xvector.py 58.3 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
25
Copyright 2014-2021 Anthony Larcher, Yevhenii Prokopalo
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
30

import pdb
import traceback
Anthony Larcher's avatar
Anthony Larcher committed
31
import logging
Anthony Larcher's avatar
Anthony Larcher committed
32
import matplotlib.pyplot as plt
Anthony Larcher's avatar
Anthony Larcher committed
33
import multiprocessing
Anthony Larcher's avatar
Anthony Larcher committed
34
import os
Anthony Larcher's avatar
Anthony Larcher committed
35
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
36
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
37
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
38
import shutil
Anthony Larcher's avatar
Anthony Larcher committed
39
import sys
40
import time
Anthony Larcher's avatar
Anthony Larcher committed
41
import torch
Anthony Larcher's avatar
Anthony Larcher committed
42
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
43
44
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
45
from torchvision import transforms
Anthony Larcher's avatar
Anthony Larcher committed
46
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
47
from .xsets import SideSet
Anthony Larcher's avatar
debug    
Anthony Larcher committed
48
from .xsets import FileSet
Anthony Larcher's avatar
Anthony Larcher committed
49
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
50
from .res_net import RawPreprocessor, ResBlockWFMS
Anthony Larcher's avatar
Anthony Larcher committed
51
52
from ..bosaris import IdMap
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
53
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
54
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
55
from .sincnet import SincNet
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
56
57
58
from .loss import ArcLinear
from .loss import ArcFace
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
59

Anthony Larcher's avatar
ddp    
Anthony Larcher committed
60
61


Anthony Larcher's avatar
Anthony Larcher committed
62
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
63

Anthony Larcher's avatar
Anthony Larcher committed
64
65
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
66
__copyright__ = "Copyright 2015-2021 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
67
68
69
70
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
71
72


Anthony Larcher's avatar
Anthony Larcher committed
73
74
logging.basicConfig(format='%(asctime)s %(message)s')

Anthony Larcher's avatar
Anthony Larcher committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

# Make PyTorch Deterministic
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
numpy.random.seed(0)


class GuruMeditation (torch.autograd.detect_anomaly):
    
    def __init__(self):
        super(GuruMeditation, self).__init__()

    def __enter__(self):
        super(GuruMeditation, self).__enter__()
        return self

    def __exit__(self, type, value, trace):
        super(GuruMeditation, self).__exit__()
        if isinstance(value, RuntimeError):
            traceback.print_tb(trace)
            halt(str(value))

    def halt(msg):
        print (msg)
        pdb.set_trace()


def select_n_random(data, labels, n=100):
    '''
    Selects n random datapoints and their corresponding labels from a dataset
    '''
    assert len(data) == len(labels)

    perm = torch.randperm(len(data))
    return data[perm][:n], labels[perm][:n]


def matplotlib_imshow(img, one_channel=False):
    if one_channel:
        img = img.mean(dim=0)
    img = img / 2 + 0.5     # unnormalize
    npimg = img.cpu().numpy()
    if one_channel:
        plt.imshow(npimg, cmap="Greys")
    else:
        plt.imshow(np.transpose(npimg, (1, 2, 0)))

def speech_to_probs(model, speech):
    '''
    Generates predictions and corresponding probabilities from a trained
    network and a list of images
    '''
    output = model(speech)
    # convert output probabilities to predicted class
    _, preds_tensor = torch.max(output, 1)
    preds = numpy.squeeze(preds_tensor.cpu().numpy())
    return preds, [torch.nn.functional.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]


def plot_classes_preds(model, speech, labels):
    '''
Anthony Larcher's avatar
Anthony Larcher committed
137

Anthony Larcher's avatar
Anthony Larcher committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    Generates matplotlib Figure using a trained network, along with images
    and labels from a batch, that shows the network's top prediction along
    with its probability, alongside the actual label, coloring this
    information based on whether the prediction was correct or not.
    Uses the "speech_to_probs" function.
    '''
    preds, probs = speech_to_probs(model, speech)
    # plot the images in the batch, along with predicted and true labels
    fig = plt.figure(figsize=(12, 48))
    for idx in numpy.arange(4):
         ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])
         #matplotlib_imshow(speech[idx], one_channel=True)
         ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
                                                           preds[idx],
                                                           probs[idx] * 100.0,
                                                           labels[idx]),
                                                           color=("green" if preds[idx]==labels[idx].item() else "red"))
    return fig



