xvector.py 72.9 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
25
Copyright 2014-2021 Anthony Larcher, Yevhenii Prokopalo
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28

Anthony Larcher's avatar
Anthony Larcher committed
29
import logging
Anthony Larcher's avatar
debug    
Anthony Larcher committed
30
import math
Anthony Larcher's avatar
Anthony Larcher committed
31
import os
Anthony Larcher's avatar
Anthony Larcher committed
32
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
33
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
34
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
35
import shutil
Anthony Larcher's avatar
Anthony Larcher committed
36
import tabulate
37
import time
Anthony Larcher's avatar
Anthony Larcher committed
38
import torch
Anthony Larcher's avatar
debug    
Anthony Larcher committed
39
import torchaudio
Anthony Larcher's avatar
Anthony Larcher committed
40
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
41
42
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
43
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
44
45
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
46
47
48
from .pooling import MeanStdPooling
from .pooling import AttentivePooling
from .pooling import GruPooling
Anthony Larcher's avatar
Anthony Larcher committed
49
50
51
from .preprocessor import MfccFrontEnd
from .preprocessor import MelSpecFrontEnd
from .preprocessor import RawPreprocessor
Anthony Larcher's avatar
Anthony Larcher committed
52
from .xsets import SideSet
Anthony Larcher's avatar
Anthony Larcher committed
53
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
54
from .xsets import IdMapSetPerSpeaker
Anthony Larcher's avatar
Anthony Larcher committed
55
from .xsets import SideSampler
Anthony Larcher's avatar
Anthony Larcher committed
56
57
58
59
from .res_net import ResBlockWFMS
from .res_net import ResBlock
from .res_net import PreResNet34
from .res_net import PreFastResNet34
Anthony Larcher's avatar
Anthony Larcher committed
60
from ..bosaris import IdMap
Anthony Larcher's avatar
Anthony Larcher committed
61
62
from ..bosaris import Key
from ..bosaris import Ndx
Anthony Larcher's avatar
Anthony Larcher committed
63
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
64
from ..iv_scoring import cosine_scoring
Anthony Larcher's avatar
Anthony Larcher committed
65
from .sincnet import SincNet
Anthony Larcher's avatar
merge    
Anthony Larcher committed
66
from ..bosaris.detplot import rocch, rocch2eer
Anthony Larcher's avatar
merge    
Anthony Larcher committed
67
from .loss import SoftmaxAngularProto, ArcLinear
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
68
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
69
from .loss import ArcMarginProduct
Anthony Larcher's avatar
Anthony Larcher committed
70

Anthony Larcher's avatar
Anthony Larcher committed
71

Anthony Larcher's avatar
Anthony Larcher committed
72
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
73

Anthony Larcher's avatar
Anthony Larcher committed
74
75
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
76
__copyright__ = "Copyright 2015-2021 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
77
78
79
80
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
81
82


Anthony Larcher's avatar
Anthony Larcher committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
def eer(negatives, positives):
    """Logarithmic complexity EER computation

    Args:
        negative_scores (numpy array): impostor scores
        positive_scores (numpy array): genuine scores

    Returns:
        float: Equal Error Rate (EER)
    """

    positives = numpy.sort(positives)
    negatives = numpy.sort(negatives)[::-1]

    pos_count = positives.shape[0]
    neg_count = negatives.shape[0]

    p_score = positives[0]
    n_score = negatives[0]

    p_index = 0
    n_index = 0

    next_p_jump = pos_count//2
    next_n_jump = neg_count//2

    kdx = 0
    while True:
        kdx += 1
        if p_index < 0 or n_index < 0:
            return 0
        if p_index > pos_count or n_index > neg_count:
            return 100
        if p_score < n_score:
            p_index = p_index + next_p_jump
            n_index = n_index + next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break
        elif p_score >= n_score:
            p_index = p_index - next_p_jump
            n_index = n_index - next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break

        p_score = positives[p_index]
        n_score = negatives[n_index]
        next_p_jump = next_p_jump//2
        next_n_jump = next_n_jump//2

    eer_predicate = 100

    tfr = (abs(p_index))/pos_count
    tfa = (1+abs(n_index))/neg_count
    if (p_score == n_score and tfr == tfa):
        return tfr

    while positives[p_index] < negatives[n_index]:
        if p_index < pos_count - 1:
            p_index += 1
        elif n_index < neg_count - 1:
            n_index += 1
        else:
            break

    while positives[p_index] > negatives[n_index] and n_index >= 1:
        n_index -= 1

    tfr = (1+p_index)/pos_count
    tfa = (1+n_index)/neg_count

    while tfa > tfr:
        p_index += 1
        while positives[p_index] > negatives[n_index] and n_index >= 1:
            n_index -= 1
        tfr = (1+p_index)/pos_count
        tfa = (1+n_index)/neg_count

