xvector.py 31.7 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# -*- coding: utf-8 -*-
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
Anthony Larcher committed
25
Copyright 2014-2020 Yevhenii Prokopalo, Anthony Larcher
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
import logging
import numpy
Anthony Larcher's avatar
minor    
Anthony Larcher committed
30
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
31
import torch
Anthony Larcher's avatar
Anthony Larcher committed
32
33
import torch.optim as optim
import torch.multiprocessing as mp
Anthony Larcher's avatar
Anthony Larcher committed
34
from torchvision import transforms
Anthony Larcher's avatar
Anthony Larcher committed
35
from collections import OrderedDict
36
from .xsets import XvectorMultiDataset, StatDataset, VoxDataset
Anthony Larcher's avatar
Anthony Larcher committed
37
38
39
from .xsets import FrequencyMask, CMVN, TemporalMask
from ..bosaris import IdMap
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
40
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
41

Anthony Larcher's avatar
Anthony Larcher committed
42
43
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
44
__copyright__ = "Copyright 2015-2020 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
45
46
47
48
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
49
50


Anthony Larcher's avatar
Anthony Larcher committed
51
# logging.basicConfig(stream=sys.stdout, level=logging.INFO)
Anthony Larcher's avatar
Anthony Larcher committed
52
53


54
55
56
57
58
def get_lr(optimizer):
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
59
60
61
62
63
64
65
def split_file_list(batch_files, num_processes):
    # Cut the list of files into args.num_processes lists of files
    batch_sub_lists = [[]] * num_processes
    x = [ii for ii in range(len(batch_files))]
    for ii in range(num_processes):
        batch_sub_lists[ii - 1] = [batch_files[z + ii] for z in x[::num_processes] if (z + ii) < len(batch_files)]
    return batch_sub_lists
Anthony Larcher's avatar
Anthony Larcher committed
66
67
68


class Xtractor(torch.nn.Module):
69
70
71
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
72

Anthony Larcher's avatar
Anthony Larcher committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
    def __init__(self, speaker_number, config=None):
        """
        If config is None, default architecture is created
        :param config:
        """
        self.speaker_number = speaker_number
        if config is None:
            self.sequence_network = nn.Sequential(OrderedDict([
                ("conv1", torch.nn.Conv1d(30, 512, 5, dilation=1)),
                ("activation1", torch.nn.LeakyReLU(0.2)),
                ("norm1", torch.nn.BatchNorm1d(512)),
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
                ("norm2", torch.nn.BatchNorm1d(512)),
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
                ("norm3", torch.nn.BatchNorm1d(512)),
                ("conv4", torch.nn.Conv1d(512, 512)),
                ("activation4", torch.nn.LeakyReLU(0.2)),
                ("norm4", torch.nn.BatchNorm1d(512)),
                ("conv5", torch.nn.Conv1d(512, 1536)),
                ("activation5", torch.nn.LeakyReLU(0.2)),
                ("norm5", torch.nn.BatchNorm1d(1536))
            ]))

            self.before_speaker_embedding = nn.Sequential(OrderedDict([
                ("linear6", torch.nn.linear(1536, 512))
            ]))

            self.after_speaker_embedding = nn.Sequential(OrderedDict([
                ("activation6", torch.nn.LeakyReLU(0.2)),
                ("norm6", torch.nn.BatchNorm1d(512)),
                ("linear7", torch.nn.linear(512, 512)),
                ("activation7", torch.nn.LeakyReLU(0.2)),
                ("norm7", torch.nn.BatchNorm1d(512)),
                ("linear8", torch.nn.linear(512, self.speaker_number ))
            ]))

        else:
            # Load Yaml configuration
            with open(config, 'r') as fh:
                cfg = yaml.load(fh, Loader=yaml.FullLoader)

            # Get Feature size
            self.feature_size = cfg["feature_size"]
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
                if k.startswith("conv"):
                    segmental_layers.append((k, torch.nn.Conv2d(input_size,
                                                                cfg["segmental"][k]["output_channels"],
                                                                cfg["segmental"][k]["kernel_size"],
                                                                cfg["segmental"][k]["dilation"])))
                    input_size = cfg["segmental"][k]["output_channels"]

                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

                elif k.startswith('norm'):
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

            self.sequence_network = nn.Sequential(OrderedDict(segmental_layers))

