xvector.py 88.8 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
25
Copyright 2014-2021 Anthony Larcher, Yevhenii Prokopalo
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28

Anthony Larcher's avatar
Anthony Larcher committed
29
import logging
Anthony Larcher's avatar
debug    
Anthony Larcher committed
30
import math
Anthony Larcher's avatar
Anthony Larcher committed
31
import os
Anthony Larcher's avatar
Anthony Larcher committed
32
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
33
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
34
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
35
import shutil
Anthony Larcher's avatar
Anthony Larcher committed
36
import tabulate
37
import time
Anthony Larcher's avatar
Anthony Larcher committed
38
import torch
Anthony Larcher's avatar
debug    
Anthony Larcher committed
39
import torchaudio
Anthony Larcher's avatar
Anthony Larcher committed
40
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
41
42
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
43
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
44
45
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
46
47
48
from .pooling import MeanStdPooling
from .pooling import AttentivePooling
from .pooling import GruPooling
Anthony Larcher's avatar
Anthony Larcher committed
49
50
51
from .preprocessor import MfccFrontEnd
from .preprocessor import MelSpecFrontEnd
from .preprocessor import RawPreprocessor
Anthony Larcher's avatar
Anthony Larcher committed
52
from .xsets import SideSet
Anthony Larcher's avatar
Anthony Larcher committed
53
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
54
from .xsets import IdMapSetPerSpeaker
Anthony Larcher's avatar
Anthony Larcher committed
55
from .xsets import SideSampler
Anthony Larcher's avatar
Anthony Larcher committed
56
57
58
59
from .res_net import ResBlockWFMS
from .res_net import ResBlock
from .res_net import PreResNet34
from .res_net import PreFastResNet34
Anthony Larcher's avatar
Anthony Larcher committed
60
from ..bosaris import IdMap
Anthony Larcher's avatar
Anthony Larcher committed
61
62
from ..bosaris import Key
from ..bosaris import Ndx
Anthony Larcher's avatar
Anthony Larcher committed
63
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
64
from ..iv_scoring import cosine_scoring
Anthony Larcher's avatar
Anthony Larcher committed
65
from .sincnet import SincNet
Anthony Larcher's avatar
merge    
Anthony Larcher committed
66
from ..bosaris.detplot import rocch, rocch2eer
Anthony Larcher's avatar
merge    
Anthony Larcher committed
67
from .loss import SoftmaxAngularProto, ArcLinear
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
68
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
69
from .loss import ArcMarginProduct
Anthony Larcher's avatar
Anthony Larcher committed
70

Anthony Larcher's avatar
Anthony Larcher committed
71
from ..sidekit_io import init_logging
Anthony Larcher's avatar
ddp    
Anthony Larcher committed
72

Anthony Larcher's avatar
Anthony Larcher committed
73
74
torch.backends.cudnn.benchmark = True

Anthony Larcher's avatar
Anthony Larcher committed
75
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
76

Anthony Larcher's avatar
Anthony Larcher committed
77
78
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
79
__copyright__ = "Copyright 2015-2021 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
80
81
82
83
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
84
85


Anthony Larcher's avatar
Anthony Larcher committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
def eer(negatives, positives):
    """Logarithmic complexity EER computation

    Args:
        negative_scores (numpy array): impostor scores
        positive_scores (numpy array): genuine scores

    Returns:
        float: Equal Error Rate (EER)
    """

    positives = numpy.sort(positives)
    negatives = numpy.sort(negatives)[::-1]

    pos_count = positives.shape[0]
    neg_count = negatives.shape[0]

    p_score = positives[0]
    n_score = negatives[0]

    p_index = 0
    n_index = 0

    next_p_jump = pos_count//2
    next_n_jump = neg_count//2

    kdx = 0
    while True:
        kdx += 1
        if p_index < 0 or n_index < 0:
            return 0
        if p_index > pos_count or n_index > neg_count:
            return 100
        if p_score < n_score:
            p_index = p_index + next_p_jump
            n_index = n_index + next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break
        elif p_score >= n_score:
            p_index = p_index - next_p_jump
            n_index = n_index - next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break

        p_score = positives[p_index]
        n_score = negatives[n_index]
        next_p_jump = next_p_jump//2
        next_n_jump = next_n_jump//2

