    #writer.add_graph(model, data)


Anthony Larcher's avatar
Anthony Larcher committed
739
740
741
    """
    Set the training options
    """
Anthony Larcher's avatar
Anthony Larcher committed
742
    if opt == 'adam':
Anthony Larcher's avatar
Anthony Larcher committed
743
        _optimizer = torch.optim.Adam
Anthony Larcher's avatar
Anthony Larcher committed
744
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
745
746
    elif opt == 'rmsprop':
        _optimizer = torch.optim.RMSprop
Anthony Larcher's avatar
Anthony Larcher committed
747
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
748
749
750
    else: # opt == 'sgd'
        _optimizer = torch.optim.SGD
        _options = {'lr': lr, 'momentum': 0.9}
Anthony Larcher's avatar
Anthony Larcher committed
751

Anthony Larcher's avatar
Anthony Larcher committed
752
753
754
755
756
757
758
759
760
761
762
763
764
765
    params = [
        {
            'params': [
                param for name, param in model.named_parameters() if 'bn' not in name
            ]
        },
        {
            'params': [
                param for name, param in model.named_parameters() if 'bn' in name
            ],
            'weight_decay': 0
        },
    ]

Anthony Larcher's avatar
Anthony Larcher committed
766
    param_list = []
Anthony Larcher's avatar
Anthony Larcher committed
767
    if type(model) is Xtractor:
Anthony Larcher's avatar
Anthony Larcher committed
768
769
770
771
772
773
774
        if model.preprocessor is not None:
            param_list.append({'params': model.preprocessor.parameters(), 'weight_decay': model.preprocessor_weight_decay})
        param_list.append({'params': model.sequence_network.parameters(), 'weight_decay': model.sequence_network_weight_decay})
        param_list.append({'params': model.stat_pooling.parameters(), 'weight_decay': model.stat_pooling_weight_decay})
        param_list.append({'params': model.before_speaker_embedding.parameters(), 'weight_decay': model.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.after_speaker_embedding.parameters(), 'weight_decay': model.after_speaker_embedding_weight_decay})

Anthony Larcher's avatar
Anthony Larcher committed
775
    else:
Anthony Larcher's avatar
Anthony Larcher committed
776
777
778
779
780
781
782
783
784
        if model.module.preprocessor is not None:
            param_list.append({'params': model.module.preprocessor.parameters(), 'weight_decay': model.module.preprocessor_weight_decay})
        param_list.append({'params': model.module.sequence_network.parameters(), 'weight_decay': model.module.sequence_network_weight_decay})
        param_list.append({'params': model.module.stat_pooling.parameters(), 'weight_decay': model.module.stat_pooling_weight_decay})
        param_list.append({'params': model.module.before_speaker_embedding.parameters(), 'weight_decay': model.module.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.module.after_speaker_embedding.parameters(), 'weight_decay': model.module.after_speaker_embedding_weight_decay})


    optimizer = _optimizer(param_list, **_options)
Anthony Larcher's avatar
Anthony Larcher committed
785
786
787
788
789
790

    #optimizer = torch.optim.SGD(params,
    #                            lr=lr,
    #                            momentum=0.9,
    #                            weight_decay=0.0005)
    #print(f"Learning rate = {lr}")
Anthony Larcher's avatar
Anthony Larcher committed
791

Anthony Larcher's avatar
Anthony Larcher committed
792
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', verbose=True)
793

Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
794
    best_accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
795
    best_accuracy_epoch = 1
Anthony Larcher's avatar
Anthony Larcher committed
796
    curr_patience = patience
Anthony Larcher's avatar
Anthony Larcher committed
797
    for epoch in range(1, epochs + 1):
798
        # Process one epoch and return the current model
Anthony Larcher's avatar
Anthony Larcher committed
799
800
801
        if curr_patience == 0:
            print(f"Stopping at epoch {epoch} for cause of patience")
            break
Anthony Larcher's avatar
Anthony Larcher committed
802
803
804
805
806
807
        model = train_epoch(model,
                            epoch,
                            training_loader,
                            optimizer,
                            dataset_params["log_interval"],
                            device=device,
Anthony Larcher's avatar
Anthony Larcher committed
808
809
                            clipping=clipping,
                            tb_writer=writer)
810
811

        # Add the cross validation here
Anthony Larcher's avatar
Anthony Larcher committed
812
        accuracy, val_loss = cross_validation(model, validation_loader, device=device)
Anthony Larcher's avatar
Anthony Larcher committed
813
        logging.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Cross validation accuracy = {accuracy} %")
814
815
816
817