            # Create sequential object for the second part of the network
            input_size = input_size * 2
            embedding_layers = []
            for k in cfg["embedding"].keys():
                if k.startswith("lin"):
                    if cfg["embedding"][k]["output"] == "speaker_number":
                        embedding_layers.append((k, torch.nn.linear(input_size, self.speaker_number)))
                    else:
                        embedding_layers.append((k, torch.nn.linear(input_size, cfg["embedding"][k]["output"])))
                        input_size = cfg["embedding"][k]["output"]

                elif k.startswith("activation"):
                    embedding_layers.append((k, self.activation))

                elif k.startswith('norm'):
                    embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))

                elif k.startswith('dropout'):
                    embedding_layers.append((k, torch.nn.Dropout(p=cfg["emebedding"][k])))

            self.before_speaker_embedding = nn.Sequential(OrderedDict(embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
169

170
    def produce_embeddings(self, x):
Anthony Larcher's avatar
Anthony Larcher committed
171
        """
Anthony Larcher's avatar
Anthony Larcher committed
172

173
174
175
        :param x:
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
176
177
178
179
180
        frame_emb_0 = self.norm0(self.activation(self.frame_conv0(x)))
        frame_emb_1 = self.norm1(self.activation(self.frame_conv1(frame_emb_0)))
        frame_emb_2 = self.norm2(self.activation(self.frame_conv2(frame_emb_1)))
        frame_emb_3 = self.norm3(self.activation(self.frame_conv3(frame_emb_2)))
        frame_emb_4 = self.norm4(self.activation(self.frame_conv4(frame_emb_3)))
Anthony Larcher's avatar
Anthony Larcher committed
181
182
183

        mean = torch.mean(frame_emb_4, dim=2)
        std = torch.std(frame_emb_4, dim=2)
184
        seg_emb = torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
185

186
187
        embedding_a = self.seg_lin0(seg_emb)
        return embedding_a
Anthony Larcher's avatar
Anthony Larcher committed
188

Anthony Larcher's avatar
Anthony Larcher committed
189
    def forward(self, x, is_eval=False):
190
191
192
193
        """

        :param x:
        :return:
Anthony Larcher's avatar
Anthony Larcher committed
194

195
        seg_emb_0 = self.produce_embeddings(x)
Anthony Larcher's avatar
Anthony Larcher committed
196
        # batch-normalisation after this layer
197
        seg_emb_1 = self.norm6(self.activation(seg_emb_0))
Anthony Larcher's avatar
Anthony Larcher committed
198
        # new layer with batch Normalization
199
        seg_emb_2 = self.norm7(self.activation(self.seg_lin1(self.dropout_lin1(seg_emb_1))))
Anthony Larcher's avatar
Anthony Larcher committed
200
        # No batch-normalisation after this layer
Anthony Larcher's avatar
minor    
Anthony Larcher committed
201
        result = self.seg_lin2(seg_emb_2)
Anthony Larcher's avatar
Anthony Larcher committed
202
        return result
203
        """
Anthony Larcher's avatar
Anthony Larcher committed
204
        x = self.sequence_network(x)
205

Anthony Larcher's avatar
Anthony Larcher committed
206
207
208
209
210
211
212
213
        # Mean and Standard deviation pooling
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        x = torch.cat([mean, std], dim=1)

        x = self.before_speaker_embedding(x)
        if is_eval:
            return x
214

Anthony Larcher's avatar
Anthony Larcher committed
215
216
        x = self.after_speaker_embedding(x)
        return x
Anthony Larcher's avatar
Anthony Larcher committed
217
218
219

    def init_weights(self):
        """
220
        Initialize the x-vector extract weights and biaises
Anthony Larcher's avatar
Anthony Larcher committed
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        """
        torch.nn.init.normal_(self.frame_conv0.weight, mean=-0.5, std=0.1)
        torch.nn.init.normal_(self.frame_conv1.weight, mean=-0.5, std=0.1)
        torch.nn.init.normal_(self.frame_conv2.weight, mean=-0.5, std=0.1)
        torch.nn.init.normal_(self.frame_conv3.weight, mean=-0.5, std=0.1)
        torch.nn.init.normal_(self.frame_conv4.weight, mean=-0.5, std=0.1)
        torch.nn.init.xavier_uniform(self.seg_lin0.weight)
        torch.nn.init.xavier_uniform(self.seg_lin1.weight)
        torch.nn.init.xavier_uniform(self.seg_lin2.weight)

        torch.nn.init.constant(self.frame_conv0.bias, 0.1)
        torch.nn.init.constant(self.frame_conv1.bias, 0.1)
        torch.nn.init.constant(self.frame_conv2.bias, 0.1)
        torch.nn.init.constant(self.frame_conv3.bias, 0.1)
        torch.nn.init.constant(self.frame_conv4.bias, 0.1)
        torch.nn.init.constant(self.seg_lin0.bias, 0.1)
        torch.nn.init.constant(self.seg_lin1.bias, 0.1)
        torch.nn.init.constant(self.seg_lin2.bias, 0.1)