    eer_predicate = 100

    tfr = (abs(p_index))/pos_count
    tfa = (1+abs(n_index))/neg_count
    if (p_score == n_score and tfr == tfa):
        return tfr

    while positives[p_index] < negatives[n_index]:
        if p_index < pos_count - 1:
            p_index += 1
        elif n_index < neg_count - 1:
            n_index += 1
        else:
            break

    while positives[p_index] > negatives[n_index] and n_index >= 1:
        n_index -= 1

    tfr = (1+p_index)/pos_count
    tfa = (1+n_index)/neg_count

    while tfa > tfr:
        p_index += 1
        while positives[p_index] > negatives[n_index] and n_index >= 1:
            n_index -= 1
        tfr = (1+p_index)/pos_count
        tfa = (1+n_index)/neg_count

    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    tfr = p_index/pos_count
    tfa = (1+n_index)/neg_count
    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    while True:
        while negatives[n_index + 1] <= positives[p_index - 1]:
            p_index -= 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer
        while negatives[n_index + 1] > positives[p_index - 1]:
            n_index += 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer

    return eer


Anthony Larcher's avatar
debug    
Anthony Larcher committed
200
201
def test_metrics(model,
                 device,
Anthony Larcher's avatar
Anthony Larcher committed
202
                 speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
203
204
                 num_thread,
                 mixed_precision):
Anthony Larcher's avatar
Anthony Larcher committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
Anthony Larcher's avatar
Anthony Larcher committed
221

Anthony Larcher's avatar
Anthony Larcher committed
222
223
224
225
    idmap_test_filename = '/lium/raid01_c/larcher/data/allies_dev_verif_idmap.h5'
    ndx_test_filename = '/lium/raid01_c/larcher/data/allies_dev_verif_ndx.h5'
    key_test_filename = '/lium/raid01_c/larcher/data/allies_dev_verif_key.h5'
    data_root_name='/lium/corpus/base/ALLIES/wav'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
226

227
    transform_pipeline = dict()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
228
229
230
231
232

    xv_stat = extract_embeddings(idmap_name=idmap_test_filename,
                                 model_filename=model,
                                 data_root_name=data_root_name,
                                 device=device,
Anthony Larcher's avatar
Anthony Larcher committed
233
                                 loss="aam",
Anthony Larcher's avatar
Anthony Larcher committed
234
235
                                 transform_pipeline=transform_pipeline,
                                 num_thread=num_thread,
Anthony Larcher's avatar
Anthony Larcher committed
236
                                 mixed_precision=mixed_precision)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
237

Anthony Larcher's avatar
merge    
Anthony Larcher committed
238
239
240
241
242
243
244
    tar, non = cosine_scoring(xv_stat,
                              xv_stat,
                              Ndx(ndx_test_filename),
                              wccn=None,
                              check_missing=True,
                              device=device
                              ).get_tar_non(Key(key_test_filename))
Anthony Larcher's avatar
debug    
Anthony Larcher committed
245

Anthony Larcher's avatar
merge    
Anthony Larcher committed
246
247
248
249
    #test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))
    pmiss, pfa = rocch(tar, non)

    return rocch2eer(pmiss, pfa)
Anthony Larcher's avatar
Anthony Larcher committed
250

Anthony Larcher's avatar
Anthony Larcher committed
251
def new_test_metrics(model,
Anthony Larcher's avatar
Anthony Larcher committed
252
253
254
                     device,
                     data_opts,
                     train_opts):
Anthony Larcher's avatar
Anthony Larcher committed
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
    transform_pipeline = dict()

Anthony Larcher's avatar
Anthony Larcher committed
273
    xv_stat = extract_embeddings(idmap_name=data_opts["test"]["idmap"],
Anthony Larcher's avatar
Anthony Larcher committed
274
                                 model_filename=model,
Anthony Larcher's avatar
Anthony Larcher committed
275
                                 data_root_name=data_opts["test"]["data_path"],
Anthony Larcher's avatar
Anthony Larcher committed
276
277
278
                                 device=device,
                                 loss=model.loss,
                                 transform_pipeline=transform_pipeline,
Anthony Larcher's avatar
Anthony Larcher committed
279
                                 num_thread=train_opts["num_cpu"],
Anthony Larcher's avatar
Anthony Larcher committed
280
281
282
283
                                 mixed_precision=train_opts["mixed_precision"])