    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    tfr = p_index/pos_count
    tfa = (1+n_index)/neg_count
    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    while True:
        while negatives[n_index + 1] <= positives[p_index - 1]:
            p_index -= 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer
        while negatives[n_index + 1] > positives[p_index - 1]:
            n_index += 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer

    return eer


Anthony Larcher's avatar
debug    
Anthony Larcher committed
197
198
def test_metrics(model,
                 device,
Anthony Larcher's avatar
Anthony Larcher committed
199
200
201
                 model_opts,
                 data_opts,
                 train_opts):
Anthony Larcher's avatar
Anthony Larcher committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
    transform_pipeline = dict()

Anthony Larcher's avatar
Anthony Larcher committed
220
    xv_stat = extract_embeddings(idmap_name=data_opts["test"]["idmap"],
Anthony Larcher's avatar
Anthony Larcher committed
221
                                 model_filename=model,
Anthony Larcher's avatar
Anthony Larcher committed
222
                                 data_root_name=data_opts["test"]["data_path"],
Anthony Larcher's avatar
Anthony Larcher committed
223
                                 device=device,
Anthony Larcher's avatar
Anthony Larcher committed
224
                                 loss=model_opts["loss"]["type"],
Anthony Larcher's avatar
Anthony Larcher committed
225
                                 transform_pipeline=transform_pipeline,
Anthony Larcher's avatar
Anthony Larcher committed
226
                                 num_thread=train_opts["num_cpu"],
Anthony Larcher's avatar
Anthony Larcher committed
227
228
229
230
                                 mixed_precision=train_opts["mixed_precision"])

    tar, non = cosine_scoring(xv_stat,
                              xv_stat,
Anthony Larcher's avatar
Anthony Larcher committed
231
                              Ndx(data_opts["test"]["ndx"]),
Anthony Larcher's avatar
Anthony Larcher committed
232
233
234
                              wccn=None,
                              check_missing=True,
                              device=device
Anthony Larcher's avatar
Anthony Larcher committed
235
                              ).get_tar_non(Key(data_opts["test"]["key"]))
Anthony Larcher's avatar
Anthony Larcher committed
236
237
238
239
240
241

    #test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))
    pmiss, pfa = rocch(tar, non)

    return rocch2eer(pmiss, pfa)

Anthony Larcher's avatar
Anthony Larcher committed
242

Anthony Larcher's avatar
Anthony Larcher committed
243
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
244
245
246
247
248
249
250
251
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
252
253
254
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
255

Anthony Larcher's avatar
Anthony Larcher committed
256

Anthony Larcher's avatar
Anthony Larcher committed
257
class TrainingMonitor():
Anthony Larcher's avatar
Anthony Larcher committed
258
    """
Anthony Larcher's avatar
Anthony Larcher committed
259

Anthony Larcher's avatar
Anthony Larcher committed
260
    """
Anthony Larcher's avatar
Anthony Larcher committed
261
    def __init__(self,
Anthony Larcher's avatar
Anthony Larcher committed
262
                 output_file,
Anthony Larcher's avatar
Anthony Larcher committed
263
                 log_interval=10,
Anthony Larcher's avatar
Anthony Larcher committed
264
265
                 patience=numpy.inf,
                 best_accuracy=0.0,
Anthony Larcher's avatar
Anthony Larcher committed
266
                 best_eer_epoch=1,
Anthony Larcher's avatar
Anthony Larcher committed
267
268
269
                 best_eer=100,
                 compute_test_eer=False
                 ):
Anthony Larcher's avatar
Anthony Larcher committed
270

Anthony Larcher's avatar
Anthony Larcher committed
271
        self.current_epoch = 0
Anthony Larcher's avatar
Anthony Larcher committed
272
        self.log_interval = log_interval
Anthony Larcher's avatar
Anthony Larcher committed
273
274
275
        self.init_patience = patience
        self.current_patience = patience
        self.best_accuracy = best_accuracy
Anthony Larcher's avatar
Anthony Larcher committed
276
        self.best_eer_epoch = best_eer_epoch
Anthony Larcher's avatar
Anthony Larcher committed
277
        self.best_eer = best_eer
Anthony Larcher's avatar
Anthony Larcher committed
278
        self.compute_test_eer = compute_test_eer
Anthony Larcher's avatar
Anthony Larcher committed
279
        self.test_eer = []
Anthony Larcher's avatar
Anthony Larcher committed
280
281
282
283

        self.training_loss = []
        self.training_acc = []