        # Decrease learning rate according to the scheduler policy
        scheduler.step(val_loss)

Anthony Larcher's avatar
Anthony Larcher committed
818
819
820
821
        # remember best accuracy and save checkpoint
        is_best = accuracy > best_accuracy
        best_accuracy = max(accuracy, best_accuracy)

Anthony Larcher's avatar
Anthony Larcher committed
822
823
824
825
826
827
        if type(model) is Xtractor:
            save_checkpoint({
                'epoch': epoch,
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'accuracy': best_accuracy,
Anthony Larcher's avatar
Anthony Larcher committed
828
829
                'scheduler': scheduler,
                'speaker_number' : speaker_number,
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
830
                'model_archi': model_archi
Anthony Larcher's avatar
Anthony Larcher committed
831
832
833
834
835
836
837
            }, is_best, filename=tmp_model_name+".pt", best_filename=best_model_name+'.pt')
        else:
            save_checkpoint({
                'epoch': epoch,
                'model_state_dict': model.module.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'accuracy': best_accuracy,
Anthony Larcher's avatar
Anthony Larcher committed
838
839
                'scheduler': scheduler,
                'speaker_number': speaker_number,
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
840
                'model_archi': model_archi
Anthony Larcher's avatar
Anthony Larcher committed
841
            }, is_best, filename=tmp_model_name+".pt", best_filename=best_model_name+'.pt')
Anthony Larcher's avatar
Anthony Larcher committed
842
843
844

        if is_best:
            best_accuracy_epoch = epoch
Anthony Larcher's avatar
Anthony Larcher committed
845
846
847
            curr_patience = patience
        else:
            curr_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
848
    #writer.close()
849

850
851
852
    for ii in range(torch.cuda.device_count()):
        print(torch.cuda.memory_summary(ii))

Anthony Larcher's avatar
Anthony Larcher committed
853
    logging.critical(f"Best accuracy {best_accuracy * 100.} obtained at epoch {best_accuracy_epoch}")
854

Anthony Larcher's avatar
Anthony Larcher committed
855
def train_epoch(model, epoch, training_loader, optimizer, log_interval, device, clipping=False, tb_writer=None):
856
857
858
859
    """

    :param model:
    :param epoch:
Anthony Larcher's avatar
Anthony Larcher committed
860
    :param training_loader:
861
    :param optimizer:
Anthony Larcher's avatar
Anthony Larcher committed
862
863
864
    :param log_interval:
    :param device:
    :param clipping:
865
866
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
867
    model.train()
Anthony Larcher's avatar
Anthony Larcher committed
868
    criterion = torch.nn.CrossEntropyLoss(reduction='mean')
869

Anthony Larcher's avatar
Anthony Larcher committed
870
871
872
873
874
    if isinstance(model, Xtractor):
        loss_criteria = model.loss
    else:
        loss_criteria = model.module.loss

875
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
876
    running_loss = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
877
    for batch_idx, (data, target) in enumerate(training_loader):
878
        target = target.squeeze()
Anthony Larcher's avatar
Anthony Larcher committed
879
        target = target.to(device)
880
        optimizer.zero_grad()
Anthony Larcher's avatar
Anthony Larcher committed
881
882
883
884
885
886

        if loss_criteria == 'aam':
            output = model(data.to(device), target=target)
        else:
            output = model(data.to(device), target=None)

Anthony Larcher's avatar
Anthony Larcher committed
887
        #with GuruMeditation():
Anthony Larcher's avatar
Anthony Larcher committed
888
        loss = criterion(output, target)
Anthony Larcher's avatar
Anthony Larcher committed
889
890
891
892
893
894
895
896
        if not torch.isnan(loss):
            loss.backward()
            if clipping:
                torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
            running_loss += loss.item()
            optimizer.step()

            running_loss += loss.item()
Anthony Larcher's avatar
Anthony Larcher committed
897
            accuracy += (torch.argmax(output.data, 1) == target).sum()
Anthony Larcher's avatar
Anthony Larcher committed
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
            if batch_idx % log_interval == 0:
                batch_size = target.shape[0]
                logging.critical('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                    epoch, batch_idx + 1, training_loader.__len__(),
                    100. * batch_idx / training_loader.__len__(), loss.item(),
                    100.0 * accuracy.item() / ((batch_idx + 1) * batch_size)))
                #tb_writer.add_scalar('training loss',
                #                     running_loss / log_interval,
                #                     epoch * len(training_loader) + batch_idx)
                #tb_writer.add_scalar('training_accuracy',
                #                      100.0 * accuracy.item() / ((batch_idx + 1) * batch_size),
                #                      epoch * len(training_loader) + batch_idx)