    tar, non = cosine_scoring(xv_stat,
                              xv_stat,
Anthony Larcher's avatar
Anthony Larcher committed
284
                              Ndx(data_opts["test"]["ndx"]),
Anthony Larcher's avatar
Anthony Larcher committed
285
286
287
                              wccn=None,
                              check_missing=True,
                              device=device
Anthony Larcher's avatar
Anthony Larcher committed
288
                              ).get_tar_non(Key(data_opts["test"]["key"]))
Anthony Larcher's avatar
Anthony Larcher committed
289
290
291
292
293
294

    #test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))
    pmiss, pfa = rocch(tar, non)

    return rocch2eer(pmiss, pfa)

Anthony Larcher's avatar
Anthony Larcher committed
295

Anthony Larcher's avatar
Anthony Larcher committed
296
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
297
298
299
300
301
302
303
304
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
305
306
307
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
308

Anthony Larcher's avatar
Anthony Larcher committed
309

Anthony Larcher's avatar
Anthony Larcher committed
310
class TrainingMonitor():
Anthony Larcher's avatar
Anthony Larcher committed
311
    """
Anthony Larcher's avatar
Anthony Larcher committed
312

Anthony Larcher's avatar
Anthony Larcher committed
313
    """
Anthony Larcher's avatar
Anthony Larcher committed
314
    def __init__(self,
Anthony Larcher's avatar
Anthony Larcher committed
315
                 output_file,
Anthony Larcher's avatar
Anthony Larcher committed
316
                 log_interval=10,
Anthony Larcher's avatar
Anthony Larcher committed
317
318
                 patience=numpy.inf,
                 best_accuracy=0.0,
Anthony Larcher's avatar
Anthony Larcher committed
319
                 best_eer_epoch=1,
Anthony Larcher's avatar
Anthony Larcher committed
320
321
322
                 best_eer=100,
                 compute_test_eer=False
                 ):
Anthony Larcher's avatar
Anthony Larcher committed
323

Anthony Larcher's avatar
Anthony Larcher committed
324
        self.current_epoch = 0
Anthony Larcher's avatar
Anthony Larcher committed
325
        self.log_interval = log_interval
Anthony Larcher's avatar
Anthony Larcher committed
326
327
328
        self.init_patience = patience
        self.current_patience = patience
        self.best_accuracy = best_accuracy
Anthony Larcher's avatar
Anthony Larcher committed
329
        self.best_eer_epoch = best_eer_epoch
Anthony Larcher's avatar
Anthony Larcher committed
330
        self.best_eer = best_eer
Anthony Larcher's avatar
Anthony Larcher committed
331
        self.compute_test_eer = compute_test_eer
Anthony Larcher's avatar
Anthony Larcher committed
332
        self.test_eer = []
Anthony Larcher's avatar
Anthony Larcher committed
333
334
335
336

        self.training_loss = []
        self.training_acc = []

Anthony Larcher's avatar
Anthony Larcher committed
337
338
        self.val_loss = []
        self.val_acc = []
Anthony Larcher's avatar
Anthony Larcher committed
339
340
        self.val_eer = []

Anthony Larcher's avatar
Anthony Larcher committed
341
342
        self.is_best = True

Anthony Larcher's avatar
Anthony Larcher committed
343
        # Initialize the logger
Anthony Larcher's avatar
Anthony Larcher committed
344
        logging_format = '%(asctime)-15s %(message)s'
Anthony Larcher's avatar
Anthony Larcher committed
345
        logging.basicConfig(level=logging.DEBUG, format=logging_format, datefmt='%m-%d %H:%M')
Anthony Larcher's avatar
Anthony Larcher committed
346
347
        logger = logging.getLogger('Monitoring')
        logger.setLevel(logging.DEBUG)
Anthony Larcher's avatar
Anthony Larcher committed
348
349
        # create file handler which logs even debug messages
        fh = logging.FileHandler(output_file)
Anthony Larcher's avatar
Anthony Larcher committed
350
351
        fh.setLevel(logging.DEBUG)
        logger.addHandler(fh)
Anthony Larcher's avatar
Anthony Larcher committed
352