Anthony Larcher's avatar
Anthony Larcher committed
284
285
        self.val_loss = []
        self.val_acc = []
Anthony Larcher's avatar
Anthony Larcher committed
286
287
        self.val_eer = []

Anthony Larcher's avatar
Anthony Larcher committed
288
289
        self.is_best = True

Anthony Larcher's avatar
Anthony Larcher committed
290
        # Initialize the logger
Anthony Larcher's avatar
Anthony Larcher committed
291
        logging_format = '%(asctime)-15s %(message)s'
Anthony Larcher's avatar
Anthony Larcher committed
292
        logging.basicConfig(level=logging.DEBUG, format=logging_format, datefmt='%m-%d %H:%M')
Anthony Larcher's avatar
Anthony Larcher committed
293
294
        self.logger = logging.getLogger('Monitoring')
        self.logger.setLevel(logging.DEBUG)
Anthony Larcher's avatar
Anthony Larcher committed
295
296
        # create file handler which logs even debug messages
        fh = logging.FileHandler(output_file)
Anthony Larcher's avatar
Anthony Larcher committed
297
298
        formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
        fh.setFormatter(formatter)
Anthony Larcher's avatar
Anthony Larcher committed
299
        fh.setLevel(logging.DEBUG)
Anthony Larcher's avatar
Anthony Larcher committed
300
        self.logger.addHandler(fh)
Anthony Larcher's avatar
Anthony Larcher committed
301

Anthony Larcher's avatar
Anthony Larcher committed
302
303
304
305
306
307
    def display(self):
        """

        :return:
        """
        # TODO
Anthony Larcher's avatar
Anthony Larcher committed
308
309
        self.logger.critical(f"***Validation metrics - Cross validation accuracy = {self.val_acc[-1]} %, EER = {self.val_eer[-1] * 100} %")
        self.logger.critical(f"***Test metrics - Test EER = {self.test_eer[-1] * 100} %")
Anthony Larcher's avatar
Anthony Larcher committed
310
311
312
313
314
315

    def display_final(self):
        """

        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
316
        self.logger.critical(f"Best accuracy {self.best_accuracy * 100.} obtained at epoch {self.best_accuracy_epoch}")
Anthony Larcher's avatar
Anthony Larcher committed
317
318

    def update(self,
Anthony Larcher's avatar
Anthony Larcher committed
319
               epoch=None,
Anthony Larcher's avatar
Anthony Larcher committed
320
321
               training_acc=None,
               training_loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
322
323
324
325
326
               test_eer=None,
               val_eer=None,
               val_loss=None,
               val_acc=None):

Anthony Larcher's avatar
Anthony Larcher committed
327
328
329
        if epoch is not None:
            self.current_epoch = epoch
        if training_acc is not None:
Anthony Larcher's avatar
Anthony Larcher committed
330
            self.training_acc.append(training_acc)
Anthony Larcher's avatar
Anthony Larcher committed
331
        if training_loss is not None:
Anthony Larcher's avatar
Anthony Larcher committed
332
            self.training_loss.append(training_loss)
Anthony Larcher's avatar
Anthony Larcher committed
333
        if val_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
334
            self.val_eer.append(val_eer)
Anthony Larcher's avatar
Anthony Larcher committed
335
        if val_loss is not None:
Anthony Larcher's avatar
Anthony Larcher committed
336
            self.val_loss.append(val_loss)
Anthony Larcher's avatar
Anthony Larcher committed
337
        if val_acc is not None:
Anthony Larcher's avatar
Anthony Larcher committed
338
            self.val_acc.append(val_acc)
Anthony Larcher's avatar
Anthony Larcher committed
339
340

        # remember best accuracy and save checkpoint
Anthony Larcher's avatar
Anthony Larcher committed
341
        if self.compute_test_eer and test_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
342
343
344
            self.test_eer.append(test_eer)
            self.is_best = test_eer < self.best_eer
            self.best_eer = min(test_eer, self.best_eer)
Anthony Larcher's avatar
Anthony Larcher committed
345
346
347
348
349
            if self.is_best:
                self.best_eer_epoch = epoch
                self.current_patience = self.init_patience
            else:
                self.current_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
350
        elif val_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
351
352
            self.is_best = val_eer < self.best_eer
            self.best_eer = min(val_eer, self.best_eer)
Anthony Larcher's avatar
Anthony Larcher committed
353
354
355
356
357
            if self.is_best:
                self.best_eer_epoch = epoch
                self.current_patience = self.init_patience
            else:
                self.current_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
358
359


