xvector.py 74.2 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
25
Copyright 2014-2021 Anthony Larcher, Yevhenii Prokopalo
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28

Anthony Larcher's avatar
Anthony Larcher committed
29
import logging
Anthony Larcher's avatar
debug    
Anthony Larcher committed
30
import math
Anthony Larcher's avatar
Anthony Larcher committed
31
import os
Anthony Larcher's avatar
Anthony Larcher committed
32
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
33
import random
Anthony Larcher's avatar
Anthony Larcher committed
34
import pandas
Anthony Larcher's avatar
Anthony Larcher committed
35
import shutil
Anthony Larcher's avatar
Anthony Larcher committed
36
import torch
Anthony Larcher's avatar
Anthony Larcher committed
37
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
38
39
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
40
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
41
42
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
43
44
45
from .pooling import MeanStdPooling
from .pooling import AttentivePooling
from .pooling import GruPooling
Anthony Larcher's avatar
Anthony Larcher committed
46
47
48
from .preprocessor import MfccFrontEnd
from .preprocessor import MelSpecFrontEnd
from .preprocessor import RawPreprocessor
Anthony Larcher's avatar
Anthony Larcher committed
49
from .xsets import SideSet
Anthony Larcher's avatar
Anthony Larcher committed
50
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
51
from .xsets import IdMapSetPerSpeaker
Anthony Larcher's avatar
Anthony Larcher committed
52
from .xsets import SideSampler
Anthony Larcher's avatar
Anthony Larcher committed
53
54
55
56
from .res_net import ResBlockWFMS
from .res_net import ResBlock
from .res_net import PreResNet34
from .res_net import PreFastResNet34
Anthony Larcher's avatar
Anthony Larcher committed
57
from ..bosaris import IdMap
Anthony Larcher's avatar
Anthony Larcher committed
58
59
from ..bosaris import Key
from ..bosaris import Ndx
Anthony Larcher's avatar
Anthony Larcher committed
60
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
61
from ..iv_scoring import cosine_scoring
Anthony Larcher's avatar
Anthony Larcher committed
62
from .sincnet import SincNet
Anthony Larcher's avatar
merge    
Anthony Larcher committed
63
from ..bosaris.detplot import rocch, rocch2eer
Anthony Larcher's avatar
Anthony Larcher committed
64
from .loss import SoftmaxAngularProto
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
65
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
66
from .loss import ArcMarginProduct
Anthony Larcher's avatar
Anthony Larcher committed
67
68
from .loss import ArcLinear
from .loss import AngularProximityMagnet
Anthony Larcher's avatar
Anthony Larcher committed
69

Anthony Larcher's avatar
Anthony Larcher committed
70

Anthony Larcher's avatar
Anthony Larcher committed
71
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
72

Anthony Larcher's avatar
Anthony Larcher committed
73
74
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
75
__copyright__ = "Copyright 2015-2021 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
76
77
78
79
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
80
81


Anthony Larcher's avatar
Anthony Larcher committed
82
83
def seed_worker():
    """
Anthony Larcher's avatar
Anthony Larcher committed
84

Anthony Larcher's avatar
Anthony Larcher committed
85
86
87
88
89
90
    :param worker_id:
    :return:
    """
    worker_seed = torch.initial_seed() % 2**32
    numpy.random.seed(worker_seed)
    random.seed(worker_seed)
Anthony Larcher's avatar
Anthony Larcher committed
91

Anthony Larcher's avatar
Anthony Larcher committed
92
93

def eer(negatives, positives):
Anthony Larcher's avatar
Anthony Larcher committed
94
    """
Anthony Larcher's avatar
Anthony Larcher committed
95
    Logarithmic complexity EER computation
Anthony Larcher's avatar
Anthony Larcher committed
96

Anthony Larcher's avatar
Anthony Larcher committed
97
98
99
100
    :param negatives: negative_scores (numpy array): impostor scores
    :param positives: positive_scores (numpy array): genuine scores
    :return: float: Equal Error Rate (EER)
    """
Anthony Larcher's avatar
Anthony Larcher committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    positives = numpy.sort(positives)
    negatives = numpy.sort(negatives)[::-1]

    pos_count = positives.shape[0]
    neg_count = negatives.shape[0]

    p_score = positives[0]
    n_score = negatives[0]

    p_index = 0
    n_index = 0

    next_p_jump = pos_count//2
    next_n_jump = neg_count//2

    kdx = 0
    while True:
        kdx += 1
        if p_index < 0 or n_index < 0:
            return 0
        if p_index > pos_count or n_index > neg_count:
            return 100
        if p_score < n_score:
            p_index = p_index + next_p_jump
            n_index = n_index + next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break
        elif p_score >= n_score:
            p_index = p_index - next_p_jump
            n_index = n_index - next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break