Anthony Larcher's avatar
Anthony Larcher committed
353
354
355
356
357
358
    def display(self):
        """

        :return:
        """
        # TODO
Anthony Larcher's avatar
Anthony Larcher committed
359
360
        self.logger.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Training metrics - Cross validation accuracy = {val_acc} %, EER = {val_eer * 100} %")
        self.logger.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Training metrics - Test EER = {test_eer * 100} %")
Anthony Larcher's avatar
Anthony Larcher committed
361
362
363
364
365
366

    def display_final(self):
        """

        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
367
        self.logger.critical(f"Best accuracy {self.best_accuracy * 100.} obtained at epoch {self.best_accuracy_epoch}")
Anthony Larcher's avatar
Anthony Larcher committed
368
369

    def update(self,
Anthony Larcher's avatar
Anthony Larcher committed
370
               epoch=None,
Anthony Larcher's avatar
Anthony Larcher committed
371
372
               training_acc=None,
               training_loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
373
374
375
376
377
               test_eer=None,
               val_eer=None,
               val_loss=None,
               val_acc=None):

Anthony Larcher's avatar
Anthony Larcher committed
378
379
380
        if epoch is not None:
            self.current_epoch = epoch
        if training_acc is not None:
Anthony Larcher's avatar
Anthony Larcher committed
381
            self.training_acc.append(training_acc)
Anthony Larcher's avatar
Anthony Larcher committed
382
        if training_loss is not None:
Anthony Larcher's avatar
Anthony Larcher committed
383
            self.training_loss.append(training_loss)
Anthony Larcher's avatar
Anthony Larcher committed
384
        if val_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
385
            self.val_eer.append(val_eer)
Anthony Larcher's avatar
Anthony Larcher committed
386
        if val_loss is not None:
Anthony Larcher's avatar
Anthony Larcher committed
387
            self.val_loss.append(val_loss)
Anthony Larcher's avatar
Anthony Larcher committed
388
        if val_acc is not None:
Anthony Larcher's avatar
Anthony Larcher committed
389
            self.val_acc.append(val_acc)
Anthony Larcher's avatar
Anthony Larcher committed
390
391

        # remember best accuracy and save checkpoint
Anthony Larcher's avatar
Anthony Larcher committed
392
        if self.compute_test_eer and test_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
393
394
395
            self.test_eer.append(test_eer)
            self.is_best = test_eer < self.best_eer
            self.best_eer = min(test_eer, self.best_eer)
Anthony Larcher's avatar
Anthony Larcher committed
396
397
398
399
400
            if self.is_best:
                self.best_eer_epoch = epoch
                self.current_patience = self.init_patience
            else:
                self.current_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
401
        elif val_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
402
403
            self.is_best = val_eer < self.best_eer
            self.best_eer = min(val_eer, self.best_eer)
Anthony Larcher's avatar
Anthony Larcher committed
404
405
406
407
408
            if self.is_best:
                self.best_eer_epoch = epoch
                self.current_patience = self.init_patience
            else:
                self.current_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
409
410


Anthony Larcher's avatar
Anthony Larcher committed
411
class Xtractor(torch.nn.Module):
412
413
414
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
415

Anthony Larcher's avatar
Anthony Larcher committed
416
417
418
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
419
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
420
                 norm_embedding=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
421
422
                 aam_margin=0.2,
                 aam_s=30):
Anthony Larcher's avatar
Anthony Larcher committed
423
424
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
425
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
426
        """
Anthony Larcher's avatar
Anthony Larcher committed
427
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
428
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
429
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
430
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
431

Anthony Larcher's avatar
Anthony Larcher committed
432
433
        print(f"Speaker number : {self.speaker_number}")

Anthony Larcher's avatar
Anthony Larcher committed
434
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
435

Anthony Larcher's avatar
Anthony Larcher committed
436
437
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
438
439
440
441
442
            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
443
444
            self.activation = torch.nn.LeakyReLU(0.2)

Anthony Larcher's avatar
Anthony Larcher committed
445
            self.preprocessor = MfccFrontEnd()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
446
            self.feature_size = self.preprocessor.n_mfcc
Anthony Larcher's avatar
Anthony Larcher committed
447