Anthony Larcher's avatar
Anthony Larcher committed
360
class Xtractor(torch.nn.Module):
361
362
363
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
364

Anthony Larcher's avatar
Anthony Larcher committed
365
366
367
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
368
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
369
                 norm_embedding=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
370
371
                 aam_margin=0.2,
                 aam_s=30):
Anthony Larcher's avatar
Anthony Larcher committed
372
373
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
374
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
375
        """
Anthony Larcher's avatar
Anthony Larcher committed
376
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
377
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
378
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
379
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
380

Anthony Larcher's avatar
Anthony Larcher committed
381
382
        print(f"Speaker number : {self.speaker_number}")

Anthony Larcher's avatar
Anthony Larcher committed
383
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
384

Anthony Larcher's avatar
Anthony Larcher committed
385
386
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
387
388
389
390
391
            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
392
393
            self.activation = torch.nn.LeakyReLU(0.2)

Anthony Larcher's avatar
Anthony Larcher committed
394
            self.preprocessor = MfccFrontEnd()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
395
            self.feature_size = self.preprocessor.n_mfcc
Anthony Larcher's avatar
Anthony Larcher committed
396

Anthony Larcher's avatar
xv    
Anthony Larcher committed
397
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
398
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
399
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
400
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
401
402
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
403
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
404
405
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
406
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
407
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
408
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
409
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
410
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
411
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
412
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
413
414
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
415
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
416
            self.stat_pooling_weight_decay = 0
Anthony Larcher's avatar
xv    
Anthony Larcher committed
417
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
418
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
419
420
            ]))

421
422
            self.embedding_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
423
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
424
425
426
427
428
                self.after_speaker_embedding = ArcMarginProduct(512,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)
Anthony Larcher's avatar
Anthony Larcher committed
429
430
431
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
432
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
433
434
435
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
436
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
437
438
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
439

440
            self.preprocessor_weight_decay = 0.0002
Anthony Larcher's avatar
debug    
Anthony Larcher committed
441
442
443
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002
444
            self.embedding_size = 512
Anthony Larcher's avatar
Anthony Larcher committed
445

Anthony Larcher's avatar
Anthony Larcher committed
446
        elif model_archi == "resnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
447

Anthony Larcher's avatar
Anthony Larcher committed
448
            self.preprocessor = MelSpecFrontEnd(n_mels=80)
Anthony Larcher's avatar
Anthony Larcher committed
449
            self.sequence_network = PreResNet34()
Anthony Larcher's avatar
Anthony Larcher committed
450
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
451

Anthony Larcher's avatar
Anthony Larcher committed
452
453
            self.before_speaker_embedding = torch.nn.Linear(in_features=5120,
                                                            out_features=self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
454
455
456
457

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

458
            self.loss = "aam"
Anthony Larcher's avatar
Anthony Larcher committed
459
            self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
Anthony Larcher's avatar
Anthony Larcher committed
460
461
                                                            int(self.speaker_number),
                                                            s = 30.0,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
462
                                                            m = 0.20,
Anthony Larcher's avatar
Anthony Larcher committed
463
                                                            easy_margin = False)
Anthony Larcher's avatar
Anthony Larcher committed
464
465
466
467
468
469
470

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
471
        elif model_archi == "fastresnet34":
Anthony Larcher's avatar
Anthony Larcher committed
472
            self.preprocessor = MelSpecFrontEnd()
Anthony Larcher's avatar
Anthony Larcher committed
473
            self.sequence_network = PreFastResNet34()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
474
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
475

Anthony Larcher's avatar
Anthony Larcher committed
476
            self.before_speaker_embedding = torch.nn.Linear(in_features = 2560,
Anthony Larcher's avatar
Anthony Larcher committed
477
                                                            out_features = self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
478
479
480
481

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

Anthony Larcher's avatar
merge    
Anthony Larcher committed
482
483
484
485
            self.loss = loss
            if self.loss == "aam":
                self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
                                                                int(self.speaker_number),
Anthony Larcher's avatar
merge    
Anthony Larcher committed
486
487
                                                                s = 30,
                                                                m = 0.2,
Anthony Larcher's avatar
merge    
Anthony Larcher committed
488
489
490
491
                                                                easy_margin = False)

            elif self.loss == 'aps':
                self.after_speaker_embedding = SoftmaxAngularProto(int(self.speaker_number))
Anthony Larcher's avatar
Anthony Larcher committed
492