159
def get_lr(optimizer):
Anthony Larcher's avatar
Anthony Larcher committed
160
161
162
163
164
    """

    :param optimizer:
    :return:
    """
165
166
167
168
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
169
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
170
171
172
173
174
175
176
177
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
178
179
180
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
181

Anthony Larcher's avatar
Anthony Larcher committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
class MeanStdPooling(torch.nn.Module):
    """
    Mean and Standard deviation pooling
    """
    def __init__(self):
        """

        """
        super(MeanStdPooling, self).__init__()
        pass

    def forward(self, x):
        """

        :param x:
        :return:
        """
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        return torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
202

Anthony Larcher's avatar
Anthony Larcher committed
203

Anthony Larcher's avatar
Anthony Larcher committed
204
205
206
207
208
209
210
211
212
213
214
class GruPooling(torch.nn.Module):
    """

    """
    def __init__(self, input_size, gru_node, nb_gru_layer):
        """

        :param input_size:
        :param gru_node:
        :param nb_gru_layer:
        """
Anthony Larcher's avatar
Anthony Larcher committed
215
        super(GruPooling, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        self.lrelu_keras = torch.nn.LeakyReLU(negative_slope = 0.3)
        self.bn_before_gru = torch.nn.BatchNorm1d(num_features = input_size)
        self.gru = torch.nn.GRU(input_size = input_size,
                          hidden_size = gru_node,
                          num_layers = nb_gru_layer,
                          batch_first = True)

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = self.bn_before_gru(x)
        x = self.lrelu_keras(x)
        x = x.permute(0, 2, 1)  #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
        x = x[:,-1,:]

        return x

Anthony Larcher's avatar
Anthony Larcher committed
238

Anthony Larcher's avatar
Anthony Larcher committed
239
class Xtractor(torch.nn.Module):
240
241
242
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
243

Anthony Larcher's avatar
Anthony Larcher committed
244
245
246
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
247
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
248
249
250
                 norm_embedding=False,
                 aam_margin=0.5,
                 aam_s=0.5):
Anthony Larcher's avatar
Anthony Larcher committed
251
252
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
253
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
254
        """
Anthony Larcher's avatar
Anthony Larcher committed
255
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
256
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
257
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
258
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
259

Anthony Larcher's avatar
Anthony Larcher committed
260
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
261
262
263
264
265
266

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
267
            self.feature_size = 30
Anthony Larcher's avatar
Anthony Larcher committed
268
269
270
            self.activation = torch.nn.LeakyReLU(0.2)

            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
271

Anthony Larcher's avatar
xv    
Anthony Larcher committed
272
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
273
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
274
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
275
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
276
277
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
278
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
279
280
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
281
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
282
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
283
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
284
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
285
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
286
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
287
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
288
289
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
290
291
            self.stat_pooling = MeanStdPooling()

Anthony Larcher's avatar
xv    
Anthony Larcher committed
292
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
293
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
294
295
            ]))

Anthony Larcher's avatar
Anthony Larcher committed
296
297
            if self.loss == "aam":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
298
                  ("arclinear", ArcLinear(512, int(self.speaker_number), margin=aam_margin, s=aam_s))
Anthony Larcher's avatar
Anthony Larcher committed
299
300
301
302
                ]))
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
303
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
304
305
306
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
307
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
308
309
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
310

Anthony Larcher's avatar
Anthony Larcher committed
311
312
313
314
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002

Anthony Larcher's avatar
Anthony Larcher committed
315
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
316
317
318
319
320
321

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
322
323
324
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
325
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
326
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
327
328
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
346
347
348
349
350
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
351
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
352
353
354
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
355

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
356
357
358
359
360
361
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
362
        else:
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
363
364
365
366
367
368
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
369

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
370
            self.loss = cfg["training"]["loss"]
Anthony Larcher's avatar
Anthony Larcher committed
371
            if self.loss == "aam":
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
372
373
                self.aam_margin = cfg["training"]["aam_margin"]
                self.aam_s = cfg["training"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
374