Anthony Larcher's avatar
xv    
Anthony Larcher committed
448
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
449
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
450
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
451
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
452
453
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
454
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
455
456
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
457
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
458
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
459
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
460
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
461
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
462
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
463
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
464
465
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
466
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
467
            self.stat_pooling_weight_decay = 0
Anthony Larcher's avatar
xv    
Anthony Larcher committed
468
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
469
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
470
471
            ]))

472
473
            self.embedding_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
474
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
475
476
477
478
479
                self.after_speaker_embedding = ArcMarginProduct(512,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)
Anthony Larcher's avatar
Anthony Larcher committed
480
481
482
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
483
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
484
485
486
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
487
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
488
489
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
490

491
            self.preprocessor_weight_decay = 0.0002
Anthony Larcher's avatar
debug    
Anthony Larcher committed
492
493
494
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002
495
            self.embedding_size = 512
Anthony Larcher's avatar
Anthony Larcher committed
496

Anthony Larcher's avatar
Anthony Larcher committed
497
        elif model_archi == "resnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
498

Anthony Larcher's avatar
Anthony Larcher committed
499
            self.preprocessor = MelSpecFrontEnd(n_mels=80)
Anthony Larcher's avatar
Anthony Larcher committed
500
            self.sequence_network = PreResNet34()
Anthony Larcher's avatar
Anthony Larcher committed
501
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
502

Anthony Larcher's avatar
Anthony Larcher committed
503
504
            self.before_speaker_embedding = torch.nn.Linear(in_features=5120,
                                                            out_features=self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
505
506
507
508

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

509
            self.loss = "aam"
Anthony Larcher's avatar
Anthony Larcher committed
510
            self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
Anthony Larcher's avatar
Anthony Larcher committed
511
512
                                                            int(self.speaker_number),
                                                            s = 30.0,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
513
                                                            m = 0.20,
Anthony Larcher's avatar
Anthony Larcher committed
514
                                                            easy_margin = False)
Anthony Larcher's avatar
Anthony Larcher committed
515
516
517
518
519
520
521

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
522
        elif model_archi == "fastresnet34":
Anthony Larcher's avatar
Anthony Larcher committed
523
            self.preprocessor = MelSpecFrontEnd()
Anthony Larcher's avatar
Anthony Larcher committed
524
            self.sequence_network = PreFastResNet34()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
525
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
526

Anthony Larcher's avatar
Anthony Larcher committed
527
            self.before_speaker_embedding = torch.nn.Linear(in_features = 2560,
Anthony Larcher's avatar
Anthony Larcher committed
528
                                                            out_features = self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
529
530
531
532

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

Anthony Larcher's avatar
merge    
Anthony Larcher committed
533
534
535
536
            self.loss = loss
            if self.loss == "aam":
                self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
                                                                int(self.speaker_number),
Anthony Larcher's avatar
merge    
Anthony Larcher committed
537
538
                                                                s = 30,
                                                                m = 0.2,
Anthony Larcher's avatar
merge    
Anthony Larcher committed
539
540
541
542
                                                                easy_margin = False)

            elif self.loss == 'aps':
                self.after_speaker_embedding = SoftmaxAngularProto(int(self.speaker_number))
Anthony Larcher's avatar
Anthony Larcher committed
543

Anthony Larcher's avatar
Anthony Larcher committed
544
545
546
547
548
            self.preprocessor_weight_decay = 0.00002
            self.sequence_network_weight_decay = 0.00002
            self.stat_pooling_weight_decay = 0.00002
            self.before_speaker_embedding_weight_decay = 0.00002
            self.after_speaker_embedding_weight_decay = 0.0002
Anthony Larcher's avatar
Anthony Larcher committed
549

Anthony Larcher's avatar
Anthony Larcher committed
550
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
551
552
553
554
555
556

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
557
558
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
559
560
561
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
562
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
563
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
564
565
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
583
584
585
586
587
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
588
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
589
590
591
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
592

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
593
594
595
596
597
598
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
599
        else:
Anthony Larcher's avatar
Anthony Larcher committed
600
601
            is_first_resblock = True

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
602
603
604
605
606
607
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
608