        p_score = positives[p_index]
        n_score = negatives[n_index]
        next_p_jump = next_p_jump//2
        next_n_jump = next_n_jump//2

    eer_predicate = 100

    tfr = (abs(p_index))/pos_count
    tfa = (1+abs(n_index))/neg_count
    if (p_score == n_score and tfr == tfa):
        return tfr

    while positives[p_index] < negatives[n_index]:
        if p_index < pos_count - 1:
            p_index += 1
        elif n_index < neg_count - 1:
            n_index += 1
        else:
            break

    while positives[p_index] > negatives[n_index] and n_index >= 1:
        n_index -= 1

    tfr = (1+p_index)/pos_count
    tfa = (1+n_index)/neg_count

    while tfa > tfr:
        p_index += 1
        while positives[p_index] > negatives[n_index] and n_index >= 1:
            n_index -= 1
        tfr = (1+p_index)/pos_count
        tfa = (1+n_index)/neg_count

    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    tfr = p_index/pos_count
    tfa = (1+n_index)/neg_count
    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    while True:
        while negatives[n_index + 1] <= positives[p_index - 1]:
            p_index -= 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer
        while negatives[n_index + 1] > positives[p_index - 1]:
            n_index += 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer

    return eer


Anthony Larcher's avatar
debug    
Anthony Larcher committed
204
205
def test_metrics(model,
                 device,
Anthony Larcher's avatar
Anthony Larcher committed
206
207
208
                 model_opts,
                 data_opts,
                 train_opts):
Anthony Larcher's avatar
Anthony Larcher committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
    transform_pipeline = dict()

Anthony Larcher's avatar
Anthony Larcher committed
227
    xv_stat = extract_embeddings(idmap_name=data_opts["test"]["idmap"],
Anthony Larcher's avatar
Anthony Larcher committed
228
                                 model_filename=model,
Anthony Larcher's avatar
Anthony Larcher committed
229
                                 data_root_name=data_opts["test"]["data_path"],
Anthony Larcher's avatar
Anthony Larcher committed
230
                                 device=device,
Anthony Larcher's avatar
Anthony Larcher committed
231
                                 loss=model_opts["loss"]["type"],
Anthony Larcher's avatar
Anthony Larcher committed
232
                                 transform_pipeline=transform_pipeline,
Anthony Larcher's avatar
Anthony Larcher committed
233
                                 num_thread=train_opts["num_cpu"],
Anthony Larcher's avatar
Anthony Larcher committed
234
235
236
237
                                 mixed_precision=train_opts["mixed_precision"])

    tar, non = cosine_scoring(xv_stat,
                              xv_stat,
Anthony Larcher's avatar
Anthony Larcher committed
238
                              Ndx(data_opts["test"]["ndx"]),
Anthony Larcher's avatar
Anthony Larcher committed
239
240
241
                              wccn=None,
                              check_missing=True,
                              device=device
Anthony Larcher's avatar
Anthony Larcher committed
242
                              ).get_tar_non(Key(data_opts["test"]["key"]))
Anthony Larcher's avatar
Anthony Larcher committed
243
244
245
246
247

    pmiss, pfa = rocch(tar, non)

    return rocch2eer(pmiss, pfa)

Anthony Larcher's avatar
Anthony Larcher committed
248

Anthony Larcher's avatar
Anthony Larcher committed
249
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
250
251
252
253
254
255
256
257
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
258
259
260
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
261

Anthony Larcher's avatar
Anthony Larcher committed
262

Anthony Larcher's avatar
Anthony Larcher committed
263
class TrainingMonitor():
Anthony Larcher's avatar
Anthony Larcher committed
264
    """
Anthony Larcher's avatar
Anthony Larcher committed
265

Anthony Larcher's avatar
Anthony Larcher committed
266
    """
Anthony Larcher's avatar
Anthony Larcher committed
267
    def __init__(self,
Anthony Larcher's avatar
Anthony Larcher committed
268
                 output_file,
Anthony Larcher's avatar
Anthony Larcher committed
269
                 log_interval=10,
Anthony Larcher's avatar
Anthony Larcher committed
270
271
                 patience=numpy.inf,
                 best_accuracy=0.0,
Anthony Larcher's avatar
Anthony Larcher committed
272
                 best_eer_epoch=1,
Anthony Larcher's avatar
Anthony Larcher committed
273
274
275
                 best_eer=100,
                 compute_test_eer=False
                 ):
Anthony Larcher's avatar
Anthony Larcher committed
276