Anthony Larcher's avatar
Anthony Larcher committed
240
241

def xtrain(args):
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    """
    Initialize and train an x-vector on a single GPU

    :param args:
    :return:
    """
    # If we start from an existing model
    if not args.init_model_name == '':
        # Load the model
        logging.critical("*** Load model from = {}/{}".format(args.model_path, args.init_model_name))
        model_file_name = '/'.join([args.model_path, args.init_model_name])
        model = torch.load(model_file_name)
        model.train()
    else:
        # Initialize a first model and save to disk
        model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
minor    
Anthony Larcher committed
258
        model.init_weights()
259
        model.train()
Anthony Larcher's avatar
Anthony Larcher committed
260
261
262
263
264

    if torch.cuda.device_count() > 1:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    model.cuda()

    # Split the training data in train and cv
    total_seg_df = pickle.load(open(args.batch_training_list, "rb"))

    speaker_dict = {}
    tmp = total_seg_df.speaker_id.unique()
    tmp.sort()
    for idx, spk in enumerate(tmp):
        speaker_dict[spk] = idx
    pickle.dump(speaker_dict, open("spk_dictionary.pkl", "wb"))

    cv_portion = 0.007
    idx = numpy.arange(len(total_seg_df))
    numpy.random.shuffle(idx)
    train_seg_df = total_seg_df.iloc[idx[:int((1 - cv_portion) * len(idx))]].reset_index()
    cv_seg_df = total_seg_df.iloc[idx[int((1 - cv_portion) * len(idx)):]].reset_index()

    current_model_file_name = "initial_model"
    torch.save(model.state_dict(), current_model_file_name)

Anthony Larcher's avatar
minor    
Anthony Larcher committed
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    if type(model) is Xtractor:
        optimizer = torch.optim.SGD([
            {'params': model.frame_conv0.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.frame_conv1.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.frame_conv2.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.frame_conv3.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.frame_conv4.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.seg_lin0.parameters(), 'weight_decay': args.l2_seg},
            {'params': model.seg_lin1.parameters(), 'weight_decay': args.l2_seg},
            {'params': model.seg_lin2.parameters(), 'weight_decay': args.l2_seg}
            ],
            lr=args.lr, momentum=0.9)
    else:
        optimizer = torch.optim.SGD([
            {'params': model.module.frame_conv0.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.module.frame_conv1.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.module.frame_conv2.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.module.frame_conv3.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.module.frame_conv4.parameters(), 'weight_decay': args.l2_frame},
            {'params': model.module.seg_lin0.parameters(), 'weight_decay': args.l2_seg},
            {'params': model.module.seg_lin1.parameters(), 'weight_decay': args.l2_seg},
            {'params': model.module.seg_lin2.parameters(), 'weight_decay': args.l2_seg}
            ],
            lr=args.lr, momentum=0.9)
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359

    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min')

    for epoch in range(1, args.epochs + 1):
        # Process one epoch and return the current model
        model = train_epoch(model, epoch, train_seg_df, speaker_dict, optimizer, args)

        # Add the cross validation here
        accuracy, val_loss = cross_validation(args, model, cv_seg_df, speaker_dict)
        logging.critical("*** Cross validation accuracy = {} %".format(accuracy))

        # Decrease learning rate according to the scheduler policy
        scheduler.step(val_loss)

        # return the file name of the new model
        base_name = "model"
        if not args.init_model_name == "":
            base_name = args.init_model_name
        current_model_file_name = "{}/{}_{}_epoch_{}".format(args.model_path, base_name, args.expe_id, epoch)
        torch.save(model, current_model_file_name)


def train_epoch(model, epoch, train_seg_df, speaker_dict, optimizer, args):
    """

    :param model:
    :param epoch:
    :param train_seg_df:
    :param speaker_dict:
    :param optimizer:
    :param args:
    :return:
    """
    device = torch.device("cuda:0")

    torch.manual_seed(args.seed)

    train_transform = []
    if not args.train_transformation == '':
        trans = args.train_transformation.split(',')
        for t in trans:
            if "CMVN" in t:
                train_transform.append(CMVN())
            if "FrequencyMask" in t:
                a = int(t.split("-")[0].split("(")[1])
                b = int(t.split("-")[1].split(")")[0])
                train_transform.append(FrequencyMask(a, b))
            if "TemporalMask" in t:
                a = int(t.split("(")[1].split(")")[0])
                train_transform.append(TemporalMask(a))
Anthony Larcher's avatar
Anthony Larcher committed
360
    train_set = VoxDataset(train_seg_df, speaker_dict, args.duration, transform=transforms.Compose(train_transform),
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
                           spec_aug_ratio=args.spec_aug, temp_aug_ratio=args.temp_aug)
    train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=15)