Anthony Larcher's avatar
Anthony Larcher committed
609
            self.loss = cfg["loss"]["type"]
Anthony Larcher's avatar
Anthony Larcher committed
610
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
611
612
                self.aam_margin = cfg["loss"]["aam_margin"]
                self.aam_s = cfg["loss"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
613

Anthony Larcher's avatar
Anthony Larcher committed
614
615
616
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
617
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
618
619
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
620
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
621
622
623
624
625
626
627
628
629
630
631
632
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
633
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
634
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
635
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
636
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
637
638
639
640
641
642
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
643
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
644
645

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
646
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
647
            """
Anthony Larcher's avatar
Anthony Larcher committed
648
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
649
            if self.feature_size is None:
Anthony Larcher's avatar
Anthony Larcher committed
650
                self.feature_size = cfg["preprocessor"]["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
651

Anthony Larcher's avatar
Anthony Larcher committed
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
667
668
669
670
671
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

Anthony Larcher's avatar
Anthony Larcher committed
672
673
674
675
676
                elif k.startswith("conv2D"):
                    segmental_layers.append((k, torch.nn.Conv2d(in_channels=1,
                                                                out_channels=entry_conv_out_channels,
                                                                kernel_size=entry_conv_kernel_size,
                                                                padding=3,
Anthony Larcher's avatar
Anthony Larcher committed
677
                                                                stride=1)))
Anthony Larcher's avatar
Anthony Larcher committed
678

Anthony Larcher's avatar
Anthony Larcher committed
679
                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
680
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
681
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
682
683
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
684
685
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
686
687
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
688
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
689
690
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
691
692
693
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
694
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
695
696
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
697
698
699
700
701
702
                elif k.startswith('resblock'):
                    segmental_layers.append((ResBlock(cfg["segmental"][k]["input_channel"],
                                                      cfg["segmental"][k]["output_channel"],
                                                      is_first_resblock)))
                    is_first_resblock = False

Anthony Larcher's avatar
Anthony Larcher committed
703
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
704
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
705

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
706
707
708
709
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
710
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
711
712
713
714
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
715
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
716

Anthony Larcher's avatar
Anthony Larcher committed
717
718
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
719
            """
Anthony Larcher's avatar
Anthony Larcher committed
720
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
721
            """
Anthony Larcher's avatar
Anthony Larcher committed
722
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
723
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
724
725
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
726
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
727
728
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
729
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
730
731
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
732
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
733
734

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
735
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
736

Anthony Larcher's avatar
Anthony Larcher committed
737
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
738
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
739
740

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
741
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
742

Anthony Larcher's avatar
Anthony Larcher committed
743
            self.embedding_size = input_size
Anthony Larcher's avatar
Anthony Larcher committed
744
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
745
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
746

Anthony Larcher's avatar
Anthony Larcher committed
747
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
748
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
749
750
751
752
753
754
755
756
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
757
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
758
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
759

Anthony Larcher's avatar
Anthony Larcher committed
760
761
762
763
764
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
765

Anthony Larcher's avatar
Anthony Larcher committed
766
767
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
768

Anthony Larcher's avatar
Anthony Larcher committed
769
770
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
771

Anthony Larcher's avatar
Anthony Larcher committed
772
773
774
775
776
777
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
778
779
780
781
782
783
784
                self.norm_embedding = True
                self.after_speaker_embedding = ArcMarginProduct(input_size,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)

Anthony Larcher's avatar
Anthony Larcher committed
785
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
786

787
    def forward(self, x, is_eval=False, target=None, extract_after_pooling=False):
788
789
790
        """

        :param x:
791
        :param is_eval: False for training
792
793
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
794
795
796
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
797
        x = self.sequence_network(x)
798

Anthony Larcher's avatar
Anthony Larcher committed
799
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
800
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
801

802
803
804
        if extract_after_pooling:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
805
        x = self.before_speaker_embedding(x)
806

Anthony Larcher's avatar
Anthony Larcher committed
807
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
808
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
809

Anthony Larcher's avatar
Anthony Larcher committed
810
        if self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
811
            if is_eval:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
812
                return x
Anthony Larcher's avatar
debug    
Anthony Larcher committed
813
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
814
                return self.after_speaker_embedding(x), x
Anthony Larcher's avatar
Anthony Larcher committed
815

