xvector.py 26.5 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# -*- coding: utf-8 -*-
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
Anthony Larcher committed
25
Copyright 2014-2019 Yevhenii Prokopalo, Anthony Larcher
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
import h5py
import logging
Anthony Larcher's avatar
Anthony Larcher committed
30
import sys
Anthony Larcher's avatar
Anthony Larcher committed
31
32
import numpy
import torch
Anthony Larcher's avatar
Anthony Larcher committed
33
34
35
import torch.optim as optim
import torch.multiprocessing as mp
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
36
from sidekit.nnet.xsets import XvectorMultiDataset, XvectorDataset, StatDataset, VoxDataset
Anthony Larcher's avatar
Anthony Larcher committed
37
38
from sidekit.bosaris import IdMap
from sidekit.statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
39
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
40

Anthony Larcher's avatar
Anthony Larcher committed
41
42
43
44
45
46
47
__license__ = "LGPL"
__author__ = "Anthony Larcher"
__copyright__ = "Copyright 2015-2019 Anthony Larcher"
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
48
49


Anthony Larcher's avatar
Anthony Larcher committed
50
#logging.basicConfig(stream=sys.stdout, level=logging.INFO)
Anthony Larcher's avatar
Anthony Larcher committed
51
52


Anthony Larcher's avatar
Anthony Larcher committed
53
54
55
56
57
58
59
def split_file_list(batch_files, num_processes):
    # Cut the list of files into args.num_processes lists of files
    batch_sub_lists = [[]] * num_processes
    x = [ii for ii in range(len(batch_files))]
    for ii in range(num_processes):
        batch_sub_lists[ii - 1] = [batch_files[z + ii] for z in x[::num_processes] if (z + ii) < len(batch_files)]
    return batch_sub_lists
Anthony Larcher's avatar
Anthony Larcher committed
60
61
62


class Xtractor(torch.nn.Module):
63
64
65
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
Anthony Larcher committed
66
    def __init__(self, spk_number, dropout):
Anthony Larcher's avatar
Anthony Larcher committed
67
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
68
        self.frame_conv0 = torch.nn.Conv1d(30, 512, 5, dilation=1)
Anthony Larcher's avatar
Anthony Larcher committed
69
70
71
        self.frame_conv1 = torch.nn.Conv1d(512, 512, 3, dilation=2)
        self.frame_conv2 = torch.nn.Conv1d(512, 512, 3, dilation=3)
        self.frame_conv3 = torch.nn.Conv1d(512, 512, 1)
Anthony Larcher's avatar
test    
Anthony Larcher committed
72
73
        self.frame_conv4 = torch.nn.Conv1d(512, 3 * 512, 1)
        self.seg_lin0 = torch.nn.Linear(3 * 512 * 2, 512)
Anthony Larcher's avatar
Anthony Larcher committed
74
        self.dropout_lin0 = torch.nn.Dropout(p=dropout)
Anthony Larcher's avatar
Anthony Larcher committed
75
        self.seg_lin1 = torch.nn.Linear(512, 512)
Anthony Larcher's avatar
Anthony Larcher committed
76
        self.dropout_lin1 = torch.nn.Dropout(p=dropout)
Anthony Larcher's avatar
Anthony Larcher committed
77
78
79
        self.seg_lin2 = torch.nn.Linear(512, spk_number)
        #
        self.norm0 = torch.nn.BatchNorm1d(512)
Anthony Larcher's avatar
Anthony Larcher committed
80
81
82
        self.norm1 = torch.nn.BatchNorm1d(512)
        self.norm2 = torch.nn.BatchNorm1d(512)
        self.norm3 = torch.nn.BatchNorm1d(512)
Anthony Larcher's avatar
test    
Anthony Larcher committed
83
        self.norm4 = torch.nn.BatchNorm1d(3 * 512)
Anthony Larcher's avatar
Anthony Larcher committed
84
        self.norm6 = torch.nn.BatchNorm1d(512)
Anthony Larcher's avatar
Anthony Larcher committed
85
        self.norm7 = torch.nn.BatchNorm1d(512)
Anthony Larcher's avatar
Anthony Larcher committed
86
        #
Anthony Larcher's avatar
Anthony Larcher committed
87
        self.activation = torch.nn.LeakyReLU(0.2)
Anthony Larcher's avatar
Anthony Larcher committed
88

89
    def produce_embeddings(self, x):
Anthony Larcher's avatar
Anthony Larcher committed
90
        """
Anthony Larcher's avatar
Anthony Larcher committed
91

92
93
94
        :param x:
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
95
96
97
98
99
        frame_emb_0 = self.norm0(self.activation(self.frame_conv0(x)))
        frame_emb_1 = self.norm1(self.activation(self.frame_conv1(frame_emb_0)))
        frame_emb_2 = self.norm2(self.activation(self.frame_conv2(frame_emb_1)))
        frame_emb_3 = self.norm3(self.activation(self.frame_conv3(frame_emb_2)))
        frame_emb_4 = self.norm4(self.activation(self.frame_conv4(frame_emb_3)))
Anthony Larcher's avatar
Anthony Larcher committed
100
101
102

        mean = torch.mean(frame_emb_4, dim=2)
        std = torch.std(frame_emb_4, dim=2)
103
        seg_emb = torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
104

105
106
        embedding_a = self.seg_lin0(seg_emb)
        return embedding_a
Anthony Larcher's avatar
Anthony Larcher committed
107
108

    def forward(self, x):
109
110
111
112
113
114
        """

        :param x:
        :return:
        """
        seg_emb_0 = self.produce_embeddings(x)
Anthony Larcher's avatar
Anthony Larcher committed
115
        # batch-normalisation after this layer
116
        seg_emb_1 = self.norm6(self.activation(seg_emb_0))
Anthony Larcher's avatar
Anthony Larcher committed
117
        # new layer with batch Normalization
118
        seg_emb_2 = self.norm7(self.activation(self.seg_lin1(self.dropout_lin1(seg_emb_1))))
Anthony Larcher's avatar
Anthony Larcher committed
119
        # No batch-normalisation after this layer
120
        result = self.activation(self.seg_lin2(seg_emb_2))
Anthony Larcher's avatar
Anthony Larcher committed
121
122
        return result

123
124
125
126
127
128
129
130
131
132
133
    def extract(self, x):
        """
        Extract x-vector given an input sequence of features

        :param x:
        :return:
        """
        embedding_a = self.produce_embeddings(x)
        embedding_b = self.seg_lin1(self.norm6(self.activation(embedding_a)))

        return embedding_a, embedding_b
Anthony Larcher's avatar
Anthony Larcher committed
134
135
136

    def init_weights(self):
        """
137
        Initialize the x-vector extract weights and biaises
Anthony Larcher's avatar
Anthony Larcher committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
        """
        torch.nn.init.normal_(self.frame_conv0.weight, mean=-0.5, std=0.1)
        torch.nn.init.normal_(self.frame_conv1.weight, mean=-0.5, std=0.1)
        torch.nn.init.normal_(self.frame_conv2.weight, mean=-0.5, std=0.1)
        torch.nn.init.normal_(self.frame_conv3.weight, mean=-0.5, std=0.1)
        torch.nn.init.normal_(self.frame_conv4.weight, mean=-0.5, std=0.1)
        torch.nn.init.xavier_uniform(self.seg_lin0.weight)
        torch.nn.init.xavier_uniform(self.seg_lin1.weight)
        torch.nn.init.xavier_uniform(self.seg_lin2.weight)

        torch.nn.init.constant(self.frame_conv0.bias, 0.1)
        torch.nn.init.constant(self.frame_conv1.bias, 0.1)
        torch.nn.init.constant(self.frame_conv2.bias, 0.1)
        torch.nn.init.constant(self.frame_conv3.bias, 0.1)
        torch.nn.init.constant(self.frame_conv4.bias, 0.1)
        torch.nn.init.constant(self.seg_lin0.bias, 0.1)
        torch.nn.init.constant(self.seg_lin1.bias, 0.1)
        torch.nn.init.constant(self.seg_lin2.bias, 0.1)

Anthony Larcher's avatar
Anthony Larcher committed
157
158

def xtrain(args):
159
160
161
162
163
164
    """
    Initialize and train an x-vector in asynchronous manner

    :param args:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
165
    # Initialize a first model and save to disk
Anthony Larcher's avatar
Anthony Larcher committed
166
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
167
168
169
170
171
172
173
174
    current_model_file_name = "initial_model"
    torch.save(model.state_dict(), current_model_file_name)

    for epoch in range(1, args.epochs + 1):
        current_model_file_name = train_epoch(epoch, args, current_model_file_name)

        # Add the cross validation here
        accuracy = cross_validation(args, current_model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
175
        print("*** Cross validation accuracy = {} %".format(accuracy))
Anthony Larcher's avatar
Anthony Larcher committed
176

Anthony Larcher's avatar
Anthony Larcher committed
177
        # Decrease learning rate after every epoch
Anthony Larcher's avatar
Anthony Larcher committed
178
        #args.lr = args.lr * 0.9
Anthony Larcher's avatar
sad    
Anthony Larcher committed
179
180
        args.lr = args.lr * 0.9
        print("        Decrease learning rate: {}".format(args.lr))
Anthony Larcher's avatar
Anthony Larcher committed
181

Anthony Larcher's avatar
Anthony Larcher committed
182
183

def train_epoch(epoch, args, initial_model_file_name):
184
185
186
187
188
189
190
191
    """
    Process one training epoch using an asynchronous implementation of the training

    :param epoch:
    :param args:
    :param initial_model_file_name:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    # Compute the megabatch number
    with open(args.batch_training_list, 'r') as fh:
        batch_file_list = [l.rstrip() for l in fh]

    # Shorten the batch_file_list to be a multiple of

    megabatch_number = len(batch_file_list) // (args.averaging_step * args.num_processes)
    megabatch_size = args.averaging_step * args.num_processes
    print("Epoch {}, number of megabatches = {}".format(epoch, megabatch_number))

    current_model = initial_model_file_name

    # For each sublist: run an asynchronous training and averaging of the model
    for ii in range(megabatch_number):
        print('Process megabatch [{} / {}]'.format(ii + 1, megabatch_number))
        current_model = train_asynchronous(epoch,
                                           args,
                                           current_model,
                                           batch_file_list[megabatch_size * ii: megabatch_size * (ii + 1)],
                                           ii,
                                           megabatch_number)  # function that split train, fuse and write the new model to disk
    return current_model


216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
def train_asynchronous(epoch, args, initial_model_file_name, batch_file_list, megabatch_idx, megabatch_number):
    """
    Process one mega-batch of data asynchronously, average the model parameters across
    subrocesses and return the updated version of the model

    :param epoch:
    :param args:
    :param initial_model_file_name:
    :param batch_file_list:
    :param megabatch_idx:
    :param megabatch_number:
    :return:
    """
    # Split the list of files for each process
    sub_lists = split_file_list(batch_file_list, args.num_processes)

    #
    output_queue = mp.Queue()
    # output_queue = multiprocessing.Queue()

    processes = []
    for rank in range(args.num_processes):
        p = mp.Process(target=train_worker,
                       args=(rank, epoch, args, initial_model_file_name, sub_lists[rank], output_queue)
                       )
        # We first train the model across `num_processes` processes
        p.start()
        processes.append(p)

    # Average the models and write the new one to disk
    asynchronous_model = []
    for ii in range(args.num_processes):
        asynchronous_model.append(dict(output_queue.get()))

    for p in processes:
        p.join()

    av_model = Xtractor(args.class_number, args.dropout)
    tmp = av_model.state_dict()

    average_param = dict()
    for k in list(asynchronous_model[0].keys()):
        average_param[k] = asynchronous_model[0][k]

        for mod in asynchronous_model[1:]:
            average_param[k] += mod[k]

        if 'num_batches_tracked' not in k:
            tmp[k] = torch.FloatTensor(average_param[k] / len(asynchronous_model))

    # return the file name of the new model
    current_model_file_name = "{}/model_{}_epoch_{}_batch_{}".format(args.model_path, args.expe_id, epoch,
                                                                     megabatch_idx)
    torch.save(tmp, current_model_file_name)
    if megabatch_idx == megabatch_number:
        torch.save(tmp, "{}/model_{}_epoch_{}".format(args.model_path, args.expe_id, epoch))

    return current_model_file_name


Anthony Larcher's avatar
Anthony Larcher committed
276
def train_worker(rank, epoch, args, initial_model_file_name, batch_list, output_queue):
277
278
279
280
281
282
283
284
285
286
287
    """


    :param rank:
    :param epoch:
    :param args:
    :param initial_model_file_name:
    :param batch_list:
    :param output_queue:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
288
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
289
290
291
292
    model.load_state_dict(torch.load(initial_model_file_name))
    model.train()

    torch.manual_seed(args.seed + rank)
Anthony Larcher's avatar
Anthony Larcher committed
293
    train_loader = XvectorMultiDataset(batch_list, args.batch_path)
Anthony Larcher's avatar
Anthony Larcher committed
294
295
296
297
298
299
300
301
302
303
304
305
306

    device = torch.device("cuda:{}".format(rank))
    model.to(device)

    # optimizer = optim.Adam(model.parameters(), lr = args.lr)
    optimizer = optim.Adam([{'params': model.frame_conv0.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv1.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv2.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv3.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv4.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.seg_lin0.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin1.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin2.parameters(), 'weight_decay': args.l2_seg}
Anthony Larcher's avatar
Anthony Larcher committed
307
                            ], lr=args.lr)
Anthony Larcher's avatar
Anthony Larcher committed
308

Anthony Larcher's avatar
Anthony Larcher committed
309
    criterion = torch.nn.CrossEntropyLoss()
Anthony Larcher's avatar
Anthony Larcher committed
310
311
312
313
314
315
316
317

    accuracy = 0.0
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = model(data.to(device))
        loss = criterion(output, target.to(device))
        loss.backward()
        optimizer.step()
Anthony Larcher's avatar
Anthony Larcher committed
318

Anthony Larcher's avatar
Anthony Larcher committed
319
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
Anthony Larcher's avatar
Anthony Larcher committed
320

Anthony Larcher's avatar
Anthony Larcher committed
321
322
323
324
325
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                epoch, batch_idx + 1, train_loader.__len__(),
                       100. * batch_idx / train_loader.__len__(), loss.item(),
                       100.0 * accuracy.item() / ((batch_idx + 1) * args.batch_size)))
Anthony Larcher's avatar
Anthony Larcher committed
326

Anthony Larcher's avatar
Anthony Larcher committed
327
328
    model_param = OrderedDict()
    params = model.state_dict()
Anthony Larcher's avatar
Anthony Larcher committed
329

Anthony Larcher's avatar
Anthony Larcher committed
330
331
332
    for k in list(params.keys()):
        model_param[k] = params[k].cpu().detach().numpy()
    output_queue.put(model_param)
Anthony Larcher's avatar
Anthony Larcher committed
333
334
335



Anthony Larcher's avatar
Anthony Larcher committed
336
def cross_validation(args, current_model_file_name):
Anthony Larcher's avatar
Anthony Larcher committed
337
338
    """

Anthony Larcher's avatar
Anthony Larcher committed
339
340
    :param args:
    :param current_model_file_name:
Anthony Larcher's avatar
Anthony Larcher committed
341
342
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
343
    with open(args.cross_validation_list, 'r') as fh:
Anthony Larcher's avatar
Anthony Larcher committed
344
        cross_validation_list = [l.rstrip() for l in fh]
Anthony Larcher's avatar
Anthony Larcher committed
345
        sub_lists = split_file_list(cross_validation_list, args.num_processes)
Anthony Larcher's avatar
Anthony Larcher committed
346

Anthony Larcher's avatar
Anthony Larcher committed
347
348
    #
    output_queue = mp.Queue()
Anthony Larcher's avatar
Anthony Larcher committed
349

Anthony Larcher's avatar
Anthony Larcher committed
350
351
352
353
354
355
356
357
    processes = []
    for rank in range(args.num_processes):
        p = mp.Process(target=cv_worker,
                       args=(rank, args, current_model_file_name, sub_lists[rank], output_queue)
                       )
        # We first evaluate the model across `num_processes` processes
        p.start()
        processes.append(p)
Anthony Larcher's avatar
Anthony Larcher committed
358

Anthony Larcher's avatar
Anthony Larcher committed
359
360
361
362
    # Average the models and write the new one to disk
    result = []
    for ii in range(args.num_processes):
        result.append(output_queue.get())
Anthony Larcher's avatar
Anthony Larcher committed
363

Anthony Larcher's avatar
Anthony Larcher committed
364
365
    for p in processes:
        p.join()
Anthony Larcher's avatar
Anthony Larcher committed
366

Anthony Larcher's avatar
Anthony Larcher committed
367
368
369
    # Compute the global accuracy
    accuracy = 0.0
    total_batch_number = 0
Anthony Larcher's avatar
Anthony Larcher committed
370
    for bn, acc in result:
Anthony Larcher's avatar
Anthony Larcher committed
371
        accuracy += acc
Anthony Larcher's avatar
Anthony Larcher committed
372
373
        total_batch_number += bn
    
Anthony Larcher's avatar
Anthony Larcher committed
374
    return 100. * accuracy / (total_batch_number * args.batch_size)
Anthony Larcher's avatar
Anthony Larcher committed
375
376


Anthony Larcher's avatar
Anthony Larcher committed
377
def cv_worker(rank, args, current_model_file_name, batch_list, output_queue):
Anthony Larcher's avatar
Anthony Larcher committed
378
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
379
380
    model.load_state_dict(torch.load(current_model_file_name))
    model.eval()
Anthony Larcher's avatar
Anthony Larcher committed
381

Anthony Larcher's avatar
Anthony Larcher committed
382
    cv_loader = XvectorMultiDataset(batch_list, args.batch_path)
Anthony Larcher's avatar
Anthony Larcher committed
383

Anthony Larcher's avatar
Anthony Larcher committed
384
385
    device = torch.device("cuda:{}".format(rank))
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
386

Anthony Larcher's avatar
Anthony Larcher committed
387
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
388
    for batch_idx, (data, target) in enumerate(cv_loader):
Anthony Larcher's avatar
Anthony Larcher committed
389
390
        output = model(data.to(device))
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
Anthony Larcher's avatar
Anthony Larcher committed
391
    output_queue.put((cv_loader.__len__(), accuracy.cpu().numpy()))
Anthony Larcher's avatar
Anthony Larcher committed
392

Anthony Larcher's avatar
hot    
Anthony Larcher committed
393

394
def extract_idmap(args, device_id, segment_indices, fs_params, idmap_name, output_queue):
Anthony Larcher's avatar
Anthony Larcher committed
395
    """
Anthony Larcher's avatar
Anthony Larcher committed
396
397
    Function that takes a model and an idmap and extract all x-vectors based on this model
    and return a StatServer containing the x-vectors
Anthony Larcher's avatar
Anthony Larcher committed
398
    """
Anthony Larcher's avatar
Anthony Larcher committed
399
400
    #device = torch.device("cuda:{}".format(device_ID))
    device = torch.device('cpu')
Anthony Larcher's avatar
Anthony Larcher committed
401
402
403
404
405
406
407
408
409
410
411
412
413

    # Create the dataset
    tmp_idmap = IdMap(idmap_name)
    idmap = IdMap()
    idmap.leftids = tmp_idmap.leftids[segment_indices]
    idmap.rightids = tmp_idmap.rightids[segment_indices]
    idmap.start = tmp_idmap.start[segment_indices]
    idmap.stop = tmp_idmap.stop[segment_indices]

    segment_loader = StatDataset(idmap, fs_params)

    # Load the model
    model_file_name = '/'.join([args.model_path, args.model_name])
Anthony Larcher's avatar
Anthony Larcher committed
414
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
415
416
417
418
419
420
421
422
    model.load_state_dict(torch.load(model_file_name))
    model.eval()

    # Get the size of embeddings
    emb_a_size = model.seg_lin0.weight.data.shape[0]
    emb_b_size = model.seg_lin1.weight.data.shape[0]

    # Create a Tensor to store all x-vectors on the GPU
Anthony Larcher's avatar
Anthony Larcher committed
423
424
425
426
427
428
    emb_1 = numpy.zeros((idmap.leftids.shape[0], emb_a_size)).astype(numpy.float32)
    emb_2 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_3 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_4 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_5 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_6 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
Anthony Larcher's avatar
Anthony Larcher committed
429
430
431
432
433
434

    # Send on selected device
    model.to(device)

    # Loop to extract all x-vectors
    for idx, (model_id, segment_id, data) in enumerate(segment_loader):
Anthony Larcher's avatar
Anthony Larcher committed
435
436
        logging.critical('Process file {}, [{} / {}]'.format(segment_id, idx, segment_loader.__len__()))
        #print('Process file {}'.format(segment_id))
Anthony Larcher's avatar
Anthony Larcher committed
437
438
439
        if list(data.shape)[2] < 20:
            pass
        else:
Anthony Larcher's avatar
Anthony Larcher committed
440
441
442
443
444
445
446
            seg_1, seg_2, seg_3, seg_4, seg_5, seg_6 = model.extract(data.to(device))
            emb_1[idx, :] = seg_1.detach().cpu()
            emb_2[idx, :] = seg_2.detach().cpu()
            emb_3[idx, :] = seg_3.detach().cpu()
            emb_4[idx, :] = seg_4.detach().cpu()
            emb_5[idx, :] = seg_5.detach().cpu()
            emb_6[idx, :] = seg_6.detach().cpu()
Anthony Larcher's avatar
Anthony Larcher committed
447

Anthony Larcher's avatar
Anthony Larcher committed
448
    output_queue.put((segment_indices, emb_1, emb_2, emb_3, emb_4, emb_5, emb_6))
Anthony Larcher's avatar
Anthony Larcher committed
449
450


451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
def xtrain_single(args):
    """
    Initialize and train an x-vector on a single GPU

    :param args:
    :return:
    """
    # Initialize a first model and save to disk
    model = Xtractor(args.class_number, args.dropout)
    model.train()
    model.cuda()

    current_model_file_name = "initial_model"
    torch.save(model.state_dict(), current_model_file_name)

    for epoch in range(1, args.epochs + 1):
        # Process one epoch and return the current model
Anthony Larcher's avatar
Anthony Larcher committed
468
        model = train_epoch_single(model, epoch, args)
469
470

        # Add the cross validation here
Anthony Larcher's avatar
Anthony Larcher committed
471
        accuracy = cross_validation(args, model)
Anthony Larcher's avatar
Anthony Larcher committed
472
        logging.critical("*** Cross validation accuracy = {} %".format(accuracy))
473
474

        # Decrease learning rate after every epoch
Anthony Larcher's avatar
Anthony Larcher committed
475
476
        args.lr = args.lr * 0.9
        args.lr = args.lr * 0.9
Anthony Larcher's avatar
Anthony Larcher committed
477
        logging.critical("        Decrease learning rate: {}".format(args.lr))
478

Anthony Larcher's avatar
Anthony Larcher committed
479
480
481
        # return the file name of the new model
        current_model_file_name = "{}/model_{}_epoch_{}".format(args.model_path, args.expe_id, epoch)
        torch.save(model, current_model_file_name)
482

Anthony Larcher's avatar
Anthony Larcher committed
483

Anthony Larcher's avatar
Anthony Larcher committed
484
485
486
487
488
489
490
491
492
493
494
495
def xtrain_new(args):
    """
    Initialize and train an x-vector on a single GPU

    :param args:
    :return:
    """
    # Initialize a first model and save to disk
    model = Xtractor(args.class_number, args.dropout)
    model.train()
    model.cuda()

496
497
498
499
500
501
502
503
    # Split the training data in train and cv
    total_seg_df = pickle.load(open(args.batch_training_list, "rb"))
    cv_portion = 0.05
    idx = numpy.arange(len(total_seg_df))
    numpy.random.shuffle(idx)
    train_seg_df = total_seg_df.iloc[idx[:int((1-cv_portion)*len(idx))]].reset_index()
    cv_seg_df = total_seg_df.iloc[idx[int((1-cv_portion)*len(idx)):]].reset_index()

Anthony Larcher's avatar
Anthony Larcher committed
504
505
506
507
508
    current_model_file_name = "initial_model"
    torch.save(model.state_dict(), current_model_file_name)

    for epoch in range(1, args.epochs + 1):
        # Process one epoch and return the current model
509
        model = train_epoch_new(model, epoch, train_seg_df, args)
Anthony Larcher's avatar
Anthony Larcher committed
510
511

        # Add the cross validation here
512
        accuracy = cross_validation_new(args, model, cv_seg_df)
Anthony Larcher's avatar
Anthony Larcher committed
513
514
515
516
517
518
519
520
521
522
523
524
525
        logging.critical("*** Cross validation accuracy = {} %".format(accuracy))

        # Decrease learning rate after every epoch
        args.lr = args.lr * 0.9
        args.lr = args.lr * 0.9
        logging.critical("        Decrease learning rate: {}".format(args.lr))

        # return the file name of the new model
        current_model_file_name = "{}/model_{}_epoch_{}".format(args.model_path, args.expe_id, epoch)
        torch.save(model, current_model_file_name)



Anthony Larcher's avatar
Anthony Larcher committed
526
def train_epoch_single(model, epoch, args):
527
528
529
530
531
532
533
534
535
536
537
538
    """

    :param model:
    :param epoch:
    :param args:
    :param batch_list:
    :param output_queue:
    :return:
    """
    device =  device = torch.device("cuda:0")

    torch.manual_seed(args.seed)
Anthony Larcher's avatar
Anthony Larcher committed
539
540
541
542
543
544
545

    # Get the list of batches
    print(args.batch_training_list)

    with open(args.batch_training_list, 'r') as fh:
        batch_list = [l.rstrip() for l in fh]

546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
    train_loader = XvectorMultiDataset(batch_list, args.batch_path)

    optimizer = optim.Adam([{'params': model.frame_conv0.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv1.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv2.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv3.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv4.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.seg_lin0.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin1.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin2.parameters(), 'weight_decay': args.l2_seg}
                            ], lr=args.lr)
    criterion = torch.nn.CrossEntropyLoss()

    accuracy = 0.0
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = model(data.to(device))
        loss = criterion(output, target.to(device))
        loss.backward()
        optimizer.step()

        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()

        if batch_idx % args.log_interval == 0:
Anthony Larcher's avatar
Anthony Larcher committed
570
571
572
573
            logging.critical('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                             epoch, batch_idx + 1, train_loader.__len__(),
                             100. * batch_idx / train_loader.__len__(), loss.item(),
                             100.0 * accuracy.item() / ((batch_idx + 1) * args.batch_size)))
574
575
576

    return model

Anthony Larcher's avatar
Anthony Larcher committed
577

578
def train_epoch_new(model, epoch, train_seg_df, args):
Anthony Larcher's avatar
Anthony Larcher committed
579
580
581
582
    """

    :param model:
    :param epoch:
583
    :param train_seg_df:
Anthony Larcher's avatar
Anthony Larcher committed
584
585
586
    :param args:
    :return:
    """
587
    device = torch.device("cuda:0")
Anthony Larcher's avatar
Anthony Larcher committed
588
    
Anthony Larcher's avatar
Anthony Larcher committed
589
    torch.manual_seed(args.seed)
590
    train_set = VoxDataset(train_seg_df, 500)
Anthony Larcher's avatar
minor    
Anthony Larcher committed
591
    train_loader = DataLoader(train_set, batch_size=128, shuffle=True, num_workers=15)
Anthony Larcher's avatar
Anthony Larcher committed
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606


    optimizer = optim.Adam([{'params': model.frame_conv0.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv1.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv2.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv3.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv4.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.seg_lin0.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin1.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin2.parameters(), 'weight_decay': args.l2_seg}
                            ], lr=args.lr)
    criterion = torch.nn.CrossEntropyLoss()

    accuracy = 0.0
    for batch_idx, (data, target) in enumerate(train_loader):
Anthony Larcher's avatar
Anthony Larcher committed
607
        target = target.squeeze()
Anthony Larcher's avatar
Anthony Larcher committed
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
        optimizer.zero_grad()
        output = model(data.to(device))
        loss = criterion(output, target.to(device))
        loss.backward()
        optimizer.step()

        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()

        if batch_idx % args.log_interval == 0:
            logging.critical('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                             epoch, batch_idx + 1, train_loader.__len__(),
                             100. * batch_idx / train_loader.__len__(), loss.item(),
                             100.0 * accuracy.item() / ((batch_idx + 1) * args.batch_size)))

    return model


Anthony Larcher's avatar
Anthony Larcher committed
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
def cross_validation(args, model):

    with open(args.cross_validation_list, 'r') as fh:
        cross_validation_list = [l.rstrip() for l in fh]
    cv_loader = XvectorMultiDataset(cross_validation_list, args.batch_path)

    model.eval()
    device = torch.device("cuda:0")
    model.to(device)

    accuracy = 0.0
    for batch_idx, (data, target) in enumerate(cv_loader):
        output = model(data.to(device))
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
    return 100. * accuracy.cpu().numpy() / ((batch_idx + 1) * args.batch_size)


642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662

def cross_validation_new(args, model, cv_seg_df):
    """