Anthony Larcher's avatar
Anthony Larcher committed
375
376
377
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
378
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
379
380
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
381
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
382
383
384
385
386
387
388
389
390
391
392
393
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
394
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
395
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
396
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
397
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
398
399
400
401
402
403
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
404
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
405
406

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
407
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
408
            """
Anthony Larcher's avatar
Anthony Larcher committed
409
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
410
411
412
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
428
429
430
431
432
433
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
434
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
435
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
436
437
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
438
439
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
440
441
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
442
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
443
444
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
445
446
447
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
448
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
449
450
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
451
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
452
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
453

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
454
455
456
457
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
458
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
459
460
461
462
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
463
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
464

Anthony Larcher's avatar
Anthony Larcher committed
465
466
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
467
            """
Anthony Larcher's avatar
Anthony Larcher committed
468
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
469
            """
Anthony Larcher's avatar
Anthony Larcher committed
470
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
471
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
472
473
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
474
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
475
476
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
477
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
478
479
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
480
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
481
482

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
483
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
484

Anthony Larcher's avatar
Anthony Larcher committed
485
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
486
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
487
488

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
489
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
490

Anthony Larcher's avatar
Anthony Larcher committed
491
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
492
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
493

Anthony Larcher's avatar
Anthony Larcher committed
494
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
495
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
496
497
498
499
500
501
502
503
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
504
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
505
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
506

Anthony Larcher's avatar
Anthony Larcher committed
507
508
509
510
511
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
512

Anthony Larcher's avatar
Anthony Larcher committed
513
514
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
515

Anthony Larcher's avatar
Anthony Larcher committed
516
517
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
518

Anthony Larcher's avatar
Anthony Larcher committed
519
520
521
522
523
524
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
525
                self.norm_embedding = True
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
526
527
528
529
530
531
532
                #self.after_speaker_embedding = ArcLinear(input_size,
                #                                         self.speaker_number,
                #                                         margin=self.aam_margin,
                #                                         s=self.aam_s)
                self.after_speaker_embedding = ArcFace(embedding_size=input_size,
                                                       classnum=self.speaker_number,
                                                       s=64.,
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
533
                                                       m=0.5)
Anthony Larcher's avatar
Anthony Larcher committed
534

Anthony Larcher's avatar
Anthony Larcher committed
535
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
536

Anthony Larcher's avatar
Anthony Larcher committed
537

Anthony Larcher's avatar
Anthony Larcher committed
538
    def forward(self, x, is_eval=False, target=None):
539
540
541
        """

        :param x:
Anthony Larcher's avatar
Anthony Larcher committed
542
        :param is_eval:
543
544
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
545
546
547
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
548
        x = self.sequence_network(x)
549

Anthony Larcher's avatar
Anthony Larcher committed
550
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
551
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
552
553

        x = self.before_speaker_embedding(x)
554

Anthony Larcher's avatar
Anthony Larcher committed
555
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
556
            #x_norm = x.norm(p=2,dim=1, keepdim=True) / 10. # Why  10. ?
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
557
558
559
            #x_norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True, out=None, dtype=None)
            #x = torch.div(x, x_norm)
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
560

Anthony Larcher's avatar
Anthony Larcher committed
561
562
563
        if is_eval:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
564
565
        if self.loss == "cce":
            x = self.after_speaker_embedding(x)
Anthony Larcher's avatar
Anthony Larcher committed
566

Anthony Larcher's avatar
Anthony Larcher committed
567
568
569
570
571
572
        elif self.loss == "aam":
            if not is_eval:
                x = self.after_speaker_embedding(x,target=target)
            else:
                x = self.after_speaker_embedding(x, target=None)

Anthony Larcher's avatar
Anthony Larcher committed
573
        return x
Anthony Larcher's avatar
Anthony Larcher committed
574

575
576
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
577
578
579
580
581
582
583
584
585
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
586

Anthony Larcher's avatar
Anthony Larcher committed
587
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
588
           dataset_yaml,
Anthony Larcher's avatar
Anthony Larcher committed
589
590
           epochs=None,
           lr=None,
Anthony Larcher's avatar
Anthony Larcher committed
591
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
592
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
593
594
595
596
           loss=None,
           aam_margin=None,
           aam_s=None,
           patience=None,
Anthony Larcher's avatar
Anthony Larcher committed
597
           tmp_model_name=None,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
598
           best_model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
599
           multi_gpu=True,
600
           clipping=False,
Anthony Larcher's avatar
Anthony Larcher committed
601
           opt=None,
Anthony Larcher's avatar
Anthony Larcher committed
602
603
           reset_parts=[],
           freeze_parts=[],
Anthony Larcher's avatar
Anthony Larcher committed
604
605
606
607
           num_thread=None,
           write_batches_to_disk=False,
           load_batches_from_disk=False,
           tmp_batch_dir=None):
608
609
    """

Anthony Larcher's avatar
Anthony Larcher committed
610
611
612
613
614
615
    :param speaker_number:
    :param dataset_yaml:
    :param epochs:
    :param lr:
    :param model_yaml:
    :param model_name:
Anthony Larcher's avatar
Anthony Larcher committed
616
617
618
619
    :param loss:
    :param aam_margin:
    :param aam_s:
    :param patience:
Anthony Larcher's avatar
Anthony Larcher committed
620
621
622
623
    :param tmp_model_name:
    :param best_model_name:
    :param multi_gpu:
    :param clipping:
Anthony Larcher's avatar
Anthony Larcher committed
624
625
626
    :param opt:
    :param reset_parts:
    :param freeze_parts:
Anthony Larcher's avatar
Anthony Larcher committed
627
    :param num_thread:
628
629
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
630
631
632
633
    # Add for tensorboard
    # Writer will output to ./runs/ directory by default
    #writer = SummaryWriter("runs/xvectors_experiments_2")
    writer = None
Anthony Larcher's avatar
Anthony Larcher committed
634

Anthony Larcher's avatar
Anthony Larcher committed
635
636
637
    if write_batches_to_disk:
        load_batches_from_disk = True

Anthony Larcher's avatar
Anthony Larcher committed
638
639
640
    if num_thread is None:
        num_thread = multiprocessing.cpu_count()

Anthony Larcher's avatar
Anthony Larcher committed
641
    logging.critical(f"Use {num_thread} cpus")
Anthony Larcher's avatar
Anthony Larcher committed
642
    logging.critical(f"Start process at {time.strftime('%H:%M:%S', time.localtime())}")
643

Anthony Larcher's avatar
Anthony Larcher committed
644
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Anthony Larcher's avatar
Anthony Larcher committed
645
    # Start from scratch
Anthony Larcher's avatar
Anthony Larcher committed
646
    if model_name is None and model_yaml in ["xvector", "rawnet2"]:
Anthony Larcher's avatar
Anthony Larcher committed
647
        # Initialize a first model
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
648
        if model_yaml == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
649
            model = Xtractor(speaker_number, "xvector")
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
650
        elif model_yaml == "rawnet2":
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
651
            model = Xtractor(speaker_number, "rawnet2")
Anthony Larcher's avatar
Anthony Larcher committed
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
    else:
        with open(model_yaml, 'r') as fh:
            model_archi = yaml.load(fh, Loader=yaml.FullLoader)
            if epochs is None:
                epochs = model_archi["training"]["epochs"]
            if patience is None:
                patience = model_archi["training"]["patience"]
            if opt is None:
                opt = model_archi["training"]["opt"]
            if lr is None:
                lr = model_archi["training"]["lr"]
            if loss is None:
                loss = model_archi["training"]["loss"]
            if aam_margin is None and model_archi["training"]["loss"] == "aam":
                aam_margin = model_archi["training"]["aam_margin"]
            if aam_s is None and model_archi["training"]["loss"] == "aam":
                aam_s = model_archi["training"]["aam_s"]
            if tmp_model_name is None:
                tmp_model_name = model_archi["training"]["tmp_model_name"]
            if best_model_name is None:
                best_model_name = model_archi["training"]["best_model_name"]
            if multi_gpu is None:
                multi_gpu = model_archi["training"]["multi_gpu"]
            if clipping is None:
                clipping = model_archi["training"]["clipping"]

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
678
        if model_name is None:
Anthony Larcher's avatar
Anthony Larcher committed
679
680
681
            model = Xtractor(speaker_number, model_yaml)

         # If we start from an existing model
Anthony Larcher's avatar
Anthony Larcher committed
682
        else:
Anthony Larcher's avatar
Anthony Larcher committed
683
684
685
            # Load the model
            logging.critical(f"*** Load model from = {model_name}")
            checkpoint = torch.load(model_name)
Anthony Larcher's avatar
Anthony Larcher committed
686
            model = Xtractor(speaker_number, model_yaml)
Anthony Larcher's avatar
Anthony Larcher committed
687

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
688
689
            """
            Here we remove all layers that we don't want to reload
Anthony Larcher's avatar
Anthony Larcher committed
690
        
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
691
692
693
694
695
696
697
698
699
700
701
702
703
            """
            pretrained_dict = checkpoint["model_state_dict"]
            for part in reset_parts:
                pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

            new_model_dict = model.state_dict()
            new_model_dict.update(pretrained_dict)
            model.load_state_dict(new_model_dict)

        # Freeze required layers
        for name, param in model.named_parameters():
            if name.split(".")[0] in freeze_parts:
                param.requires_grad = False
Anthony Larcher's avatar
Anthony Larcher committed
704

Anthony Larcher's avatar
Anthony Larcher committed
705
    print(model)
Anthony Larcher's avatar
Anthony Larcher committed
706

Anthony Larcher's avatar
Anthony Larcher committed
707
    if torch.cuda.device_count() > 1 and multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
708
709
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)
Anthony Larcher's avatar
Anthony Larcher committed
710
        #model = DDP(model)
Anthony Larcher's avatar
Anthony Larcher committed
711
712
    else:
        print("Train on a single GPU")
Anthony Larcher's avatar
Anthony Larcher committed
713
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
714

Anthony Larcher's avatar
debug    
Anthony Larcher committed
715
716
717
718
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])

Anthony Larcher's avatar
Anthony Larcher committed
719
720
721
    if load_batches_from_disk:
        train_batch_fn_format = tmp_batch_dir + "/train/train_{}_batch.h5"
        val_batch_fn_format = tmp_batch_dir + "/val/val_{}_batch.h5"
722

Anthony Larcher's avatar
Anthony Larcher committed
723
724
725
726
727
728
729
    if not load_batches_from_disk or write_batches_to_disk:
        """
        Set the dataloaders according to the dataset_yaml
        
        First we load the dataframe from CSV file in order to split it for training and validation purpose
        Then we provide those two 
        """
Anthony Larcher's avatar
Anthony Larcher committed
730

Anthony Larcher's avatar
minor    
Anthony Larcher committed
731
        if write_batches_to_disk or dataset_params["batch_size"] > 1:
Anthony Larcher's avatar
Anthony Larcher committed
732
733
734
735
            output_format = "numpy"
        else:
            output_format = "pytorch"

Anthony Larcher's avatar
Anthony Larcher committed
736
737
738
739
740
741
        training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"])
        torch.manual_seed(dataset_params['seed'])
        training_set = SideSet(dataset_yaml,
                               set_type="train",
                               dataset_df=training_df,
                               chunk_per_segment=dataset_params['train']['chunk_per_segment'],
Anthony Larcher's avatar
Anthony Larcher committed
742
743
                               overlap=dataset_params['train']['overlap'],
                               output_format=output_format)
Anthony Larcher's avatar
Anthony Larcher committed
744

Anthony Larcher's avatar
Anthony Larcher committed
745
746
747
748
        validation_set = SideSet(dataset_yaml,
                                 set_type="validation",
                                 dataset_df=validation_df,
                                 output_format=output_format)
Anthony Larcher's avatar
Anthony Larcher committed
749
750


Anthony Larcher's avatar
Anthony Larcher committed
751
        if write_batches_to_disk:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
752
            logging.critical("Start writing batches on disk")
Anthony Larcher's avatar
Anthony Larcher committed
753
754
            training_set.write_to_disk(dataset_params["batch_size"], train_batch_fn_format, num_thread)
            validation_set.write_to_disk(dataset_params["batch_size"], val_batch_fn_format, num_thread)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
755
            logging.critical("---> Done")
Anthony Larcher's avatar
Anthony Larcher committed
756
757

    if load_batches_from_disk:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
        training_set = FileSet(train_batch_fn_format)
        validation_set = FileSet(train_batch_fn_format)
        batch_size = 1
    else:
        batch_size = dataset_params["batch_size"]


    print(f"Size of batches = {batch_size}")
    training_loader = DataLoader(training_set,
                                 batch_size=batch_size,
                                 shuffle=True,
                                 drop_last=True,
                                 pin_memory=True,
                                 num_workers=num_thread)

    validation_loader = DataLoader(validation_set,
                                   batch_size=batch_size,
                                   drop_last=True,
                                   pin_memory=True,
                                   num_workers=num_thread)

Anthony Larcher's avatar
Anthony Larcher committed
779

Anthony Larcher's avatar
Anthony Larcher committed
780
781
782
    """
    Set the training options
    """
Anthony Larcher's avatar
Anthony Larcher committed
783
    if opt == 'adam':
Anthony Larcher's avatar
Anthony Larcher committed
784
        _optimizer = torch.optim.Adam
Anthony Larcher's avatar
Anthony Larcher committed
785
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
786
787
    elif opt == 'rmsprop':
        _optimizer = torch.optim.RMSprop
Anthony Larcher's avatar
Anthony Larcher committed
788
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
789
790
791
    else: # opt == 'sgd'
        _optimizer = torch.optim.SGD
        _options = {'lr': lr, 'momentum': 0.9}
Anthony Larcher's avatar
Anthony Larcher committed
792

Anthony Larcher's avatar
debug    
Anthony Larcher committed
793
794
795
796
797
798
799
800
801
802
803
804
805
    #params = [
    #    {
    #        'params': [
    #            param for name, param in model.named_parameters() if 'bn' not in name
    #        ]
    #    },
    #    {
    #        'params': [
    #            param for name, param in model.named_parameters() if 'bn' in name
    #        ],
    #        'weight_decay': 0
    #    },
    #]
Anthony Larcher's avatar
Anthony Larcher committed
806

Anthony Larcher's avatar
Anthony Larcher committed
807
    param_list = []
Anthony Larcher's avatar
Anthony Larcher committed
808
    if type(model) is Xtractor:
Anthony Larcher's avatar
Anthony Larcher committed
809
810
811
812
813
814
815
        if model.preprocessor is not None:
            param_list.append({'params': model.preprocessor.parameters(), 'weight_decay': model.preprocessor_weight_decay})
        param_list.append({'params': model.sequence_network.parameters(), 'weight_decay': model.sequence_network_weight_decay})
        param_list.append({'params': model.stat_pooling.parameters(), 'weight_decay': model.stat_pooling_weight_decay})
        param_list.append({'params': model.before_speaker_embedding.parameters(), 'weight_decay': model.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.after_speaker_embedding.parameters(), 'weight_decay': model.after_speaker_embedding_weight_decay})

Anthony Larcher's avatar
Anthony Larcher committed
816
    else:
Anthony Larcher's avatar
Anthony Larcher committed
817
818
819
820
821
822
823
824
825
        if model.module.preprocessor is not None:
            param_list.append({'params': model.module.preprocessor.parameters(), 'weight_decay': model.module.preprocessor_weight_decay})
        param_list.append({'params': model.module.sequence_network.parameters(), 'weight_decay': model.module.sequence_network_weight_decay})
        param_list.append({'params': model.module.stat_pooling.parameters(), 'weight_decay': model.module.stat_pooling_weight_decay})
        param_list.append({'params': model.module.before_speaker_embedding.parameters(), 'weight_decay': model.module.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.module.after_speaker_embedding.parameters(), 'weight_decay': model.module.after_speaker_embedding_weight_decay})


    optimizer = _optimizer(param_list, **_options)
Anthony Larcher's avatar
Anthony Larcher committed
826
827
828
829
830
831

    #optimizer = torch.optim.SGD(params,
    #                            lr=lr,
    #                            momentum=0.9,
    #                            weight_decay=0.0005)
    #print(f"Learning rate = {lr}")
Anthony Larcher's avatar
Anthony Larcher committed
832

Anthony Larcher's avatar
Anthony Larcher committed
833
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', verbose=True)
834

Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
835
    best_accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
836
    best_accuracy_epoch = 1
Anthony Larcher's avatar
Anthony Larcher committed
837
    curr_patience = patience
Anthony Larcher's avatar
Anthony Larcher committed
838
    for epoch in range(1, epochs + 1):
839
        # Process one epoch and return the current model
Anthony Larcher's avatar
Anthony Larcher committed
840
841
842
        if curr_patience == 0:
            print(f"Stopping at epoch {epoch} for cause of patience")
            break
Anthony Larcher's avatar
Anthony Larcher committed
843
844
845
846
847
848
        model = train_epoch(model,
                            epoch,
                            training_loader,
                            optimizer,
                            dataset_params["log_interval"],
                            device=device,
Anthony Larcher's avatar
Anthony Larcher committed
849
850
                            clipping=clipping,
                            tb_writer=writer)
851
852

        # Add the cross validation here
Anthony Larcher's avatar
Anthony Larcher committed
853
        accuracy, val_loss = cross_validation(model, validation_loader, device=device)
Anthony Larcher's avatar
Anthony Larcher committed
854
        logging.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Cross validation accuracy = {accuracy} %")
855
856
857
858

        # Decrease learning rate according to the scheduler policy
        scheduler.step(val_loss)

Anthony Larcher's avatar
Anthony Larcher committed
859
860
861
862
        # remember best accuracy and save checkpoint
        is_best = accuracy > best_accuracy
        best_accuracy = max(accuracy, best_accuracy)

Anthony Larcher's avatar
Anthony Larcher committed
863
864
865
866
867
868
        if type(model) is Xtractor:
            save_checkpoint({
                'epoch': epoch,
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'accuracy': best_accuracy,
Anthony Larcher's avatar
Anthony Larcher committed
869
870
                'scheduler': scheduler,
                'speaker_number' : speaker_number,
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
871
                'model_archi': model_archi
Anthony Larcher's avatar
Anthony Larcher committed
872
873
874
875
876
877
878
            }, is_best, filename=tmp_model_name+".pt", best_filename=best_model_name+'.pt')
        else:
            save_checkpoint({
                'epoch': epoch,
                'model_state_dict': model.module.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'accuracy': best_accuracy,
Anthony Larcher's avatar
Anthony Larcher committed
879
880
                'scheduler': scheduler,
                'speaker_number': speaker_number,
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
881
                'model_archi': model_archi
Anthony Larcher's avatar
Anthony Larcher committed
882
            }, is_best, filename=tmp_model_name+".pt", best_filename=best_model_name+'.pt')
Anthony Larcher's avatar
Anthony Larcher committed
883
884
885

        if is_best:
            best_accuracy_epoch = epoch
Anthony Larcher's avatar
Anthony Larcher committed
886
887
888
            curr_patience = patience
        else:
            curr_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
889
    #writer.close()
890

891
892
893
    for ii in range(torch.cuda.device_count()):
        print(torch.cuda.memory_summary(ii))

Anthony Larcher's avatar
Anthony Larcher committed
894
    logging.critical(f"Best accuracy {best_accuracy * 100.} obtained at epoch {best_accuracy_epoch}")
895

Anthony Larcher's avatar
Anthony Larcher committed
896
def train_epoch(model, epoch, training_loader, optimizer, log_interval, device, clipping=False, tb_writer=None):
897
898
899
900
    """

    :param model:
    :param epoch:
Anthony Larcher's avatar
Anthony Larcher committed
901
    :param training_loader:
902
    :param optimizer:
Anthony Larcher's avatar
Anthony Larcher committed
903
904
905
    :param log_interval:
    :param device:
    :param clipping:
906
907
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
908
    model.train()
Anthony Larcher's avatar
Anthony Larcher committed
909
    criterion = torch.nn.CrossEntropyLoss(reduction='mean')
910

Anthony Larcher's avatar
Anthony Larcher committed
911
912
913
914
915
    if isinstance(model, Xtractor):
        loss_criteria = model.loss
    else:
        loss_criteria = model.module.loss

916
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
917
    running_loss = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
918
    for batch_idx, (data, target) in enumerate(training_loader):
Anthony Larcher's avatar
debug    
Anthony Larcher committed
919
        data = data.squeeze().to(device)
920
        target = target.squeeze()
Anthony Larcher's avatar
Anthony Larcher committed
921
        target = target.to(device)
922
        optimizer.zero_grad()
Anthony Larcher's avatar
Anthony Larcher committed
923
924

        if loss_criteria == 'aam':
Anthony Larcher's avatar
debug    
Anthony Larcher committed
925
            output = model(data, target=target)
Anthony Larcher's avatar
Anthony Larcher committed
926
        else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
927
            output = model(data, target=None)
Anthony Larcher's avatar
Anthony Larcher committed
928

Anthony Larcher's avatar
Anthony Larcher committed
929
        #with GuruMeditation():
Anthony Larcher's avatar
Anthony Larcher committed
930
        loss = criterion(output, target)
Anthony Larcher's avatar
Anthony Larcher committed
931
932
933
934
935
936
937
938
        if not torch.isnan(loss):
            loss.backward()
            if clipping:
                torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
            running_loss += loss.item()
            optimizer.step()

            running_loss += loss.item()
Anthony Larcher's avatar
Anthony Larcher committed
939
            accuracy += (torch.argmax(output.data, 1) == target).sum()
Anthony Larcher's avatar
Anthony Larcher committed
940
941
            if batch_idx % log_interval == 0:
                batch_size = target.shape[0]
Anthony Larcher's avatar
debug    
Anthony Larcher committed
942
943
                logging.critical('{}, Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                    time.strftime('%H:%M:%S', time.localtime()),
Anthony Larcher's avatar
Anthony Larcher committed
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
                    epoch, batch_idx + 1, training_loader.__len__(),
                    100. * batch_idx / training_loader.__len__(), loss.item(),
                    100.0 * accuracy.item() / ((batch_idx + 1) * batch_size)))
                #tb_writer.add_scalar('training loss',
                #                     running_loss / log_interval,
                #                     epoch * len(training_loader) + batch_idx)
                #tb_writer.add_scalar('training_accuracy',
                #                      100.0 * accuracy.item() / ((batch_idx + 1) * batch_size),
                #                      epoch * len(training_loader) + batch_idx)

                # ...log a Matplotlib Figure showing the model's predictions on a
                # random mini-batch
                #tb_writer.add_figure('predictions vs. actuals',
                #                     plot_classes_preds(model, data.to(device), target.to(device)),
                #                     global_step=epoch * len(training_loader) + batch_idx)

960
961
962
963
964
965
966
967
968
969
970
971
972
        else:
            save_checkpoint({
                             'epoch': epoch,
                             'model_state_dict': model.state_dict(),
                             'optimizer_state_dict': optimizer.state_dict(),
                             'accuracy': 0.0,
                             'scheduler': 0.0
                             }, False, filename="model_loss_NAN.pt", best_filename='toto.pt')
            with open("batch_loss_NAN.pkl", "wb") as fh:
                pickle.dump(data.cpu(), fh)
            import sys
            sys.exit()
        running_loss = 0.0
973
974
975
    return model


Anthony Larcher's avatar
Anthony Larcher committed
976
def cross_validation(model, validation_loader, device):
977
978
979
    """

    :param model:
Anthony Larcher's avatar
Anthony Larcher committed
980
981
    :param validation_loader:
    :param device:
982
983
984
985
    :return:
    """
    model.eval()

Anthony Larcher's avatar
Anthony Larcher committed
986
987
988
989
990
    if isinstance(model, Xtractor):
        loss_criteria = model.loss
    else:
        loss_criteria = model.module.loss

991
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
992
    loss = 0.0
993
    criterion = torch.nn.CrossEntropyLoss()
Anthony Larcher's avatar
Anthony Larcher committed
994
995
    with torch.no_grad():
        for batch_idx, (data, target) in enumerate(validation_loader):
Anthony Larcher's avatar
Anthony Larcher committed
996
            batch_size = target.shape[0]
Anthony Larcher's avatar
Anthony Larcher committed
997
998
            target = target.squeeze().to(device)
            data = data.squeeze().to(device) 
Anthony Larcher's avatar
Anthony Larcher committed
999
1000

            if loss_criteria == "aam":