Anthony Larcher's avatar
merge    
Anthony Larcher committed
816
        elif self.loss in ['aam', 'aps']:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
817
818
            if is_eval:
                x = torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
819
            else:
Anthony Larcher's avatar
merge    
Anthony Larcher committed
820
                x = self.after_speaker_embedding(x, target=target), torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
821

Anthony Larcher's avatar
Anthony Larcher committed
822
        return x
Anthony Larcher's avatar
Anthony Larcher committed
823

824
825
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
826
827
828
829
830
831
832
833
834
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
835

Anthony Larcher's avatar
Anthony Larcher committed
836

Anthony Larcher's avatar
Anthony Larcher committed
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
def fill_dict(target_dict, source_dict, prefix = ""):
    """
    Recursively Fill a dictionary target_dict by taking values from source_dict

    :param target_dict: output dictionary that is initialized with default values
    :param source_dict: input dictionary
    :return:
    """
    for k1, v1 in target_dict.items():

        if isinstance(v1, dict):
            if k1 in source_dict and isinstance(source_dict[k1], dict):
                #print(f"\n{prefix}{k1}")
                fill_dict(v1, source_dict[k1], prefix + "\t")
                #print("\n")
            else:
                #print(f"{prefix}{k1} set to default value: {target_dict[k1]}")
                pass
        else:
            if k1 in source_dict and source_dict[k1] is not None:
                target_dict[k1] = source_dict[k1]
                #print(f"{prefix}{k1} set to: {source_dict[k1]}")
            else:
                #print(f"{prefix}{k1} set to default value: {target_dict[k1]}")
                pass


Anthony Larcher's avatar
Anthony Larcher committed
864
865
def update_training_dictionary(dataset_description,
                               model_description,
Anthony Larcher's avatar
Anthony Larcher committed
866
867
                               training_description,
                               kwargs=None):
Anthony Larcher's avatar
Anthony Larcher committed
868
869
    """

Anthony Larcher's avatar
Anthony Larcher committed
870
871
872
873
    :param dataset_description:
    :param model_description:
    :param training_description:
    :param kwargs:
Anthony Larcher's avatar
Anthony Larcher committed
874
875
876
877
878
879
    :return:
    """
    dataset_opts=dict()
    model_opts=dict()
    training_opts=dict()

Anthony Larcher's avatar
Anthony Larcher committed
880
881
882
883
884
    if isinstance(dataset_description, str) and os.path.isfile(dataset_description):
        with open(dataset_description, 'r') as fh:
            tmp_data_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_data_dict = dataset_description
Anthony Larcher's avatar
Anthony Larcher committed
885

Anthony Larcher's avatar
Anthony Larcher committed
886
887
888
889
890
    if isinstance(model_description, str) and os.path.isfile(model_description):
        with open(model_description, 'r') as fh:
            tmp_model_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_model_dict = model_description
Anthony Larcher's avatar
Anthony Larcher committed
891

Anthony Larcher's avatar
Anthony Larcher committed
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
    if isinstance(training_description, str) and os.path.isfile(training_description):
        with open(training_description, 'r') as fh:
            tmp_train_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_train_dict = training_description

    # Initialize default dictionaries
    dataset_opts["data_path"] = None
    dataset_opts["dataset_csv"] = None
    dataset_opts["data_file_extension"] = ".wav"
    dataset_opts["sample_rate"] = 16000

    dataset_opts["validation_ratio"] = 0.1
    dataset_opts["batch_size"] = 64

    dataset_opts["train"] = dict()
    dataset_opts["train"]["duration"] = 2.
    dataset_opts["train"]["chunk_per_segment"] = -1
    dataset_opts["train"]["overlap"] = 1.9
Anthony Larcher's avatar
Anthony Larcher committed
911
912
913
    dataset_opts["train"]["sampler"] = dict()
    dataset_opts["train"]["sampler"]["examples_per_speaker"] = 1
    dataset_opts["train"]["sampler"]["samples_per_speaker"] = 100
Anthony Larcher's avatar
Anthony Larcher committed
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
    dataset_opts["train"]["transformation"] = dict()
    dataset_opts["train"]["transformation"]["pipeline"] = ""
    dataset_opts["train"]["transformation"]["add_noise"] = dict()
    dataset_opts["train"]["transformation"]["add_noise"]["noise_db_csv"] = ""
    dataset_opts["train"]["transformation"]["add_noise"]["data_path"] = ""
    dataset_opts["train"]["transformation"]["add_reverb"] = dict()
    dataset_opts["train"]["transformation"]["add_reverb"]["noise_db_csv"] = ""
    dataset_opts["train"]["transformation"]["add_reverb"]["data_path"] = ""