Anthony Larcher's avatar
Anthony Larcher committed
493
494
495
496
497
            self.preprocessor_weight_decay = 0.00002
            self.sequence_network_weight_decay = 0.00002
            self.stat_pooling_weight_decay = 0.00002
            self.before_speaker_embedding_weight_decay = 0.00002
            self.after_speaker_embedding_weight_decay = 0.0002
Anthony Larcher's avatar
Anthony Larcher committed
498

Anthony Larcher's avatar
Anthony Larcher committed
499
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
500
501
502
503
504
505

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
506
507
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
508
509
510
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
511
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
512
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
513
514
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
532
533
534
535
536
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
537
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
538
539
540
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
541

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
542
543
544
545
546
547
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
548
        else:
Anthony Larcher's avatar
Anthony Larcher committed
549
550
            is_first_resblock = True

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
551
552
553
554
555
556
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
557

Anthony Larcher's avatar
Anthony Larcher committed
558
            self.loss = cfg["loss"]["type"]
Anthony Larcher's avatar
Anthony Larcher committed
559
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
560
561
                self.aam_margin = cfg["loss"]["aam_margin"]
                self.aam_s = cfg["loss"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
562

Anthony Larcher's avatar
Anthony Larcher committed
563
564
565
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
566
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
567
568
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
569
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
570
571
572
573
574
575
576
577
578
579
580
581
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
582
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
583
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
584
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
585
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
586
587
588
589
590
591
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
592
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
593
594

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
595
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
596
            """
Anthony Larcher's avatar
Anthony Larcher committed
597
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
598
            if self.feature_size is None:
Anthony Larcher's avatar
Anthony Larcher committed
599
                self.feature_size = cfg["preprocessor"]["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
600

Anthony Larcher's avatar
Anthony Larcher committed
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
616
617
618
619
620
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

Anthony Larcher's avatar
Anthony Larcher committed
621
622
623
624
625
                elif k.startswith("conv2D"):
                    segmental_layers.append((k, torch.nn.Conv2d(in_channels=1,
                                                                out_channels=entry_conv_out_channels,
                                                                kernel_size=entry_conv_kernel_size,
                                                                padding=3,
Anthony Larcher's avatar
Anthony Larcher committed
626
                                                                stride=1)))
Anthony Larcher's avatar
Anthony Larcher committed
627

Anthony Larcher's avatar
Anthony Larcher committed
628
                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
629
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
630
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
631
632
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
633
634
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
635
636
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
637
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
638
639
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
640
641
642
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
643
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
644
645
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
646
647
648
649
650
651
                elif k.startswith('resblock'):
                    segmental_layers.append((ResBlock(cfg["segmental"][k]["input_channel"],
                                                      cfg["segmental"][k]["output_channel"],
                                                      is_first_resblock)))
                    is_first_resblock = False

Anthony Larcher's avatar
Anthony Larcher committed
652
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
653
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
654

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
655
656
657
658
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
659
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
660
661
662
663
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
664
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
665

Anthony Larcher's avatar
Anthony Larcher committed
666
667
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
668
            """
Anthony Larcher's avatar
Anthony Larcher committed
669
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
670
            """
Anthony Larcher's avatar
Anthony Larcher committed
671
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
672
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
673
674
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
675
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
676
677
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
678
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
679
680
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
681
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
682
683

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
684
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
685

Anthony Larcher's avatar
Anthony Larcher committed
686
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
687
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
688
689

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
690
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
691

Anthony Larcher's avatar
Anthony Larcher committed
692
            self.embedding_size = input_size
Anthony Larcher's avatar
Anthony Larcher committed
693
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
694
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
695

Anthony Larcher's avatar
Anthony Larcher committed
696
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
697
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
698
699
700
701
702
703
704
705
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
706
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
707
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
708

Anthony Larcher's avatar
Anthony Larcher committed
709
710
711
712
713
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
714

Anthony Larcher's avatar
Anthony Larcher committed
715
716
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
717

Anthony Larcher's avatar
Anthony Larcher committed
718
719
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
720

Anthony Larcher's avatar
Anthony Larcher committed
721
722
723
724
725
726
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
727
728
729
730
731
732
733
                self.norm_embedding = True
                self.after_speaker_embedding = ArcMarginProduct(input_size,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)