Anthony Larcher's avatar
Anthony Larcher committed
277
        self.current_epoch = 0
Anthony Larcher's avatar
Anthony Larcher committed
278
        self.log_interval = log_interval
Anthony Larcher's avatar
Anthony Larcher committed
279
280
281
        self.init_patience = patience
        self.current_patience = patience
        self.best_accuracy = best_accuracy
Anthony Larcher's avatar
Anthony Larcher committed
282
        self.best_eer_epoch = best_eer_epoch
Anthony Larcher's avatar
Anthony Larcher committed
283
        self.best_eer = best_eer
Anthony Larcher's avatar
Anthony Larcher committed
284
        self.compute_test_eer = compute_test_eer
Anthony Larcher's avatar
Anthony Larcher committed
285
        self.test_eer = []
Anthony Larcher's avatar
Anthony Larcher committed
286
287
288
289

        self.training_loss = []
        self.training_acc = []

Anthony Larcher's avatar
Anthony Larcher committed
290
291
        self.val_loss = []
        self.val_acc = []
Anthony Larcher's avatar
Anthony Larcher committed
292
293
        self.val_eer = []

Anthony Larcher's avatar
Anthony Larcher committed
294
295
        self.is_best = True

Anthony Larcher's avatar
Anthony Larcher committed
296
        # Initialize the logger
Anthony Larcher's avatar
Anthony Larcher committed
297
        logging_format = '%(asctime)-15s %(message)s'
Anthony Larcher's avatar
Anthony Larcher committed
298
        logging.basicConfig(level=logging.DEBUG, format=logging_format, datefmt='%m-%d %H:%M')
Anthony Larcher's avatar
Anthony Larcher committed
299
300
        self.logger = logging.getLogger('Monitoring')
        self.logger.setLevel(logging.DEBUG)
Anthony Larcher's avatar
Anthony Larcher committed
301
302
        # create file handler which logs even debug messages
        fh = logging.FileHandler(output_file)
Anthony Larcher's avatar
Anthony Larcher committed
303
304
        formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
        fh.setFormatter(formatter)
Anthony Larcher's avatar
Anthony Larcher committed
305
        fh.setLevel(logging.DEBUG)
Anthony Larcher's avatar
Anthony Larcher committed
306
        self.logger.addHandler(fh)
Anthony Larcher's avatar
Anthony Larcher committed
307

Anthony Larcher's avatar
Anthony Larcher committed
308
309
310
311
312
313
    def display(self):
        """

        :return:
        """
        # TODO
Anthony Larcher's avatar
Anthony Larcher committed
314
315
        self.logger.critical(f"***Validation metrics - Cross validation accuracy = {self.val_acc[-1]} %, EER = {self.val_eer[-1] * 100} %")
        self.logger.critical(f"***Test metrics - Test EER = {self.test_eer[-1] * 100} %")
Anthony Larcher's avatar
Anthony Larcher committed
316
317
318
319
320
321

    def display_final(self):
        """

        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
322
        self.logger.critical(f"Best accuracy {self.best_accuracy * 100.} obtained at epoch {self.best_accuracy_epoch}")
Anthony Larcher's avatar
Anthony Larcher committed
323
324

    def update(self,
Anthony Larcher's avatar
Anthony Larcher committed
325
               epoch=None,
Anthony Larcher's avatar
Anthony Larcher committed
326
327
               training_acc=None,
               training_loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
328
329
330
331
332
               test_eer=None,
               val_eer=None,
               val_loss=None,
               val_acc=None):

Anthony Larcher's avatar
Anthony Larcher committed
333
334
335
        if epoch is not None:
            self.current_epoch = epoch
        if training_acc is not None:
Anthony Larcher's avatar
Anthony Larcher committed
336
            self.training_acc.append(training_acc)
Anthony Larcher's avatar
Anthony Larcher committed
337
        if training_loss is not None:
Anthony Larcher's avatar
Anthony Larcher committed
338
            self.training_loss.append(training_loss)
Anthony Larcher's avatar
Anthony Larcher committed
339
        if val_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
340
            self.val_eer.append(val_eer)
Anthony Larcher's avatar
Anthony Larcher committed
341
        if val_loss is not None:
Anthony Larcher's avatar
Anthony Larcher committed
342
            self.val_loss.append(val_loss)
Anthony Larcher's avatar
Anthony Larcher committed
343
        if val_acc is not None:
Anthony Larcher's avatar
Anthony Larcher committed
344
            self.val_acc.append(val_acc)
Anthony Larcher's avatar
Anthony Larcher committed
345
346

        # remember best accuracy and save checkpoint
Anthony Larcher's avatar
Anthony Larcher committed
347
        if self.compute_test_eer and test_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
348
349
350
            self.test_eer.append(test_eer)
            self.is_best = test_eer < self.best_eer
            self.best_eer = min(test_eer, self.best_eer)
Anthony Larcher's avatar
Anthony Larcher committed
351
352
353
354
355
            if self.is_best:
                self.best_eer_epoch = epoch
                self.current_patience = self.init_patience
            else:
                self.current_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
356
        elif val_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
357
358
            self.is_best = val_eer < self.best_eer
            self.best_eer = min(val_eer, self.best_eer)
Anthony Larcher's avatar
Anthony Larcher committed
359
360
361
362
363
            if self.is_best:
                self.best_eer_epoch = epoch
                self.current_patience = self.init_patience
            else:
                self.current_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
364
365


Anthony Larcher's avatar
Anthony Larcher committed
366
class Xtractor(torch.nn.Module):
367
368
369
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
370

Anthony Larcher's avatar
Anthony Larcher committed
371
372
373
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
374
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
375
                 norm_embedding=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
376
377
                 aam_margin=0.2,
                 aam_s=30):
Anthony Larcher's avatar
Anthony Larcher committed
378
379
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
380
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
381
        """
Anthony Larcher's avatar
Anthony Larcher committed
382
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
383
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
384
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
385
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
386

Anthony Larcher's avatar
Anthony Larcher committed
387
388
        print(f"Speaker number : {self.speaker_number}")

Anthony Larcher's avatar
Anthony Larcher committed
389
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
390

Anthony Larcher's avatar
Anthony Larcher committed
391
392
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
393
394
395
396
397
            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
398
399
            self.activation = torch.nn.LeakyReLU(0.2)

Anthony Larcher's avatar
Anthony Larcher committed
400
            self.preprocessor = MfccFrontEnd()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
401
            self.feature_size = self.preprocessor.n_mfcc
Anthony Larcher's avatar
Anthony Larcher committed
402

Anthony Larcher's avatar
xv    
Anthony Larcher committed
403
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
404
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
405
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
406
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
407
408
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
409
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
410
411
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
412
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
413
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
414
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
415
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
416
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
417
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
418
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
419
420
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
421
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
422
            self.stat_pooling_weight_decay = 0
Anthony Larcher's avatar
xv    
Anthony Larcher committed
423
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
424
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
425
426
            ]))

427
428
            self.embedding_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
429
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
430
431
432
433
434
                self.after_speaker_embedding = ArcMarginProduct(512,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)
Anthony Larcher's avatar
Anthony Larcher committed
435
436
437
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
438
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
439
440
441
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
442
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
443
444
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
445

446
            self.preprocessor_weight_decay = 0.0002
Anthony Larcher's avatar
debug    
Anthony Larcher committed
447
448
449
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002
450
            self.embedding_size = 512
Anthony Larcher's avatar
Anthony Larcher committed
451

Anthony Larcher's avatar
Anthony Larcher committed
452
        elif model_archi == "resnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
453

Anthony Larcher's avatar
Anthony Larcher committed
454
            self.preprocessor = MelSpecFrontEnd(n_mels=80)
Anthony Larcher's avatar
Anthony Larcher committed
455
            self.sequence_network = PreResNet34()
Anthony Larcher's avatar
Anthony Larcher committed
456
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
457

Anthony Larcher's avatar
Anthony Larcher committed
458
459
            self.before_speaker_embedding = torch.nn.Linear(in_features=5120,
                                                            out_features=self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
460
461
462
463

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

464
            self.loss = "aam"
Anthony Larcher's avatar
Anthony Larcher committed
465
            self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
Anthony Larcher's avatar
Anthony Larcher committed
466
467
                                                            int(self.speaker_number),
                                                            s = 30.0,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
468
                                                            m = 0.20,
Anthony Larcher's avatar
Anthony Larcher committed
469
                                                            easy_margin = False)
Anthony Larcher's avatar
Anthony Larcher committed
470
471
472
473
474
475
476

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
477
        elif model_archi == "fastresnet34":
Anthony Larcher's avatar
Anthony Larcher committed
478
            self.preprocessor = MelSpecFrontEnd()
Anthony Larcher's avatar
Anthony Larcher committed
479
            self.sequence_network = PreFastResNet34()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
480
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
481

Anthony Larcher's avatar
Anthony Larcher committed
482
            self.before_speaker_embedding = torch.nn.Linear(in_features = 2560,
Anthony Larcher's avatar
Anthony Larcher committed
483
                                                            out_features = self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
484

Anthony Larcher's avatar
Anthony Larcher committed
485
            self.stat_pooling = AttentivePooling(128, 80, global_context=False)
Anthony Larcher's avatar
Anthony Larcher committed
486
487
            self.stat_pooling_weight_decay = 0

Anthony Larcher's avatar
merge    
Anthony Larcher committed
488
489
490
491
            self.loss = loss
            if self.loss == "aam":
                self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
                                                                int(self.speaker_number),
Anthony Larcher's avatar
merge    
Anthony Larcher committed
492
493
                                                                s = 30,
                                                                m = 0.2,
Anthony Larcher's avatar
merge    
Anthony Larcher committed
494
495
496
497
                                                                easy_margin = False)

            elif self.loss == 'aps':
                self.after_speaker_embedding = SoftmaxAngularProto(int(self.speaker_number))
Anthony Larcher's avatar
Anthony Larcher committed
498
499
            elif self.loss == 'smn':
                self.after_speaker_embedding = AngularProximityMagnet(int(self.speaker_number))
Anthony Larcher's avatar
Anthony Larcher committed
500

Anthony Larcher's avatar
Anthony Larcher committed
501
502
503
504
505
            self.preprocessor_weight_decay = 0.00002
            self.sequence_network_weight_decay = 0.00002
            self.stat_pooling_weight_decay = 0.00002
            self.before_speaker_embedding_weight_decay = 0.00002
            self.after_speaker_embedding_weight_decay = 0.0002
Anthony Larcher's avatar
Anthony Larcher committed
506

Anthony Larcher's avatar
Anthony Larcher committed
507
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
508
509
510
511
512
513

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
514
515
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
516
517
518
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
519
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
520
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
521
522
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
540
541
542
543
544
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
545
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
546
547
548
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
549

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
550
551
552
553
554
555
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
556
        else:
Anthony Larcher's avatar
Anthony Larcher committed
557
558
            is_first_resblock = True

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
559
560
561
562
563
564
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
565

Anthony Larcher's avatar
Anthony Larcher committed
566
            self.loss = cfg["loss"]["type"]
Anthony Larcher's avatar
Anthony Larcher committed
567
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
568
569
                self.aam_margin = cfg["loss"]["aam_margin"]
                self.aam_s = cfg["loss"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
570

Anthony Larcher's avatar
Anthony Larcher committed
571
572
573
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
574
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
575
576
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
577
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
578
579
580
581
582
583
584
585
586
587
588
589
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
590
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
591
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
592
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
593
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
594
595
596
597
598
599
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
600
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
601
602

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
603
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
604
            """
Anthony Larcher's avatar
Anthony Larcher committed
605
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
606
            if self.feature_size is None:
Anthony Larcher's avatar
Anthony Larcher committed
607
                self.feature_size = cfg["preprocessor"]["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
608

Anthony Larcher's avatar
Anthony Larcher committed
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
624
625
626
627
628
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

Anthony Larcher's avatar
Anthony Larcher committed
629
630
631
632
633
                elif k.startswith("conv2D"):
                    segmental_layers.append((k, torch.nn.Conv2d(in_channels=1,
                                                                out_channels=entry_conv_out_channels,
                                                                kernel_size=entry_conv_kernel_size,
                                                                padding=3,
Anthony Larcher's avatar
Anthony Larcher committed
634
                                                                stride=1)))
Anthony Larcher's avatar
Anthony Larcher committed
635

Anthony Larcher's avatar
Anthony Larcher committed
636
                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
637
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
638
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
639
640
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
641
642
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
643
644
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
645
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
646
647
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
648
649
650
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
651
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
652
653
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
654
655
656
657
658
659
                elif k.startswith('resblock'):
                    segmental_layers.append((ResBlock(cfg["segmental"][k]["input_channel"],
                                                      cfg["segmental"][k]["output_channel"],
                                                      is_first_resblock)))
                    is_first_resblock = False

Anthony Larcher's avatar
Anthony Larcher committed
660
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
661
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
662

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
663
664
665
666
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
667
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
668
669
670
671
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
672
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
673

Anthony Larcher's avatar
Anthony Larcher committed
674
675
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
676
            """
Anthony Larcher's avatar
Anthony Larcher committed
677
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
678
            """
Anthony Larcher's avatar
Anthony Larcher committed
679
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
680
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
681
682
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
683
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
684
685
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
686
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
687
688
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
689
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
690
691

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
692
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
693

Anthony Larcher's avatar
Anthony Larcher committed
694
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
695
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
696
697

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
698
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
699

Anthony Larcher's avatar
Anthony Larcher committed
700
            self.embedding_size = input_size
Anthony Larcher's avatar
Anthony Larcher committed
701
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
702
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
703

Anthony Larcher's avatar
Anthony Larcher committed
704
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
705
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
706
707
708
709
710
711
712
713
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
714
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
715
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
716

Anthony Larcher's avatar
Anthony Larcher committed
717
718
719
720
721
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
722

Anthony Larcher's avatar
Anthony Larcher committed
723
724
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
725

Anthony Larcher's avatar
Anthony Larcher committed
726
727
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
728

Anthony Larcher's avatar
Anthony Larcher committed
729
730
731
732
733
734
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
735
736
737
738
739
740
741
                self.norm_embedding = True
                self.after_speaker_embedding = ArcMarginProduct(input_size,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)

Anthony Larcher's avatar
Anthony Larcher committed
742
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
743

744
    def forward(self, x, is_eval=False, target=None, extract_after_pooling=False):
745
746
747
        """

        :param x:
748
        :param is_eval: False for training
749
750
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
751
        if self.preprocessor is not None:
Anthony Larcher's avatar
merge    
Anthony Larcher committed
752
            x = self.preprocessor(x, is_eval)
Anthony Larcher's avatar
Anthony Larcher committed
753

Anthony Larcher's avatar
Anthony Larcher committed
754
        x = self.sequence_network(x)
755

Anthony Larcher's avatar
Anthony Larcher committed
756
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
757
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
758

759
760
761
        if extract_after_pooling:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
762
        x = self.before_speaker_embedding(x)
763

Anthony Larcher's avatar
Anthony Larcher committed
764
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
765
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
766

Anthony Larcher's avatar
Anthony Larcher committed
767
        if self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
768
            if is_eval:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
769
                return x
Anthony Larcher's avatar
debug    
Anthony Larcher committed
770
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
771
                return self.after_speaker_embedding(x), x
Anthony Larcher's avatar
Anthony Larcher committed
772

Anthony Larcher's avatar
merge    
Anthony Larcher committed
773
        elif self.loss in ['aam', 'aps']:
Anthony Larcher's avatar
merge    
Anthony Larcher committed
774
775
776
777
778
            x = self.after_speaker_embedding(x, target=target), torch.nn.functional.normalize(x, dim=1)
        elif self.loss == 'smn':
            if not is_eval:
                x = self.after_speaker_embedding(x, target=target), x

Anthony Larcher's avatar
Anthony Larcher committed
779

Anthony Larcher's avatar
Anthony Larcher committed
780
        return x
Anthony Larcher's avatar
Anthony Larcher committed
781

782
783
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
784
785
786
787
788
789
790
791
792
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
793

Anthony Larcher's avatar
Anthony Larcher committed
794

Anthony Larcher's avatar
Anthony Larcher committed
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
def fill_dict(target_dict, source_dict, prefix = ""):
    """
    Recursively Fill a dictionary target_dict by taking values from source_dict

    :param target_dict: output dictionary that is initialized with default values
    :param source_dict: input dictionary
    :return:
    """
    for k1, v1 in target_dict.items():

        if isinstance(v1, dict):
            if k1 in source_dict and isinstance(source_dict[k1], dict):
                #print(f"\n{prefix}{k1}")
                fill_dict(v1, source_dict[k1], prefix + "\t")
                #print("\n")
            else:
                #print(f"{prefix}{k1} set to default value: {target_dict[k1]}")
                pass
        else:
            if k1 in source_dict and source_dict[k1] is not None:
                target_dict[k1] = source_dict[k1]
                #print(f"{prefix}{k1} set to: {source_dict[k1]}")
            else:
                #print(f"{prefix}{k1} set to default value: {target_dict[k1]}")
                pass


Anthony Larcher's avatar
Anthony Larcher committed
822
823
def update_training_dictionary(dataset_description,
                               model_description,
Anthony Larcher's avatar
Anthony Larcher committed
824
825
                               training_description,
                               kwargs=None):
Anthony Larcher's avatar
Anthony Larcher committed
826
827
    """

Anthony Larcher's avatar
Anthony Larcher committed
828
829
830
831
    :param dataset_description:
    :param model_description:
    :param training_description:
    :param kwargs:
Anthony Larcher's avatar
Anthony Larcher committed
832
833
834
835
836
837
    :return:
    """
    dataset_opts=dict()
    model_opts=dict()
    training_opts=dict()

Anthony Larcher's avatar
Anthony Larcher committed
838
839
840
841
842
    if isinstance(dataset_description, str) and os.path.isfile(dataset_description):
        with open(dataset_description, 'r') as fh:
            tmp_data_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_data_dict = dataset_description
Anthony Larcher's avatar
Anthony Larcher committed
843