    criterion = torch.nn.CrossEntropyLoss()

    accuracy = 0.0
    for batch_idx, (data, target, _, __) in enumerate(train_loader):
        target = target.squeeze()
        optimizer.zero_grad()
        output = model(data.to(device))
        loss = criterion(output, target.to(device))
        loss.backward()
        optimizer.step()
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()

        if batch_idx % args.log_interval == 0:
            logging.critical('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                epoch, batch_idx + 1, train_loader.__len__(),
                       100. * batch_idx / train_loader.__len__(), loss.item(),
                       100.0 * accuracy.item() / ((batch_idx + 1) * args.batch_size)))
    return model


# def cross_validation(args, model):
#
#     with open(args.cross_validation_list, 'r') as fh:
#         cross_validation_list = [l.rstrip() for l in fh]
#     cv_loader = XvectorMultiDataset(cross_validation_list, args.batch_path)
#
#     model.eval()
#     device = torch.device("cuda:0")
#     model.to(device)
#
#     accuracy = 0.0
#     bi = 0
#     for batch_idx, (data, target) in enumerate(cv_loader):
#         output = model(data.to(device))
#         accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
#         bi = batch_idx
#     return 100. * accuracy.cpu().numpy() / ((bi + 1) * args.batch_size)


def cross_validation(args, model, cv_seg_df, speaker_dict):
    """

    :param args:
    :param model:
    :param cv_seg_df:
    :return:
    """
    cv_transform = []
    if not args.cv_transformation == '':
        trans = args.cv_transformation.split(',')
        for t in trans:
            if "CMVN" in t:
                cv_transform.append(CMVN())
            if "FrequencyMask" in t:
                a = t.split(",")[0].split("(")[1]
                b = t.split(",")[1].split("(")[0]
                cv_transform.append(FrequencyMask(a, b))
            if "TemporalMask" in t:
                a = t.split(",")[0].split("(")[1]
                cv_transform.append(TemporalMask(a, b))
    cv_set = VoxDataset(cv_seg_df, speaker_dict, 500, transform=transforms.Compose(cv_transform),
                        spec_aug_ratio=args.spec_aug, temp_aug_ratio=args.temp_aug)
    cv_loader = DataLoader(cv_set, batch_size=args.batch_size, shuffle=False, num_workers=15)
    model.eval()
    device = torch.device("cuda:0")
    model.to(device)

    accuracy = 0.0
    criterion = torch.nn.CrossEntropyLoss()

    for batch_idx, (data, target, _, __) in enumerate(cv_loader):
        target = target.squeeze()
        output = model(data.to(device))
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()

    loss = criterion(output, target.to(device))

    return 100. * accuracy.cpu().numpy() / ((batch_idx + 1) * args.batch_size), loss


def xtrain_asynchronous(args):
445
446
447
448
449
450
    """
    Initialize and train an x-vector in asynchronous manner

    :param args:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
451
    # Initialize a first model and save to disk
Anthony Larcher's avatar
Anthony Larcher committed
452
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
453
454
455
456
    current_model_file_name = "initial_model"
    torch.save(model.state_dict(), current_model_file_name)

    for epoch in range(1, args.epochs + 1):
457
        current_model_file_name = train_asynchronous_epoch(epoch, args, current_model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
458
459

        # Add the cross validation here
460
        accuracy = cross_asynchronous_validation(args, current_model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
461
        print("*** Cross validation accuracy = {} %".format(accuracy))
Anthony Larcher's avatar
Anthony Larcher committed
462

Anthony Larcher's avatar
Anthony Larcher committed
463
        # Decrease learning rate after every epoch
Anthony Larcher's avatar
sad    
Anthony Larcher committed
464
465
        args.lr = args.lr * 0.9
        print("        Decrease learning rate: {}".format(args.lr))
Anthony Larcher's avatar
Anthony Larcher committed
466

Anthony Larcher's avatar
Anthony Larcher committed
467

468
def train_asynchronous_epoch(epoch, args, initial_model_file_name):
469
470
471
472
473
474
475
476
    """
    Process one training epoch using an asynchronous implementation of the training

    :param epoch:
    :param args:
    :param initial_model_file_name:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    # Compute the megabatch number
    with open(args.batch_training_list, 'r') as fh:
        batch_file_list = [l.rstrip() for l in fh]

    # Shorten the batch_file_list to be a multiple of

    megabatch_number = len(batch_file_list) // (args.averaging_step * args.num_processes)
    megabatch_size = args.averaging_step * args.num_processes
    print("Epoch {}, number of megabatches = {}".format(epoch, megabatch_number))

    current_model = initial_model_file_name

    # For each sublist: run an asynchronous training and averaging of the model
    for ii in range(megabatch_number):
        print('Process megabatch [{} / {}]'.format(ii + 1, megabatch_number))
        current_model = train_asynchronous(epoch,
                                           args,
                                           current_model,
                                           batch_file_list[megabatch_size * ii: megabatch_size * (ii + 1)],
                                           ii,
497
                                           megabatch_number)  # function that split train, fuse and write the new model
Anthony Larcher's avatar
Anthony Larcher committed
498
499
500
    return current_model


501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
def train_asynchronous(epoch, args, initial_model_file_name, batch_file_list, megabatch_idx, megabatch_number):
    """
    Process one mega-batch of data asynchronously, average the model parameters across
    subrocesses and return the updated version of the model

    :param epoch:
    :param args:
    :param initial_model_file_name:
    :param batch_file_list:
    :param megabatch_idx:
    :param megabatch_number:
    :return:
    """
    # Split the list of files for each process
    sub_lists = split_file_list(batch_file_list, args.num_processes)

    #
    output_queue = mp.Queue()
    # output_queue = multiprocessing.Queue()

    processes = []
    for rank in range(args.num_processes):
523
        p = mp.Process(target=train_asynchronous_worker,
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
                       args=(rank, epoch, args, initial_model_file_name, sub_lists[rank], output_queue)
                       )
        # We first train the model across `num_processes` processes
        p.start()
        processes.append(p)

    # Average the models and write the new one to disk
    asynchronous_model = []
    for ii in range(args.num_processes):
        asynchronous_model.append(dict(output_queue.get()))

    for p in processes:
        p.join()

    av_model = Xtractor(args.class_number, args.dropout)
    tmp = av_model.state_dict()

    average_param = dict()
    for k in list(asynchronous_model[0].keys()):
        average_param[k] = asynchronous_model[0][k]

        for mod in asynchronous_model[1:]:
            average_param[k] += mod[k]

        if 'num_batches_tracked' not in k:
            tmp[k] = torch.FloatTensor(average_param[k] / len(asynchronous_model))

    # return the file name of the new model
    current_model_file_name = "{}/model_{}_epoch_{}_batch_{}".format(args.model_path, args.expe_id, epoch,
                                                                     megabatch_idx)
    torch.save(tmp, current_model_file_name)
    if megabatch_idx == megabatch_number:
        torch.save(tmp, "{}/model_{}_epoch_{}".format(args.model_path, args.expe_id, epoch))

    return current_model_file_name


561
def train_asynchronous_worker(rank, epoch, args, initial_model_file_name, batch_list, output_queue):
562
563
564
565
566
567
568
569
570
571
572
    """


    :param rank:
    :param epoch:
    :param args:
    :param initial_model_file_name:
    :param batch_list:
    :param output_queue:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
573
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
574
575
576
577
    model.load_state_dict(torch.load(initial_model_file_name))
    model.train()

    torch.manual_seed(args.seed + rank)
Anthony Larcher's avatar
Anthony Larcher committed
578
    train_loader = XvectorMultiDataset(batch_list, args.batch_path)
Anthony Larcher's avatar
Anthony Larcher committed
579
580
581
582
583
584
585
586
587
588
589
590

    device = torch.device("cuda:{}".format(rank))
    model.to(device)

    optimizer = optim.Adam([{'params': model.frame_conv0.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv1.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv2.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv3.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv4.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.seg_lin0.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin1.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin2.parameters(), 'weight_decay': args.l2_seg}
Anthony Larcher's avatar
Anthony Larcher committed
591
                            ], lr=args.lr)
Anthony Larcher's avatar
Anthony Larcher committed
592

Anthony Larcher's avatar
Anthony Larcher committed
593
    criterion = torch.nn.CrossEntropyLoss()
Anthony Larcher's avatar
Anthony Larcher committed
594
595
596
597
598
599
600
601

    accuracy = 0.0
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = model(data.to(device))
        loss = criterion(output, target.to(device))
        loss.backward()
        optimizer.step()
Anthony Larcher's avatar
Anthony Larcher committed
602

Anthony Larcher's avatar
Anthony Larcher committed
603
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
Anthony Larcher's avatar
Anthony Larcher committed
604

Anthony Larcher's avatar
Anthony Larcher committed
605
606
607
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                epoch, batch_idx + 1, train_loader.__len__(),
608
609
                100. * batch_idx / train_loader.__len__(), loss.item(),
                100.0 * accuracy.item() / ((batch_idx + 1) * args.batch_size)))
Anthony Larcher's avatar
Anthony Larcher committed
610

Anthony Larcher's avatar
Anthony Larcher committed
611
612
    model_param = OrderedDict()
    params = model.state_dict()
Anthony Larcher's avatar
Anthony Larcher committed
613

Anthony Larcher's avatar
Anthony Larcher committed
614
615
616
    for k in list(params.keys()):
        model_param[k] = params[k].cpu().detach().numpy()
    output_queue.put(model_param)
Anthony Larcher's avatar
Anthony Larcher committed
617
618


619
def cross_asynchronous_validation(args, current_model_file_name):
Anthony Larcher's avatar
Anthony Larcher committed
620
621
    """

Anthony Larcher's avatar
Anthony Larcher committed
622
623
    :param args:
    :param current_model_file_name:
Anthony Larcher's avatar
Anthony Larcher committed
624
625
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
626
    with open(args.cross_validation_list, 'r') as fh:
Anthony Larcher's avatar
Anthony Larcher committed
627
        cross_validation_list = [l.rstrip() for l in fh]
Anthony Larcher's avatar
Anthony Larcher committed
628
        sub_lists = split_file_list(cross_validation_list, args.num_processes)
Anthony Larcher's avatar
Anthony Larcher committed
629

Anthony Larcher's avatar
Anthony Larcher committed
630
631
    #
    output_queue = mp.Queue()
Anthony Larcher's avatar
Anthony Larcher committed
632

Anthony Larcher's avatar
Anthony Larcher committed
633
634
    processes = []
    for rank in range(args.num_processes):
635
        p = mp.Process(target=cv_asynchronous_worker,
Anthony Larcher's avatar
Anthony Larcher committed
636
637
638
639
640
                       args=(rank, args, current_model_file_name, sub_lists[rank], output_queue)
                       )
        # We first evaluate the model across `num_processes` processes
        p.start()
        processes.append(p)
Anthony Larcher's avatar
Anthony Larcher committed
641

Anthony Larcher's avatar
Anthony Larcher committed
642
643
644
645
    # Average the models and write the new one to disk
    result = []
    for ii in range(args.num_processes):
        result.append(output_queue.get())
Anthony Larcher's avatar
Anthony Larcher committed
646

Anthony Larcher's avatar
Anthony Larcher committed
647
648
    for p in processes:
        p.join()
Anthony Larcher's avatar
Anthony Larcher committed
649

Anthony Larcher's avatar
Anthony Larcher committed
650
651
652
    # Compute the global accuracy
    accuracy = 0.0
    total_batch_number = 0
Anthony Larcher's avatar
Anthony Larcher committed
653
    for bn, acc in result:
Anthony Larcher's avatar
Anthony Larcher committed
654
        accuracy += acc
Anthony Larcher's avatar
Anthony Larcher committed
655
656
        total_batch_number += bn
    
Anthony Larcher's avatar
Anthony Larcher committed
657
    return 100. * accuracy / (total_batch_number * args.batch_size)
Anthony Larcher's avatar
Anthony Larcher committed
658
659


660
def cv_asynchronous_worker(rank, args, current_model_file_name, batch_list, output_queue):
Anthony Larcher's avatar
Anthony Larcher committed
661
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
662
663
    model.load_state_dict(torch.load(current_model_file_name))
    model.eval()
Anthony Larcher's avatar
Anthony Larcher committed
664

Anthony Larcher's avatar
Anthony Larcher committed
665
    cv_loader = XvectorMultiDataset(batch_list, args.batch_path)
Anthony Larcher's avatar
Anthony Larcher committed
666

Anthony Larcher's avatar
Anthony Larcher committed
667
668
    device = torch.device("cuda:{}".format(rank))
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
669

Anthony Larcher's avatar
Anthony Larcher committed
670
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
671
    for batch_idx, (data, target) in enumerate(cv_loader):
Anthony Larcher's avatar
Anthony Larcher committed
672
673
        output = model(data.to(device))
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
Anthony Larcher's avatar
Anthony Larcher committed
674
    output_queue.put((cv_loader.__len__(), accuracy.cpu().numpy()))
Anthony Larcher's avatar
Anthony Larcher committed
675