Anthony Larcher's avatar
Anthony Larcher committed
734
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
735

736
    def forward(self, x, is_eval=False, target=None, extract_after_pooling=False):
737
738
739
        """

        :param x:
740
        :param is_eval: False for training
741
742
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
743
        if self.preprocessor is not None:
Anthony Larcher's avatar
merge    
Anthony Larcher committed
744
            x = self.preprocessor(x, is_eval)
Anthony Larcher's avatar
Anthony Larcher committed
745

Anthony Larcher's avatar
Anthony Larcher committed
746
        x = self.sequence_network(x)
747

Anthony Larcher's avatar
Anthony Larcher committed
748
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
749
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
750

751
752
753
        if extract_after_pooling:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
754
        x = self.before_speaker_embedding(x)
755

Anthony Larcher's avatar
Anthony Larcher committed
756
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
757
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
758

Anthony Larcher's avatar
Anthony Larcher committed
759
        if self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
760
            if is_eval:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
761
                return x
Anthony Larcher's avatar
debug    
Anthony Larcher committed
762
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
763
                return self.after_speaker_embedding(x), x
Anthony Larcher's avatar
Anthony Larcher committed
764

Anthony Larcher's avatar
merge    
Anthony Larcher committed
765
        elif self.loss in ['aam', 'aps']:
Anthony Larcher's avatar
merge    
Anthony Larcher committed
766
767
768
769
770
            x = self.after_speaker_embedding(x, target=target), torch.nn.functional.normalize(x, dim=1)
        elif self.loss == 'smn':
            if not is_eval:
                x = self.after_speaker_embedding(x, target=target), x

Anthony Larcher's avatar
Anthony Larcher committed
771

Anthony Larcher's avatar
Anthony Larcher committed
772
        return x
Anthony Larcher's avatar
Anthony Larcher committed
773

774
775
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
776
777
778
779
780
781
782
783
784
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
785

Anthony Larcher's avatar
Anthony Larcher committed
786

Anthony Larcher's avatar
Anthony Larcher committed
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
def fill_dict(target_dict, source_dict, prefix = ""):
    """
    Recursively Fill a dictionary target_dict by taking values from source_dict

    :param target_dict: output dictionary that is initialized with default values
    :param source_dict: input dictionary
    :return:
    """
    for k1, v1 in target_dict.items():

        if isinstance(v1, dict):
            if k1 in source_dict and isinstance(source_dict[k1], dict):
                #print(f"\n{prefix}{k1}")
                fill_dict(v1, source_dict[k1], prefix + "\t")
                #print("\n")
            else:
                #print(f"{prefix}{k1} set to default value: {target_dict[k1]}")
                pass
        else:
            if k1 in source_dict and source_dict[k1] is not None:
                target_dict[k1] = source_dict[k1]
                #print(f"{prefix}{k1} set to: {source_dict[k1]}")
            else:
                #print(f"{prefix}{k1} set to default value: {target_dict[k1]}")
                pass


Anthony Larcher's avatar
Anthony Larcher committed
814
815
def update_training_dictionary(dataset_description,
                               model_description,
Anthony Larcher's avatar
Anthony Larcher committed
816
817
                               training_description,
                               kwargs=None):
Anthony Larcher's avatar
Anthony Larcher committed
818
819
    """

Anthony Larcher's avatar
Anthony Larcher committed
820
821
822
823
    :param dataset_description:
    :param model_description:
    :param training_description:
    :param kwargs:
Anthony Larcher's avatar
Anthony Larcher committed
824
825
826
827
828
829
    :return:
    """
    dataset_opts=dict()
    model_opts=dict()
    training_opts=dict()

Anthony Larcher's avatar
Anthony Larcher committed
830
831
832
833
834
    if isinstance(dataset_description, str) and os.path.isfile(dataset_description):
        with open(dataset_description, 'r') as fh:
            tmp_data_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_data_dict = dataset_description
Anthony Larcher's avatar
Anthony Larcher committed
835

Anthony Larcher's avatar
Anthony Larcher committed
836
837
838
839
840
    if isinstance(model_description, str) and os.path.isfile(model_description):
        with open(model_description, 'r') as fh:
            tmp_model_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_model_dict = model_description
Anthony Larcher's avatar
Anthony Larcher committed
841

Anthony Larcher's avatar
Anthony Larcher committed
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
    if isinstance(training_description, str) and os.path.isfile(training_description):
        with open(training_description, 'r') as fh:
            tmp_train_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_train_dict = training_description