    :param args:
    :param model:
    :param cv_seg_df:
    :return:
    """
    cv_set = VoxDataset(cv_seg_df, 500)
    model.eval()
    device = torch.device("cuda:0")
    model.to(device)

    accuracy = 0.0
    for batch_idx, (data, target) in enumerate(cv_set):
        output = model(data.to(device))
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
    return 100. * accuracy.cpu().numpy() / ((batch_idx + 1) * args.batch_size)


Anthony Larcher's avatar
Anthony Larcher committed
663
def extract_parallel(args, fs_params):
664
665
666
667
668
669
    """

    :param args:
    :param fs_params:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
670
671
672
    emb_a_size = 512
    emb_b_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
673
    idmap = IdMap(args.idmap)
Anthony Larcher's avatar
Anthony Larcher committed
674

Anthony Larcher's avatar
Anthony Larcher committed
675
676
677
678
679
680
681
682
683
684
685
686
687
    x_server_1 = StatServer(idmap, 1, emb_a_size)
    x_server_2 = StatServer(idmap, 1, emb_b_size)
    x_server_3 = StatServer(idmap, 1, emb_b_size)
    x_server_4 = StatServer(idmap, 1, emb_b_size)
    x_server_5 = StatServer(idmap, 1, emb_b_size)
    x_server_6 = StatServer(idmap, 1, emb_b_size)

    x_server_1.stat0 = numpy.ones(x_server_1.stat0.shape)
    x_server_2.stat0 = numpy.ones(x_server_2.stat0.shape)
    x_server_3.stat0 = numpy.ones(x_server_3.stat0.shape)
    x_server_4.stat0 = numpy.ones(x_server_4.stat0.shape)
    x_server_5.stat0 = numpy.ones(x_server_5.stat0.shape)
    x_server_6.stat0 = numpy.ones(x_server_6.stat0.shape)
Anthony Larcher's avatar
Anthony Larcher committed
688
689
690

    # Split the indices
    mega_batch_size = idmap.leftids.shape[0] // args.num_processes
Anthony Larcher's avatar
Anthony Larcher committed
691
692
693

    logging.critical("Number of sessions to process: {}".format(idmap.leftids.shape[0]))

Anthony Larcher's avatar
Anthony Larcher committed
694
695
696
    segment_idx = []
    for ii in range(args.num_processes):
        segment_idx.append(
Anthony Larcher's avatar
Anthony Larcher committed
697
698
699
700
            numpy.arange(ii * mega_batch_size, numpy.min([(ii + 1) * mega_batch_size, idmap.leftids.shape[0]])))

    for idx, si in enumerate(segment_idx):
        logging.critical("Number of session on process {}: {}".format(idx, len(si)))
Anthony Larcher's avatar
Anthony Larcher committed
701
702
703
704
705
706
707

    # Extract x-vectors in parallel
    output_queue = mp.Queue()

    processes = []
    for rank in range(args.num_processes):
        p = mp.Process(target=extract_idmap,
Anthony Larcher's avatar
Anthony Larcher committed
708
                       args=(args, rank, segment_idx[rank], fs_params, args.idmap, output_queue)
Anthony Larcher's avatar
Anthony Larcher committed
709
710
711
712
713
714
715
                       )
        # We first train the model across `num_processes` processes
        p.start()
        processes.append(p)

    # Get the x-vectors and fill the StatServer
    for ii in range(args.num_processes):
Anthony Larcher's avatar
Anthony Larcher committed
716
717
718
719
720
721
722
        indices, seg_1, seg_2, seg_3, seg_4, seg_5, seg_6 = output_queue.get()
        x_server_1.stat1[indices, :] = seg_1
        x_server_2.stat1[indices, :] = seg_2
        x_server_3.stat1[indices, :] = seg_3
        x_server_4.stat1[indices, :] = seg_4
        x_server_5.stat1[indices, :] = seg_5
        x_server_6.stat1[indices, :] = seg_6
Anthony Larcher's avatar
Anthony Larcher committed
723
724
725
726

    for p in processes:
        p.join()

Anthony Larcher's avatar
Anthony Larcher committed
727
    return x_server_1, x_server_2, x_server_3, x_server_4, x_server_5, x_server_6
Anthony Larcher's avatar
Anthony Larcher committed
728
729
730
731
732