Anthony Larcher's avatar
hot    
Anthony Larcher committed
676

677
def extract_idmap(args, device_id, segment_indices, fs_params, idmap_name, output_queue):
Anthony Larcher's avatar
Anthony Larcher committed
678
    """
Anthony Larcher's avatar
Anthony Larcher committed
679
680
    Function that takes a model and an idmap and extract all x-vectors based on this model
    and return a StatServer containing the x-vectors
Anthony Larcher's avatar
Anthony Larcher committed
681
    """
682
    # device = torch.device("cuda:{}".format(device_ID))
Anthony Larcher's avatar
Anthony Larcher committed
683
    device = torch.device('cpu')
Anthony Larcher's avatar
Anthony Larcher committed
684
685
686
687
688
689
690
691
692
693
694
695
696

    # Create the dataset
    tmp_idmap = IdMap(idmap_name)
    idmap = IdMap()
    idmap.leftids = tmp_idmap.leftids[segment_indices]
    idmap.rightids = tmp_idmap.rightids[segment_indices]
    idmap.start = tmp_idmap.start[segment_indices]
    idmap.stop = tmp_idmap.stop[segment_indices]

    segment_loader = StatDataset(idmap, fs_params)

    # Load the model
    model_file_name = '/'.join([args.model_path, args.model_name])
Anthony Larcher's avatar
Anthony Larcher committed
697
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
698
699
700
701
702
703
704
705
    model.load_state_dict(torch.load(model_file_name))
    model.eval()

    # Get the size of embeddings
    emb_a_size = model.seg_lin0.weight.data.shape[0]
    emb_b_size = model.seg_lin1.weight.data.shape[0]

    # Create a Tensor to store all x-vectors on the GPU
Anthony Larcher's avatar
Anthony Larcher committed
706
707
708
709
710
711
    emb_1 = numpy.zeros((idmap.leftids.shape[0], emb_a_size)).astype(numpy.float32)
    emb_2 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_3 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_4 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_5 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_6 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
Anthony Larcher's avatar
Anthony Larcher committed
712
713
714
715
716
717

    # Send on selected device
    model.to(device)

    # Loop to extract all x-vectors
    for idx, (model_id, segment_id, data) in enumerate(segment_loader):
Anthony Larcher's avatar
Anthony Larcher committed
718
        logging.critical('Process file {}, [{} / {}]'.format(segment_id, idx, segment_loader.__len__()))
Anthony Larcher's avatar
Anthony Larcher committed
719

Anthony Larcher's avatar
Anthony Larcher committed
720
721
722
        if list(data.shape)[2] < 20:
            pass
        else:
Anthony Larcher's avatar
Anthony Larcher committed
723
724
725
726
727
728
729
            seg_1, seg_2, seg_3, seg_4, seg_5, seg_6 = model.extract(data.to(device))
            emb_1[idx, :] = seg_1.detach().cpu()
            emb_2[idx, :] = seg_2.detach().cpu()
            emb_3[idx, :] = seg_3.detach().cpu()
            emb_4[idx, :] = seg_4.detach().cpu()
            emb_5[idx, :] = seg_5.detach().cpu()
            emb_6[idx, :] = seg_6.detach().cpu()
Anthony Larcher's avatar
Anthony Larcher committed
730

Anthony Larcher's avatar
Anthony Larcher committed
731
    output_queue.put((segment_indices, emb_1, emb_2, emb_3, emb_4, emb_5, emb_6))
Anthony Larcher's avatar
Anthony Larcher committed
732
733


Anthony Larcher's avatar
Anthony Larcher committed
734
def extract_parallel(args, fs_params):
735
736
737
738
739
740
    """

    :param args:
    :param fs_params:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
741
742
743
    emb_a_size = 512
    emb_b_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
744
    idmap = IdMap(args.idmap)
Anthony Larcher's avatar
Anthony Larcher committed
745

Anthony Larcher's avatar
Anthony Larcher committed
746
747
748
749
750
751
752
753
754
755
756
757
758
    x_server_1 = StatServer(idmap, 1, emb_a_size)
    x_server_2 = StatServer(idmap, 1, emb_b_size)
    x_server_3 = StatServer(idmap, 1, emb_b_size)
    x_server_4 = StatServer(idmap, 1, emb_b_size)
    x_server_5 = StatServer(idmap, 1, emb_b_size)
    x_server_6 = StatServer(idmap, 1, emb_b_size)

    x_server_1.stat0 = numpy.ones(x_server_1.stat0.shape)
    x_server_2.stat0 = numpy.ones(x_server_2.stat0.shape)
    x_server_3.stat0 = numpy.ones(x_server_3.stat0.shape)
    x_server_4.stat0 = numpy.ones(x_server_4.stat0.shape)
    x_server_5.stat0 = numpy.ones(x_server_5.stat0.shape)
    x_server_6.stat0 = numpy.ones(x_server_6.stat0.shape)
Anthony Larcher's avatar
Anthony Larcher committed
759
760
761

    # Split the indices
    mega_batch_size = idmap.leftids.shape[0] // args.num_processes
Anthony Larcher's avatar
Anthony Larcher committed
762
763
764

    logging.critical("Number of sessions to process: {}".format(idmap.leftids.shape[0]))

Anthony Larcher's avatar
Anthony Larcher committed
765
766
767
    segment_idx = []
    for ii in range(args.num_processes):
        segment_idx.append(
Anthony Larcher's avatar
Anthony Larcher committed
768
769
770
771
            numpy.arange(ii * mega_batch_size, numpy.min([(ii + 1) * mega_batch_size, idmap.leftids.shape[0]])))

    for idx, si in enumerate(segment_idx):
        logging.critical("Number of session on process {}: {}".format(idx, len(si)))
Anthony Larcher's avatar
Anthony Larcher committed
772
773
774
775
776
777
778

    # Extract x-vectors in parallel
    output_queue = mp.Queue()

    processes = []
    for rank in range(args.num_processes):
        p = mp.Process(target=extract_idmap,
Anthony Larcher's avatar
Anthony Larcher committed
779
                       args=(args, rank, segment_idx[rank], fs_params, args.idmap, output_queue)
Anthony Larcher's avatar
Anthony Larcher committed
780
781
782
783
784
785
786
                       )
        # We first train the model across `num_processes` processes
        p.start()
        processes.append(p)

    # Get the x-vectors and fill the StatServer
    for ii in range(args.num_processes):
Anthony Larcher's avatar
Anthony Larcher committed
787
788
789
790
791
792
793
        indices, seg_1, seg_2, seg_3, seg_4, seg_5, seg_6 = output_queue.get()
        x_server_1.stat1[indices, :] = seg_1
        x_server_2.stat1[indices, :] = seg_2
        x_server_3.stat1[indices, :] = seg_3
        x_server_4.stat1[indices, :] = seg_4
        x_server_5.stat1[indices, :] = seg_5
        x_server_6.stat1[indices, :] = seg_6
Anthony Larcher's avatar
Anthony Larcher committed
794
795
796
797

    for p in processes:
        p.join()

Anthony Larcher's avatar
Anthony Larcher committed
798
    return x_server_1, x_server_2, x_server_3, x_server_4, x_server_5, x_server_6
Anthony Larcher's avatar
Anthony Larcher committed
799
800


Anthony Larcher's avatar
Anthony Larcher committed
801
def extract_embeddings(args):
802
803
804
805
806
807
808
809
810
811
812
813
814
    """

    :param args:
    :param device_id:
    :param fs_params:
    :return:
    """
    device = torch.device("cuda:0")

    # Load the model
    logging.critical("*** Load model from = {}/{}".format(args.model_path, args.init_model_name))
    model_file_name = '/'.join([args.model_path, args.init_model_name])
    model = torch.load(model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
815
    model = torch.nn.DataParallel(model)
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
    model.eval()
    model.to(device)

    # Get the list of files
    total_seg_df = pickle.load(open(args.batch_training_list, "rb"))

    speaker_dict = {}
    tmp = total_seg_df.speaker_id.unique()
    tmp.sort()
    for idx, spk in enumerate(tmp):
        speaker_dict[spk] = idx

    extract_transform = [CMVN(), ]
    extract_set = VoxDataset(total_seg_df, speaker_dict, None, transform=transforms.Compose(extract_transform),
                             spec_aug_ratio=args.spec_aug, temp_aug_ratio=args.temp_aug)
    extract_loader = DataLoader(extract_set, batch_size=1, shuffle=False, num_workers=5)
Anthony Larcher's avatar
Anthony Larcher committed
832

833
    #CREER UN TENSEUR DE LA BONNE TAILLE POUR STOCKER LES X-VECTEURS
Anthony Larcher's avatar
Anthony Larcher committed
834

835
836
837
838
    for batch_idx, (data, target, _, __) in enumerate(extract_loader):
        print("extrait x-vecteur numero {}".format(batch_idx))
        embedding = model.produce_embeddings(data.to(device))
        #REMPLIR LE TENSEUR AVEC LE NOUVEAU X-VECTEUR
Anthony Larcher's avatar
Anthony Larcher committed
839

840
841
    #FAIRE CORRESPONDRE LES SPK_ID AVEC LES X-VECTEURS
    #RENVOYER LE TENSEUR DE X-VECTEURS SUR LE CPU OU L ECRTIRE SUR LE DISQUE