                # ...log a Matplotlib Figure showing the model's predictions on a
                # random mini-batch
                #tb_writer.add_figure('predictions vs. actuals',
                #                     plot_classes_preds(model, data.to(device), target.to(device)),
                #                     global_step=epoch * len(training_loader) + batch_idx)

917
918
919
920
921
922
923
924
925
926
927
928
929
        else:
            save_checkpoint({
                             'epoch': epoch,
                             'model_state_dict': model.state_dict(),
                             'optimizer_state_dict': optimizer.state_dict(),
                             'accuracy': 0.0,
                             'scheduler': 0.0
                             }, False, filename="model_loss_NAN.pt", best_filename='toto.pt')
            with open("batch_loss_NAN.pkl", "wb") as fh:
                pickle.dump(data.cpu(), fh)
            import sys
            sys.exit()
        running_loss = 0.0
930
931
932
    return model


Anthony Larcher's avatar
Anthony Larcher committed
933
def cross_validation(model, validation_loader, device):
934
935
936
    """

    :param model:
Anthony Larcher's avatar
Anthony Larcher committed
937
938
    :param validation_loader:
    :param device:
939
940
941
942
    :return:
    """
    model.eval()

Anthony Larcher's avatar
Anthony Larcher committed
943
944
945
946
947
    if isinstance(model, Xtractor):
        loss_criteria = model.loss
    else:
        loss_criteria = model.module.loss

948
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
949
    loss = 0.0
950
    criterion = torch.nn.CrossEntropyLoss()
Anthony Larcher's avatar
Anthony Larcher committed
951
952
953
954
    with torch.no_grad():
        for batch_idx, (data, target) in enumerate(validation_loader):
            batch_size = target.shape[0]
            target = target.squeeze()
Anthony Larcher's avatar
Anthony Larcher committed
955
956
957
958
959
960

            if loss_criteria == "aam":
                output = model(data.to(device), target=target)
            else:
                output = model(data.to(device), target=None)

Anthony Larcher's avatar
Anthony Larcher committed
961
            accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
962

Anthony Larcher's avatar
Anthony Larcher committed
963
            loss += criterion(output, target.to(device))
Anthony Larcher's avatar
Anthony Larcher committed
964

Anthony Larcher's avatar
Anthony Larcher committed
965
966
967
968
    return 100. * accuracy.cpu().numpy() / ((batch_idx + 1) * batch_size), \
           loss.cpu().numpy() / ((batch_idx + 1) * batch_size)


Anthony Larcher's avatar
Anthony Larcher committed
969
970
def extract_embeddings(idmap_name,
                       model_filename,
Anthony Larcher's avatar
Anthony Larcher committed
971
                       data_root_name,
Anthony Larcher's avatar
Anthony Larcher committed
972
                       device,
Anthony Larcher's avatar
Anthony Larcher committed
973
974
                       model_yaml=None,
                       speaker_number=None,
Anthony Larcher's avatar
Anthony Larcher committed
975
                       file_extension="wav",
976
                       transform_pipeline=None,
977
978
                       frame_shift=0.01,
                       frame_duration=0.025,
979
                       num_thread=1):
980
981
982
    # Load the model
    if isinstance(model_filename, str):
        checkpoint = torch.load(model_filename)
Anthony Larcher's avatar
Anthony Larcher committed
983
984
985
        if speaker_number is None:
            speaker_number = checkpoint["speaker_number"]
        if model_yaml is None:
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
986
987
            model_archi = checkpoint["model_archi"]
        model = Xtractor(speaker_number, model_archi=model_archi)
988
989
990
        model.load_state_dict(checkpoint["model_state_dict"])
    else:
        model = model_filename
Anthony Larcher's avatar
Anthony Larcher committed
991

Anthony Larcher's avatar
Anthony Larcher committed
992
    if isinstance(idmap_name, IdMap):
993
994
995
996
        idmap = idmap_name
    else:
        idmap = IdMap(idmap_name)

997
998
    min_duration = (model.context_size() - 1) * frame_shift + frame_duration

Anthony Larcher's avatar
Anthony Larcher committed
999
    # Create dataset to load the data
Anthony Larcher's avatar
Anthony Larcher committed
1000
    dataset = IdMapSet(idmap_name=idmap_name,