Anthony Larcher's avatar
Anthony Larcher committed
844
845
846
847
848
    if isinstance(model_description, str) and os.path.isfile(model_description):
        with open(model_description, 'r') as fh:
            tmp_model_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_model_dict = model_description
Anthony Larcher's avatar
Anthony Larcher committed
849

Anthony Larcher's avatar
Anthony Larcher committed
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
    if isinstance(training_description, str) and os.path.isfile(training_description):
        with open(training_description, 'r') as fh:
            tmp_train_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_train_dict = training_description

    # Initialize default dictionaries
    dataset_opts["data_path"] = None
    dataset_opts["dataset_csv"] = None
    dataset_opts["data_file_extension"] = ".wav"
    dataset_opts["sample_rate"] = 16000

    dataset_opts["validation_ratio"] = 0.1
    dataset_opts["batch_size"] = 64

    dataset_opts["train"] = dict()
    dataset_opts["train"]["duration"] = 2.
    dataset_opts["train"]["chunk_per_segment"] = -1
    dataset_opts["train"]["overlap"] = 1.9
Anthony Larcher's avatar
Anthony Larcher committed
869
870
871
    dataset_opts["train"]["sampler"] = dict()
    dataset_opts["train"]["sampler"]["examples_per_speaker"] = 1
    dataset_opts["train"]["sampler"]["samples_per_speaker"] = 100
Anthony Larcher's avatar
Anthony Larcher committed
872
    dataset_opts["train"]["sampler"]["augmentation_replicas"] = 1
Anthony Larcher's avatar
Anthony Larcher committed
873
    dataset_opts["train"]["transform_number"] = 2
Anthony Larcher's avatar
Anthony Larcher committed
874
875
876
877
878
879
    dataset_opts["train"]["transformation"] = dict()
    dataset_opts["train"]["transformation"]["pipeline"] = ""
    dataset_opts["train"]["transformation"]["add_noise"] = dict()
    dataset_opts["train"]["transformation"]["add_noise"]["noise_db_csv"] = ""
    dataset_opts["train"]["transformation"]["add_noise"]["data_path"] = ""
    dataset_opts["train"]["transformation"]["add_reverb"] = dict()
Anthony Larcher's avatar
Anthony Larcher committed
880
    dataset_opts["train"]["transformation"]["add_reverb"]["rir_db_csv"] = ""
Anthony Larcher's avatar
Anthony Larcher committed
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
    dataset_opts["train"]["transformation"]["add_reverb"]["data_path"] = ""

    dataset_opts["valid"] = dict()
    dataset_opts["valid"]["duration"] = 2.
    dataset_opts["valid"]["transformation"] = dict()
    dataset_opts["valid"]["transformation"]["pipeline"] = ""
    dataset_opts["valid"]["transformation"]["add_noise"] = dict()
    dataset_opts["valid"]["transformation"]["add_noise"]["noise_db_csv"] = ""
    dataset_opts["valid"]["transformation"]["add_noise"]["data_path"] = ""
    dataset_opts["valid"]["transformation"]["add_reverb"] = dict()
    dataset_opts["valid"]["transformation"]["add_reverb"]["noise_db_csv"] = ""
    dataset_opts["valid"]["transformation"]["add_reverb"]["data_path"] = ""

    dataset_opts["test"] = dict()
    dataset_opts["test"]["idmap"] = ""
    dataset_opts["test"]["ndx"] = ""
    dataset_opts["test"]["key"] = ""
    dataset_opts["test"]["data_path"] =""

    # Initialize model options
    model_opts["speaker_number"] = None
    model_opts["loss"] = dict()
    model_opts["loss"]["type"] ="aam"
    model_opts["loss"]["aam_margin"] = 0.2
    model_opts["loss"]["aam_s"] = 30

    model_opts["initial_model_name"] = None
    model_opts["reset_parts"] = []
    model_opts["freeze_parts"] = []

    model_opts["model_type"] = "fastresnet"

Anthony Larcher's avatar
Anthony Larcher committed
913
914
915
    model_opts["preprocessor"] = dict()
    model_opts["preprocessor"]["type"] =  "mel_spec"
    model_opts["preprocessor"]["feature_size"] = 80
Anthony Larcher's avatar
Anthony Larcher committed
916
917
918

    # Initialize training options
    training_opts["log_file"] = "sidekit.log"
Anthony Larcher's avatar
Anthony Larcher committed
919
920
921
    training_opts["numpy_seed"] = 0
    training_opts["torch_seed"] = 0
    training_opts["random_seed"] = 0
Anthony Larcher's avatar
Anthony Larcher committed
922
    training_opts["deterministic"] = False
Anthony Larcher's avatar
Anthony Larcher committed
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
    training_opts["epochs"] = 100
    training_opts["lr"] = 1e-3
    training_opts["patience"] = 50
    training_opts["multi_gpu"] = False
    training_opts["num_cpu"] = 5
    training_opts["mixed_precision"] = False
    training_opts["clipping"] = False

    training_opts["optimizer"] = dict()
    training_opts["optimizer"]["type"] = "sgd"
    training_opts["optimizer"]["options"] = None

    training_opts["scheduler"] = dict()
    training_opts["scheduler"]["type"] = "ReduceLROnPlateau"
    training_opts["scheduler"]["options"] = None

    training_opts["compute_test_eer"] = False
    training_opts["log_interval"] = 10
Anthony Larcher's avatar
Anthony Larcher committed
941
    training_opts["validation_frequency"] = 1
Anthony Larcher's avatar
Anthony Larcher committed
942
943
944
945
946
947
948
949
950
951
952
953

    training_opts["tmp_model_name"] = "tmp_model.pt"
    training_opts["best_model_name"] = "best_model.pt"
    training_opts["checkpoint_frequency"] = "10"


    # Use options from the YAML config files
    fill_dict(dataset_opts, tmp_data_dict)
    fill_dict(model_opts, tmp_model_dict)
    fill_dict(training_opts, tmp_train_dict)

    # Overwrite with manually given parameters
Anthony Larcher's avatar
Anthony Larcher committed
954
955
956
957
958
959
960
961
962
963
964
965
    if "lr" in kwargs:
        training_opts["lr"] = kwargs['lr']
    if "batch_size" in kwargs:
        dataset_opts["batch_size"] = kwargs["batch_size"]
    if "optimizer" in kwargs:
        training_opts["optimizer"]["type"] = kwargs["optimizer"]
    if "scheduler" in kwargs:
        training_opts["scheduler"]["type"] = kwargs["scheduler"]
    if "margin" in kwargs:
        model_opts["loss"]["aam_margin"] = kwargs["margin"]
    if "aam_s" in kwargs:
        model_opts["loss"]["aam_s"] = kwargs["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
966
967
968
969

    return dataset_opts, model_opts, training_opts


Anthony Larcher's avatar
debug    
Anthony Larcher committed
970
def get_network(model_opts, local_rank):
Anthony Larcher's avatar
Anthony Larcher committed
971
    """
Anthony Larcher's avatar
Anthony Larcher committed
972
973

    :param model_opts:
Anthony Larcher's avatar
Anthony Larcher committed
974
    :param local_rank:
Anthony Larcher's avatar
Anthony Larcher committed
975
    :return:
Anthony Larcher's avatar
Anthony Larcher committed
976
977
    """

Anthony Larcher's avatar
Anthony Larcher committed
978
979
    if model_opts["model_type"] in ["xvector", "rawnet2", "resnet34", "fastresnet34"]:
        model = Xtractor(model_opts["speaker_number"], model_opts["model_type"], loss=model_opts["loss"]["type"])
Anthony Larcher's avatar
Anthony Larcher committed
980
    else:
Anthony Larcher's avatar
Anthony Larcher committed
981
        # Custom type of model
Anthony Larcher's avatar
Anthony Larcher committed
982
        model = Xtractor(model_opts["speaker_number"], model_opts, loss=model_opts["loss"]["type"])
Anthony Larcher's avatar
Anthony Larcher committed
983

Anthony Larcher's avatar
Anthony Larcher committed
984
985
986
987
    # Load the model if it exists
    if model_opts["initial_model_name"] is not None and os.path.isfile(model_opts["initial_model_name"]):
        logging.critical(f"*** Load model from = {model_opts['initial_model_name']}")
        checkpoint = torch.load(model_opts["initial_model_name"])
Anthony Larcher's avatar
Anthony Larcher committed
988

Anthony Larcher's avatar
Anthony Larcher committed
989
990
        """
        Here we remove all layers that we don't want to reload
Anthony Larcher's avatar
Anthony Larcher committed
991

Anthony Larcher's avatar
Anthony Larcher committed
992
993
994
995
        """
        pretrained_dict = checkpoint["model_state_dict"]
        for part in model_opts["reset_parts"]:
            pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}
Anthony Larcher's avatar
Anthony Larcher committed
996

Anthony Larcher's avatar
Anthony Larcher committed
997
998
999
        new_model_dict = model.state_dict()
        new_model_dict.update(pretrained_dict)
        model.load_state_dict(new_model_dict)
Anthony Larcher's avatar
Anthony Larcher committed
1000