    # Initialize default dictionaries
    dataset_opts["data_path"] = None
    dataset_opts["dataset_csv"] = None
    dataset_opts["data_file_extension"] = ".wav"
    dataset_opts["sample_rate"] = 16000

    dataset_opts["validation_ratio"] = 0.1
    dataset_opts["batch_size"] = 64

    dataset_opts["train"] = dict()
    dataset_opts["train"]["duration"] = 2.
    dataset_opts["train"]["chunk_per_segment"] = -1
    dataset_opts["train"]["overlap"] = 1.9
Anthony Larcher's avatar
Anthony Larcher committed
861
862
863
    dataset_opts["train"]["sampler"] = dict()
    dataset_opts["train"]["sampler"]["examples_per_speaker"] = 1
    dataset_opts["train"]["sampler"]["samples_per_speaker"] = 100
Anthony Larcher's avatar
Anthony Larcher committed
864
    dataset_opts["train"]["sampler"]["augmentation_replicas"] = 1
Anthony Larcher's avatar
Anthony Larcher committed
865
    dataset_opts["train"]["transform_number"] = 2
Anthony Larcher's avatar
Anthony Larcher committed
866
867
868
869
870
871
    dataset_opts["train"]["transformation"] = dict()
    dataset_opts["train"]["transformation"]["pipeline"] = ""
    dataset_opts["train"]["transformation"]["add_noise"] = dict()
    dataset_opts["train"]["transformation"]["add_noise"]["noise_db_csv"] = ""
    dataset_opts["train"]["transformation"]["add_noise"]["data_path"] = ""
    dataset_opts["train"]["transformation"]["add_reverb"] = dict()
Anthony Larcher's avatar
Anthony Larcher committed
872
    dataset_opts["train"]["transformation"]["add_reverb"]["rir_db_csv"] = ""
Anthony Larcher's avatar
Anthony Larcher committed
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
    dataset_opts["train"]["transformation"]["add_reverb"]["data_path"] = ""

    dataset_opts["valid"] = dict()
    dataset_opts["valid"]["duration"] = 2.
    dataset_opts["valid"]["transformation"] = dict()
    dataset_opts["valid"]["transformation"]["pipeline"] = ""
    dataset_opts["valid"]["transformation"]["add_noise"] = dict()
    dataset_opts["valid"]["transformation"]["add_noise"]["noise_db_csv"] = ""
    dataset_opts["valid"]["transformation"]["add_noise"]["data_path"] = ""
    dataset_opts["valid"]["transformation"]["add_reverb"] = dict()
    dataset_opts["valid"]["transformation"]["add_reverb"]["noise_db_csv"] = ""
    dataset_opts["valid"]["transformation"]["add_reverb"]["data_path"] = ""

    dataset_opts["test"] = dict()
    dataset_opts["test"]["idmap"] = ""
    dataset_opts["test"]["ndx"] = ""
    dataset_opts["test"]["key"] = ""
    dataset_opts["test"]["data_path"] =""

    # Initialize model options
    model_opts["speaker_number"] = None
    model_opts["loss"] = dict()
    model_opts["loss"]["type"] ="aam"
    model_opts["loss"]["aam_margin"] = 0.2
    model_opts["loss"]["aam_s"] = 30

    model_opts["initial_model_name"] = None
    model_opts["reset_parts"] = []
    model_opts["freeze_parts"] = []

    model_opts["model_type"] = "fastresnet"

Anthony Larcher's avatar
Anthony Larcher committed
905
906
907
    model_opts["preprocessor"] = dict()
    model_opts["preprocessor"]["type"] =  "mel_spec"
    model_opts["preprocessor"]["feature_size"] = 80
Anthony Larcher's avatar
Anthony Larcher committed
908
909
910
911

    # Initialize training options
    training_opts["log_file"] = "sidekit.log"
    training_opts["seed"] = 42
Anthony Larcher's avatar
Anthony Larcher committed
912
    training_opts["deterministic"] = False
Anthony Larcher's avatar
Anthony Larcher committed
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
    training_opts["epochs"] = 100
    training_opts["lr"] = 1e-3
    training_opts["patience"] = 50
    training_opts["multi_gpu"] = False
    training_opts["num_cpu"] = 5
    training_opts["mixed_precision"] = False
    training_opts["clipping"] = False

    training_opts["optimizer"] = dict()
    training_opts["optimizer"]["type"] = "sgd"
    training_opts["optimizer"]["options"] = None

    training_opts["scheduler"] = dict()
    training_opts["scheduler"]["type"] = "ReduceLROnPlateau"
    training_opts["scheduler"]["options"] = None

    training_opts["compute_test_eer"] = False
    training_opts["log_interval"] = 10
Anthony Larcher's avatar
Anthony Larcher committed
931
    training_opts["validation_frequency"] = 1
Anthony Larcher's avatar
Anthony Larcher committed
932
933
934
935
936
937
938
939
940
941
942
943

    training_opts["tmp_model_name"] = "tmp_model.pt"
    training_opts["best_model_name"] = "best_model.pt"
    training_opts["checkpoint_frequency"] = "10"


    # Use options from the YAML config files
    fill_dict(dataset_opts, tmp_data_dict)
    fill_dict(model_opts, tmp_model_dict)
    fill_dict(training_opts, tmp_train_dict)

    # Overwrite with manually given parameters
Anthony Larcher's avatar
Anthony Larcher committed
944
945
946
947
948
949
950
951
952
953
954
955
    if "lr" in kwargs:
        training_opts["lr"] = kwargs['lr']
    if "batch_size" in kwargs:
        dataset_opts["batch_size"] = kwargs["batch_size"]
    if "optimizer" in kwargs:
        training_opts["optimizer"]["type"] = kwargs["optimizer"]
    if "scheduler" in kwargs:
        training_opts["scheduler"]["type"] = kwargs["scheduler"]
    if "margin" in kwargs:
        model_opts["loss"]["aam_margin"] = kwargs["margin"]
    if "aam_s" in kwargs:
        model_opts["loss"]["aam_s"] = kwargs["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
956
957
958
959

    return dataset_opts, model_opts, training_opts


Anthony Larcher's avatar
debug    
Anthony Larcher committed
960
def get_network(model_opts, local_rank):
Anthony Larcher's avatar
Anthony Larcher committed
961
    """
Anthony Larcher's avatar
Anthony Larcher committed
962
963

    :param model_opts:
Anthony Larcher's avatar
Anthony Larcher committed
964
    :param local_rank:
Anthony Larcher's avatar
Anthony Larcher committed
965
    :return:
Anthony Larcher's avatar
Anthony Larcher committed
966
967
    """

Anthony Larcher's avatar
Anthony Larcher committed
968
969
    if model_opts["model_type"] in ["xvector", "rawnet2", "resnet34", "fastresnet34"]:
        model = Xtractor(model_opts["speaker_number"], model_opts["model_type"], loss=model_opts["loss"]["type"])
Anthony Larcher's avatar
Anthony Larcher committed
970
    else:
Anthony Larcher's avatar
Anthony Larcher committed
971
        # Custom type of model
Anthony Larcher's avatar
Anthony Larcher committed
972
        model = Xtractor(model_opts["speaker_number"], model_opts, loss=model_opts["loss"]["type"])
Anthony Larcher's avatar
Anthony Larcher committed
973

Anthony Larcher's avatar
Anthony Larcher committed
974
975
976
977
    # Load the model if it exists
    if model_opts["initial_model_name"] is not None and os.path.isfile(model_opts["initial_model_name"]):
        logging.critical(f"*** Load model from = {model_opts['initial_model_name']}")
        checkpoint = torch.load(model_opts["initial_model_name"])
Anthony Larcher's avatar
Anthony Larcher committed
978

Anthony Larcher's avatar
Anthony Larcher committed
979
980
        """
        Here we remove all layers that we don't want to reload
Anthony Larcher's avatar
Anthony Larcher committed
981

Anthony Larcher's avatar
Anthony Larcher committed
982
983
984
985
        """
        pretrained_dict = checkpoint["model_state_dict"]
        for part in model_opts["reset_parts"]:
            pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}
Anthony Larcher's avatar
Anthony Larcher committed
986

Anthony Larcher's avatar
Anthony Larcher committed
987
988
989
        new_model_dict = model.state_dict()
        new_model_dict.update(pretrained_dict)
        model.load_state_dict(new_model_dict)
Anthony Larcher's avatar
Anthony Larcher committed
990
991
992

        # Freeze required layers
        for name, param in model.named_parameters():
Anthony Larcher's avatar
Anthony Larcher committed
993
            if name.split(".")[0] in model_opts["reset_parts"]:
Anthony Larcher's avatar
Anthony Larcher committed
994
995
                param.requires_grad = False

Anthony Larcher's avatar
debug    
Anthony Larcher committed
996
997
998
999
1000
    if local_rank < 1:
        logging.info(model)

        logging.info("Model_parameters_count: {:d}".format(
            sum(p.numel()