    dataset_opts["valid"] = dict()
    dataset_opts["valid"]["duration"] = 2.
    dataset_opts["valid"]["transformation"] = dict()
    dataset_opts["valid"]["transformation"]["pipeline"] = ""
    dataset_opts["valid"]["transformation"]["add_noise"] = dict()
    dataset_opts["valid"]["transformation"]["add_noise"]["noise_db_csv"] = ""
    dataset_opts["valid"]["transformation"]["add_noise"]["data_path"] = ""
    dataset_opts["valid"]["transformation"]["add_reverb"] = dict()
    dataset_opts["valid"]["transformation"]["add_reverb"]["noise_db_csv"] = ""
    dataset_opts["valid"]["transformation"]["add_reverb"]["data_path"] = ""

    dataset_opts["test"] = dict()
    dataset_opts["test"]["idmap"] = ""
    dataset_opts["test"]["ndx"] = ""
    dataset_opts["test"]["key"] = ""
    dataset_opts["test"]["data_path"] =""

    # Initialize model options
    model_opts["speaker_number"] = None
    model_opts["loss"] = dict()
    model_opts["loss"]["type"] ="aam"
    model_opts["loss"]["aam_margin"] = 0.2
    model_opts["loss"]["aam_s"] = 30

    model_opts["initial_model_name"] = None
    model_opts["reset_parts"] = []
    model_opts["freeze_parts"] = []

    model_opts["model_type"] = "fastresnet"

Anthony Larcher's avatar
Anthony Larcher committed
953
954
955
    model_opts["preprocessor"] = dict()
    model_opts["preprocessor"]["type"] =  "mel_spec"
    model_opts["preprocessor"]["feature_size"] = 80
Anthony Larcher's avatar
Anthony Larcher committed
956
957
958
959

    # Initialize training options
    training_opts["log_file"] = "sidekit.log"
    training_opts["seed"] = 42
Anthony Larcher's avatar
Anthony Larcher committed
960
    training_opts["deterministic"] = False
Anthony Larcher's avatar
Anthony Larcher committed
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
    training_opts["epochs"] = 100
    training_opts["lr"] = 1e-3
    training_opts["patience"] = 50
    training_opts["multi_gpu"] = False
    training_opts["num_cpu"] = 5
    training_opts["mixed_precision"] = False
    training_opts["clipping"] = False

    training_opts["optimizer"] = dict()
    training_opts["optimizer"]["type"] = "sgd"
    training_opts["optimizer"]["options"] = None

    training_opts["scheduler"] = dict()
    training_opts["scheduler"]["type"] = "ReduceLROnPlateau"
    training_opts["scheduler"]["options"] = None

    training_opts["compute_test_eer"] = False
    training_opts["log_interval"] = 10
Anthony Larcher's avatar
Anthony Larcher committed
979
    training_opts["validation_frequency"] = 1
Anthony Larcher's avatar
Anthony Larcher committed
980
981
982
983
984
985
986
987
988
989
990
991

    training_opts["tmp_model_name"] = "tmp_model.pt"
    training_opts["best_model_name"] = "best_model.pt"
    training_opts["checkpoint_frequency"] = "10"


    # Use options from the YAML config files
    fill_dict(dataset_opts, tmp_data_dict)
    fill_dict(model_opts, tmp_model_dict)
    fill_dict(training_opts, tmp_train_dict)

    # Overwrite with manually given parameters
Anthony Larcher's avatar
Anthony Larcher committed
992
993
994
995
996
    # TODO

    return dataset_opts, model_opts, training_opts


Anthony Larcher's avatar
Anthony Larcher committed
997
def get_network(model_opts):
Anthony Larcher's avatar
Anthony Larcher committed
998
    """
Anthony Larcher's avatar
Anthony Larcher committed
999
1000

    :param model_opts: