xvector.py 41.1 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
Anthony Larcher committed
25
Copyright 2014-2020 Yevhenii Prokopalo, Anthony Larcher
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
30

import pdb
import traceback
Anthony Larcher's avatar
Anthony Larcher committed
31
import logging
Anthony Larcher's avatar
Anthony Larcher committed
32
import matplotlib.pyplot as plt
Anthony Larcher's avatar
Anthony Larcher committed
33
import multiprocessing
Anthony Larcher's avatar
Anthony Larcher committed
34
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
35
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
36
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
37
import shutil
38
import time
Anthony Larcher's avatar
Anthony Larcher committed
39
import torch
Anthony Larcher's avatar
Anthony Larcher committed
40
import torch.optim as optim
Anthony Larcher's avatar
Anthony Larcher committed
41
42
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
43
from torchvision import transforms
Anthony Larcher's avatar
Anthony Larcher committed
44
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
45
from .xsets import SideSet
Anthony Larcher's avatar
Anthony Larcher committed
46
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
47
from .res_net import RawPreprocessor, ResBlockWFMS
Anthony Larcher's avatar
Anthony Larcher committed
48
49
from ..bosaris import IdMap
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
50
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
51
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
52
from .sincnet import SincNet
Anthony Larcher's avatar
Anthony Larcher committed
53
#from torch.utils.tensorboard import SummaryWriter
Anthony Larcher's avatar
Anthony Larcher committed
54
from .loss import ArcLinear
Anthony Larcher's avatar
Anthony Larcher committed
55

Anthony Larcher's avatar
Anthony Larcher committed
56
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
57

Anthony Larcher's avatar
Anthony Larcher committed
58
59
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
60
__copyright__ = "Copyright 2015-2020 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
61
62
63
64
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
65
66


Anthony Larcher's avatar
Anthony Larcher committed
67
68
logging.basicConfig(format='%(asctime)s %(message)s')

Anthony Larcher's avatar
Anthony Larcher committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

# Make PyTorch Deterministic
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
numpy.random.seed(0)


class GuruMeditation (torch.autograd.detect_anomaly):
    
    def __init__(self):
        super(GuruMeditation, self).__init__()

    def __enter__(self):
        super(GuruMeditation, self).__enter__()
        return self

    def __exit__(self, type, value, trace):
        super(GuruMeditation, self).__exit__()
        if isinstance(value, RuntimeError):
            traceback.print_tb(trace)
            halt(str(value))

    def halt(msg):
        print (msg)
        pdb.set_trace()









def select_n_random(data, labels, n=100):
    '''
    Selects n random datapoints and their corresponding labels from a dataset
    '''
    assert len(data) == len(labels)

    perm = torch.randperm(len(data))
    return data[perm][:n], labels[perm][:n]


def matplotlib_imshow(img, one_channel=False):
    if one_channel:
        img = img.mean(dim=0)
    img = img / 2 + 0.5     # unnormalize
    npimg = img.cpu().numpy()
    if one_channel:
        plt.imshow(npimg, cmap="Greys")
    else:
        plt.imshow(np.transpose(npimg, (1, 2, 0)))

def speech_to_probs(model, speech):
    '''
    Generates predictions and corresponding probabilities from a trained
    network and a list of images
    '''
    output = model(speech)
    # convert output probabilities to predicted class
    _, preds_tensor = torch.max(output, 1)
    preds = numpy.squeeze(preds_tensor.cpu().numpy())
    return preds, [torch.nn.functional.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]


def plot_classes_preds(model, speech, labels):
    '''
Anthony Larcher's avatar
Anthony Larcher committed
138

Anthony Larcher's avatar
Anthony Larcher committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    Generates matplotlib Figure using a trained network, along with images
    and labels from a batch, that shows the network's top prediction along
    with its probability, alongside the actual label, coloring this
    information based on whether the prediction was correct or not.
    Uses the "speech_to_probs" function.
    '''
    preds, probs = speech_to_probs(model, speech)
    # plot the images in the batch, along with predicted and true labels
    fig = plt.figure(figsize=(12, 48))
    for idx in numpy.arange(4):
         ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])
         #matplotlib_imshow(speech[idx], one_channel=True)
         ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
                                                           preds[idx],
                                                           probs[idx] * 100.0,
                                                           labels[idx]),
                                                           color=("green" if preds[idx]==labels[idx].item() else "red"))
    return fig



160
def get_lr(optimizer):
Anthony Larcher's avatar
Anthony Larcher committed
161
162
163
164
165
    """

    :param optimizer:
    :return:
    """
166
167
168
169
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
170
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
171
172
173
174
175
176
177
178
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
179
180
181
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
182

Anthony Larcher's avatar
Anthony Larcher committed
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
class MeanStdPooling(torch.nn.Module):
    """
    Mean and Standard deviation pooling
    """
    def __init__(self):
        """

        """
        super(MeanStdPooling, self).__init__()
        pass

    def forward(self, x):
        """

        :param x:
        :return:
        """
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        return torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
203

Anthony Larcher's avatar
Anthony Larcher committed
204

Anthony Larcher's avatar
Anthony Larcher committed
205
206
207
208
209
210
211
212
213
214
215
class GruPooling(torch.nn.Module):
    """

    """
    def __init__(self, input_size, gru_node, nb_gru_layer):
        """

        :param input_size:
        :param gru_node:
        :param nb_gru_layer:
        """
Anthony Larcher's avatar
Anthony Larcher committed
216
        super(GruPooling, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
        self.lrelu_keras = torch.nn.LeakyReLU(negative_slope = 0.3)
        self.bn_before_gru = torch.nn.BatchNorm1d(num_features = input_size)
        self.gru = torch.nn.GRU(input_size = input_size,
                          hidden_size = gru_node,
                          num_layers = nb_gru_layer,
                          batch_first = True)

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = self.bn_before_gru(x)
        x = self.lrelu_keras(x)
        x = x.permute(0, 2, 1)  #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
        x = x[:,-1,:]

        return x

Anthony Larcher's avatar
Anthony Larcher committed
239

Anthony Larcher's avatar
Anthony Larcher committed
240
class Xtractor(torch.nn.Module):
241
242
243
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
244

Anthony Larcher's avatar
Anthony Larcher committed
245
246
247
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
248
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
249
250
251
                 norm_embedding=False,
                 aam_margin=0.5,
                 aam_s=0.5):
Anthony Larcher's avatar
Anthony Larcher committed
252
253
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
254
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
255
        """
Anthony Larcher's avatar
Anthony Larcher committed
256
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
257
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
258
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
259
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
260

Anthony Larcher's avatar
Anthony Larcher committed
261
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
262
263
264
265
266
267

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
268
            self.feature_size = 30
Anthony Larcher's avatar
Anthony Larcher committed
269
270
271
            self.activation = torch.nn.LeakyReLU(0.2)

            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
272

Anthony Larcher's avatar
xv    
Anthony Larcher committed
273
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
274
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
275
276
277
278
279
280
281
282
                ("activation1", torch.nn.LeakyReLU(0.2)),
                ("norm1", torch.nn.BatchNorm1d(512)),
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
                ("norm2", torch.nn.BatchNorm1d(512)),
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
                ("norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
283
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
284
285
                ("activation4", torch.nn.LeakyReLU(0.2)),
                ("norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
286
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
287
288
289
290
                ("activation5", torch.nn.LeakyReLU(0.2)),
                ("norm5", torch.nn.BatchNorm1d(1536))
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
291
292
            self.stat_pooling = MeanStdPooling()

Anthony Larcher's avatar
xv    
Anthony Larcher committed
293
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
294
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
295
296
            ]))

Anthony Larcher's avatar
Anthony Larcher committed
297
298
            if self.loss == "aam":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
299
                  ("arclinear", ArcLinear(512, int(self.speaker_number), margin=aam_margin, s=aam_s))
Anthony Larcher's avatar
Anthony Larcher committed
300
301
302
303
304
305
306
307
308
309
310
                ]))
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
                    ("norm6", torch.nn.BatchNorm1d(512)),
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
                    ("norm7", torch.nn.BatchNorm1d(512)),
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
311

Anthony Larcher's avatar
Anthony Larcher committed
312
313
314
315
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002

Anthony Larcher's avatar
Anthony Larcher committed
316
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
317
318
319
320
321
322

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
323
324
325
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
326
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
327
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
328
329
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
347
348
349
350
351
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
352
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
353
354
355
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
356

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
357
358
359
360
361
362
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
363
364
        else:
            # Load Yaml configuration
Anthony Larcher's avatar
Anthony Larcher committed
365
            with open(model_archi, 'r') as fh:
Anthony Larcher's avatar
Anthony Larcher committed
366
367
                cfg = yaml.load(fh, Loader=yaml.FullLoader)

Anthony Larcher's avatar
Anthony Larcher committed
368
369
370
371
372
            self.loss = cfg["loss"]
            if self.loss == "aam":
                self.aam_margin = cfg["aam_margin"]
                self.aam_s = cfg["aam_s"]

Anthony Larcher's avatar
Anthony Larcher committed
373
374
375
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
376
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
377
378
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
379
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
380
381
382
383
384
385
386
387
388
389
390
391
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
392
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
393
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
394
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
395
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
396
397
398
399
400
401
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
402
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
403
404

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
405
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
406
            """
Anthony Larcher's avatar
Anthony Larcher committed
407
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
408
409
410
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
426
427
428
429
430
431
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
432
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
433
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
434
435
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
436
437
438
439
440
                    input_size = cfg["segmental"][k]["output_channels"]

                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
441
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
442
443
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
444
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
445
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
446

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
447
448
449
450
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
451
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
452
453
454
455
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
456
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
457

Anthony Larcher's avatar
Anthony Larcher committed
458
459
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
460
            """
Anthony Larcher's avatar
Anthony Larcher committed
461
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
462
            """
Anthony Larcher's avatar
Anthony Larcher committed
463
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
464
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
465
466
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
467
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
468
469
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
470
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
471
472
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
473
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
474
475

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
476
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
477

Anthony Larcher's avatar
Anthony Larcher committed
478
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
479
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
480
481

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
482
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
483

Anthony Larcher's avatar
Anthony Larcher committed
484
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
485
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
486

Anthony Larcher's avatar
Anthony Larcher committed
487
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
488
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
489
490
491
492
493
494
495
496
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
497
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
498
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
499

Anthony Larcher's avatar
Anthony Larcher committed
500
501
502
503
504
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
505

Anthony Larcher's avatar
Anthony Larcher committed
506
507
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
508

Anthony Larcher's avatar
Anthony Larcher committed
509
510
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
511

Anthony Larcher's avatar
Anthony Larcher committed
512
513
514
515
516
517
518
519
520
521
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
                self.after_speaker_embedding = ArcLinear(input_size,
                                                         self.speaker_number,
                                                         margin=self.aam_margin,
                                                         s=self.aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
522

Anthony Larcher's avatar
Anthony Larcher committed
523
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
524

Anthony Larcher's avatar
Anthony Larcher committed
525

Anthony Larcher's avatar
Anthony Larcher committed
526
    def forward(self, x, is_eval=False, target=None):
527
528
529
        """

        :param x:
Anthony Larcher's avatar
Anthony Larcher committed
530
        :param is_eval:
531
532
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
533
534
535
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
536
        x = self.sequence_network(x)
537

Anthony Larcher's avatar
Anthony Larcher committed
538
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
539
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
540
541

        x = self.before_speaker_embedding(x)
542

Anthony Larcher's avatar
Anthony Larcher committed
543
544
545
546
        if self.norm_embedding:
            x_norm = x.norm(p=2,dim=1, keepdim=True) / 10.
            x = torch.div(x, x_norm)

Anthony Larcher's avatar
Anthony Larcher committed
547
548
549
        if is_eval:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
550
551
        if self.loss == "cce":
            x = self.after_speaker_embedding(x)
Anthony Larcher's avatar
Anthony Larcher committed
552

Anthony Larcher's avatar
Anthony Larcher committed
553
554
555
556
557
558
        elif self.loss == "aam":
            if not is_eval:
                x = self.after_speaker_embedding(x,target=target)
            else:
                x = self.after_speaker_embedding(x, target=None)

Anthony Larcher's avatar
Anthony Larcher committed
559
        return x
Anthony Larcher's avatar
Anthony Larcher committed
560

561
562
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
563
564
565
566
567
568
569
570
571
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
572

Anthony Larcher's avatar
Anthony Larcher committed
573
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
574
           dataset_yaml,
Anthony Larcher's avatar
Anthony Larcher committed
575
576
           epochs=None,
           lr=None,
Anthony Larcher's avatar
Anthony Larcher committed
577
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
578
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
579
580
581
582
           loss=None,
           aam_margin=None,
           aam_s=None,
           patience=None,
Anthony Larcher's avatar
Anthony Larcher committed
583
           tmp_model_name=None,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
584
           best_model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
585
           multi_gpu=True,
586
           clipping=False,
Anthony Larcher's avatar
Anthony Larcher committed
587
           opt=None,
Anthony Larcher's avatar
Anthony Larcher committed
588
589
           reset_parts=[],
           freeze_parts=[],
Anthony Larcher's avatar
Anthony Larcher committed
590
           num_thread=None):
591
592
    """

Anthony Larcher's avatar
Anthony Larcher committed
593
594
595
596
597
598
    :param speaker_number:
    :param dataset_yaml:
    :param epochs:
    :param lr:
    :param model_yaml:
    :param model_name:
Anthony Larcher's avatar
Anthony Larcher committed
599
600
601
602
    :param loss:
    :param aam_margin:
    :param aam_s:
    :param patience:
Anthony Larcher's avatar
Anthony Larcher committed
603
604
605
606
    :param tmp_model_name:
    :param best_model_name:
    :param multi_gpu:
    :param clipping:
Anthony Larcher's avatar
Anthony Larcher committed
607
608
609
    :param opt:
    :param reset_parts:
    :param freeze_parts:
Anthony Larcher's avatar
Anthony Larcher committed
610
    :param num_thread:
611
612
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
613
614
615
616
    # Add for tensorboard
    # Writer will output to ./runs/ directory by default
    #writer = SummaryWriter("runs/xvectors_experiments_2")
    writer = None
Anthony Larcher's avatar
Anthony Larcher committed
617

Anthony Larcher's avatar
Anthony Larcher committed
618
619
620
    if num_thread is None:
        num_thread = multiprocessing.cpu_count()

Anthony Larcher's avatar
Anthony Larcher committed
621
    logging.critical(f"Start process at {time.strftime('%H:%M:%S', time.localtime())}")
622

Anthony Larcher's avatar
Anthony Larcher committed
623
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Anthony Larcher's avatar
Anthony Larcher committed
624

Anthony Larcher's avatar
Anthony Larcher committed
625
    # Start from scratch
Anthony Larcher's avatar
Anthony Larcher committed
626
    if model_name is None and model_yaml in ["xvector", "rawnet2"]:
Anthony Larcher's avatar
Anthony Larcher committed
627
        # Initialize a first model
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
628
        if model_yaml == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
629
            model = Xtractor(speaker_number, "xvector")
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
630
        elif model_yaml == "rawnet2":
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
631
            model = Xtractor(speaker_number, "rawnet2")
Anthony Larcher's avatar
Anthony Larcher committed
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
    else:
        with open(model_yaml, 'r') as fh:
            model_archi = yaml.load(fh, Loader=yaml.FullLoader)
            if epochs is None:
                epochs = model_archi["training"]["epochs"]
            if patience is None:
                patience = model_archi["training"]["patience"]
            if opt is None:
                opt = model_archi["training"]["opt"]
            if lr is None:
                lr = model_archi["training"]["lr"]
            if loss is None:
                loss = model_archi["training"]["loss"]
            if aam_margin is None and model_archi["training"]["loss"] == "aam":
                aam_margin = model_archi["training"]["aam_margin"]
            if aam_s is None and model_archi["training"]["loss"] == "aam":
                aam_s = model_archi["training"]["aam_s"]
            if tmp_model_name is None:
                tmp_model_name = model_archi["training"]["tmp_model_name"]
            if best_model_name is None:
                best_model_name = model_archi["training"]["best_model_name"]
            if multi_gpu is None:
                multi_gpu = model_archi["training"]["multi_gpu"]
            if clipping is None:
                clipping = model_archi["training"]["clipping"]

        if model_name is None
            model = Xtractor(speaker_number, model_yaml)

         # If we start from an existing model
Anthony Larcher's avatar
Anthony Larcher committed
662
        else:
Anthony Larcher's avatar
Anthony Larcher committed
663
664
665
            # Load the model
            logging.critical(f"*** Load model from = {model_name}")
            checkpoint = torch.load(model_name)
Anthony Larcher's avatar
Anthony Larcher committed
666
            model = Xtractor(speaker_number, model_yaml)
Anthony Larcher's avatar
Anthony Larcher committed
667
668
669
670
671
672
673
674
675

        """
        Here we remove all layers that we don't want to reload
        
        """
        pretrained_dict = checkpoint["model_state_dict"]
        for part in reset_parts:
            pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

Anthony Larcher's avatar
Anthony Larcher committed
676
        new_model_dict = model.state_dict()
Anthony Larcher's avatar
Anthony Larcher committed
677
678
679
680
681
682
683
        new_model_dict.update(pretrained_dict)
        model.load_state_dict(new_model_dict)

    # Freeze required layers
    for name, param in model.named_parameters():
        if name.split(".")[0] in freeze_parts:
            param.requires_grad = False
Anthony Larcher's avatar
Anthony Larcher committed
684

Anthony Larcher's avatar
Anthony Larcher committed
685
    print(model)
Anthony Larcher's avatar
Anthony Larcher committed
686

Anthony Larcher's avatar
Anthony Larcher committed
687
    if torch.cuda.device_count() > 1 and multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
688
689
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)
Anthony Larcher's avatar
Anthony Larcher committed
690
691
    else:
        print("Train on a single GPU")
Anthony Larcher's avatar
Anthony Larcher committed
692
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
693
694

    """
Anthony Larcher's avatar
Anthony Larcher committed
695
696
697
698
    Set the dataloaders according to the dataset_yaml
    
    First we load the dataframe from CSV file in order to split it for training and validation purpose
    Then we provide those two 
Anthony Larcher's avatar
Anthony Larcher committed
699
    """
Anthony Larcher's avatar
Anthony Larcher committed
700
701
702
703
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])
    training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"])
704

Anthony Larcher's avatar
Anthony Larcher committed
705
    torch.manual_seed(dataset_params['seed'])
706
707
708
    training_set = SideSet(dataset_yaml, 
                           set_type="train", 
                           dataset_df=training_df, 
Anthony Larcher's avatar
Anthony Larcher committed
709
710
                           chunk_per_segment=dataset_params['train']['chunk_per_segment'], 
                           overlap=dataset_params['train']['overlap'])
Anthony Larcher's avatar
Anthony Larcher committed
711
712
713
    training_loader = DataLoader(training_set,
                                 batch_size=dataset_params["batch_size"],
                                 shuffle=True,
Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
714
                                 drop_last=True,
Anthony Larcher's avatar
Anthony Larcher committed
715
                                 pin_memory=True,
Anthony Larcher's avatar
Anthony Larcher committed
716
                                 num_workers=num_thread)
717

Anthony Larcher's avatar
Anthony Larcher committed
718
719
720
    validation_set = SideSet(dataset_yaml, set_type="validation", dataset_df=validation_df)
    validation_loader = DataLoader(validation_set,
                                   batch_size=dataset_params["batch_size"],
Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
721
                                   drop_last=True,
Anthony Larcher's avatar
Anthony Larcher committed
722
                                   pin_memory=True,
Anthony Larcher's avatar
Anthony Larcher committed
723
                                   num_workers=num_thread)
Anthony Larcher's avatar
Anthony Larcher committed
724

Anthony Larcher's avatar
Anthony Larcher committed
725
726
727
728
729
730
    # Add for TensorBoard
    #dataiter = iter(training_loader)
    #data, labels = dataiter.next()
    #writer.add_graph(model, data)


Anthony Larcher's avatar
Anthony Larcher committed
731
732
733
    """
    Set the training options
    """
Anthony Larcher's avatar
Anthony Larcher committed
734
    if opt == 'adam':
Anthony Larcher's avatar
Anthony Larcher committed
735
        _optimizer = torch.optim.Adam
Anthony Larcher's avatar
Anthony Larcher committed
736
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
737
738
    elif opt == 'rmsprop':
        _optimizer = torch.optim.RMSprop
Anthony Larcher's avatar
Anthony Larcher committed
739
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
740
741
742
    else: # opt == 'sgd'
        _optimizer = torch.optim.SGD
        _options = {'lr': lr, 'momentum': 0.9}
Anthony Larcher's avatar
Anthony Larcher committed
743

Anthony Larcher's avatar
Anthony Larcher committed
744
745
746
747
748
749
750
751
752
753
754
755
756
757
    params = [
        {
            'params': [
                param for name, param in model.named_parameters() if 'bn' not in name
            ]
        },
        {
            'params': [
                param for name, param in model.named_parameters() if 'bn' in name
            ],
            'weight_decay': 0
        },
    ]

Anthony Larcher's avatar
Anthony Larcher committed
758
    param_list = []
Anthony Larcher's avatar
Anthony Larcher committed
759
    if type(model) is Xtractor:
Anthony Larcher's avatar
Anthony Larcher committed
760
761
762
763
764
765
766
        if model.preprocessor is not None:
            param_list.append({'params': model.preprocessor.parameters(), 'weight_decay': model.preprocessor_weight_decay})
        param_list.append({'params': model.sequence_network.parameters(), 'weight_decay': model.sequence_network_weight_decay})
        param_list.append({'params': model.stat_pooling.parameters(), 'weight_decay': model.stat_pooling_weight_decay})
        param_list.append({'params': model.before_speaker_embedding.parameters(), 'weight_decay': model.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.after_speaker_embedding.parameters(), 'weight_decay': model.after_speaker_embedding_weight_decay})

Anthony Larcher's avatar
Anthony Larcher committed
767
    else:
Anthony Larcher's avatar
Anthony Larcher committed
768
769
770
771
772
773
774
775
776
        if model.module.preprocessor is not None:
            param_list.append({'params': model.module.preprocessor.parameters(), 'weight_decay': model.module.preprocessor_weight_decay})
        param_list.append({'params': model.module.sequence_network.parameters(), 'weight_decay': model.module.sequence_network_weight_decay})
        param_list.append({'params': model.module.stat_pooling.parameters(), 'weight_decay': model.module.stat_pooling_weight_decay})
        param_list.append({'params': model.module.before_speaker_embedding.parameters(), 'weight_decay': model.module.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.module.after_speaker_embedding.parameters(), 'weight_decay': model.module.after_speaker_embedding_weight_decay})


    optimizer = _optimizer(param_list, **_options)
Anthony Larcher's avatar
Anthony Larcher committed
777
778
779
780
781
782

    #optimizer = torch.optim.SGD(params,
    #                            lr=lr,
    #                            momentum=0.9,
    #                            weight_decay=0.0005)
    #print(f"Learning rate = {lr}")
Anthony Larcher's avatar
Anthony Larcher committed
783

Anthony Larcher's avatar
Anthony Larcher committed
784
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', verbose=True)
785

Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
786
    best_accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
787
    best_accuracy_epoch = 1
Anthony Larcher's avatar
Anthony Larcher committed
788
    curr_patience = patience
Anthony Larcher's avatar
Anthony Larcher committed
789
    for epoch in range(1, epochs + 1):
790
        # Process one epoch and return the current model
Anthony Larcher's avatar
Anthony Larcher committed
791
792
793
        if curr_patience == 0:
            print(f"Stopping at epoch {epoch} for cause of patience")
            break
Anthony Larcher's avatar
Anthony Larcher committed
794
795
796
797
798
799
        model = train_epoch(model,
                            epoch,
                            training_loader,
                            optimizer,
                            dataset_params["log_interval"],
                            device=device,
Anthony Larcher's avatar
Anthony Larcher committed
800
801
                            clipping=clipping,
                            tb_writer=writer)
802
803

        # Add the cross validation here
Anthony Larcher's avatar
Anthony Larcher committed
804
        accuracy, val_loss = cross_validation(model, validation_loader, device=device)
Anthony Larcher's avatar
Anthony Larcher committed
805
        logging.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Cross validation accuracy = {accuracy} %")
806
807
808
809

        # Decrease learning rate according to the scheduler policy
        scheduler.step(val_loss)

Anthony Larcher's avatar
Anthony Larcher committed
810
811
812
813
        # remember best accuracy and save checkpoint
        is_best = accuracy > best_accuracy
        best_accuracy = max(accuracy, best_accuracy)

Anthony Larcher's avatar
Anthony Larcher committed
814
815
816
817
818
819
        if type(model) is Xtractor:
            save_checkpoint({
                'epoch': epoch,
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'accuracy': best_accuracy,
Anthony Larcher's avatar
Anthony Larcher committed
820
821
822
                'scheduler': scheduler,
                'speaker_number' : speaker_number,
                'model_archi': model_yaml
Anthony Larcher's avatar
Anthony Larcher committed
823
824
825
826
827
828
829
            }, is_best, filename=tmp_model_name+".pt", best_filename=best_model_name+'.pt')
        else:
            save_checkpoint({
                'epoch': epoch,
                'model_state_dict': model.module.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'accuracy': best_accuracy,
Anthony Larcher's avatar
Anthony Larcher committed
830
831
832
                'scheduler': scheduler,
                'speaker_number': speaker_number,
                'model_archi': model_yaml
Anthony Larcher's avatar
Anthony Larcher committed
833
            }, is_best, filename=tmp_model_name+".pt", best_filename=best_model_name+'.pt')
Anthony Larcher's avatar
Anthony Larcher committed
834
835
836

        if is_best:
            best_accuracy_epoch = epoch
Anthony Larcher's avatar
Anthony Larcher committed
837
838
839
            curr_patience = patience
        else:
            curr_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
840
    #writer.close()
841

842
843
844
    for ii in range(torch.cuda.device_count()):
        print(torch.cuda.memory_summary(ii))

Anthony Larcher's avatar
Anthony Larcher committed
845
    logging.critical(f"Best accuracy {best_accuracy * 100.} obtained at epoch {best_accuracy_epoch}")
846

Anthony Larcher's avatar
Anthony Larcher committed
847
def train_epoch(model, epoch, training_loader, optimizer, log_interval, device, clipping=False, tb_writer=None):
848
849
850
851
    """

    :param model:
    :param epoch:
Anthony Larcher's avatar
Anthony Larcher committed
852
    :param training_loader:
853
    :param optimizer:
Anthony Larcher's avatar
Anthony Larcher committed
854
855
856
    :param log_interval:
    :param device:
    :param clipping:
857
858
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
859
    model.train()
Anthony Larcher's avatar
Anthony Larcher committed
860
    criterion = torch.nn.CrossEntropyLoss(reduction='mean')
861

Anthony Larcher's avatar
Anthony Larcher committed
862
863
864
865
866
    if isinstance(model, Xtractor):
        loss_criteria = model.loss
    else:
        loss_criteria = model.module.loss

867
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
868
    running_loss = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
869
    for batch_idx, (data, target) in enumerate(training_loader):
870
        target = target.squeeze()
Anthony Larcher's avatar
Anthony Larcher committed
871
        target = target.to(device)
872
        optimizer.zero_grad()
Anthony Larcher's avatar
Anthony Larcher committed
873
874
875
876
877
878

        if loss_criteria == 'aam':
            output = model(data.to(device), target=target)
        else:
            output = model(data.to(device), target=None)

Anthony Larcher's avatar
Anthony Larcher committed
879
        #with GuruMeditation():
Anthony Larcher's avatar
Anthony Larcher committed
880
        loss = criterion(output, target)
Anthony Larcher's avatar
Anthony Larcher committed
881
882
883
884
885
886
887
888
        if not torch.isnan(loss):
            loss.backward()
            if clipping:
                torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
            running_loss += loss.item()
            optimizer.step()

            running_loss += loss.item()
Anthony Larcher's avatar
Anthony Larcher committed
889
            accuracy += (torch.argmax(output.data, 1) == target).sum()
Anthony Larcher's avatar
Anthony Larcher committed
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
            if batch_idx % log_interval == 0:
                batch_size = target.shape[0]
                logging.critical('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                    epoch, batch_idx + 1, training_loader.__len__(),
                    100. * batch_idx / training_loader.__len__(), loss.item(),
                    100.0 * accuracy.item() / ((batch_idx + 1) * batch_size)))
                #tb_writer.add_scalar('training loss',
                #                     running_loss / log_interval,
                #                     epoch * len(training_loader) + batch_idx)
                #tb_writer.add_scalar('training_accuracy',
                #                      100.0 * accuracy.item() / ((batch_idx + 1) * batch_size),
                #                      epoch * len(training_loader) + batch_idx)

                # ...log a Matplotlib Figure showing the model's predictions on a
                # random mini-batch
                #tb_writer.add_figure('predictions vs. actuals',
                #                     plot_classes_preds(model, data.to(device), target.to(device)),
                #                     global_step=epoch * len(training_loader) + batch_idx)

909
910
911
912
913
914
915
916
917
918
919
920
921
        else:
            save_checkpoint({
                             'epoch': epoch,
                             'model_state_dict': model.state_dict(),
                             'optimizer_state_dict': optimizer.state_dict(),
                             'accuracy': 0.0,
                             'scheduler': 0.0
                             }, False, filename="model_loss_NAN.pt", best_filename='toto.pt')
            with open("batch_loss_NAN.pkl", "wb") as fh:
                pickle.dump(data.cpu(), fh)
            import sys
            sys.exit()
        running_loss = 0.0
922
923
924
    return model


Anthony Larcher's avatar
Anthony Larcher committed
925
def cross_validation(model, validation_loader, device):
926
927
928
    """

    :param model:
Anthony Larcher's avatar
Anthony Larcher committed
929
930
    :param validation_loader:
    :param device:
931
932
933
934
    :return:
    """
    model.eval()

Anthony Larcher's avatar
Anthony Larcher committed
935
936
937
938
939
    if isinstance(model, Xtractor):
        loss_criteria = model.loss
    else:
        loss_criteria = model.module.loss

940
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
941
    loss = 0.0
942
    criterion = torch.nn.CrossEntropyLoss()
Anthony Larcher's avatar
Anthony Larcher committed
943
944
945
946
    with torch.no_grad():
        for batch_idx, (data, target) in enumerate(validation_loader):
            batch_size = target.shape[0]
            target = target.squeeze()
Anthony Larcher's avatar
Anthony Larcher committed
947
948
949
950
951
952

            if loss_criteria == "aam":
                output = model(data.to(device), target=target)
            else:
                output = model(data.to(device), target=None)

Anthony Larcher's avatar
Anthony Larcher committed
953
            accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
954

Anthony Larcher's avatar
Anthony Larcher committed
955
            loss += criterion(output, target.to(device))
Anthony Larcher's avatar
Anthony Larcher committed
956

Anthony Larcher's avatar
Anthony Larcher committed
957
958
959
960
    return 100. * accuracy.cpu().numpy() / ((batch_idx + 1) * batch_size), \
           loss.cpu().numpy() / ((batch_idx + 1) * batch_size)


Anthony Larcher's avatar
Anthony Larcher committed
961
962
def extract_embeddings(idmap_name,
                       model_filename,
Anthony Larcher's avatar
Anthony Larcher committed
963
                       data_root_name,
Anthony Larcher's avatar
Anthony Larcher committed
964
                       device,
Anthony Larcher's avatar
Anthony Larcher committed
965
966
                       model_yaml=None,
                       speaker_number=None,
Anthony Larcher's avatar
Anthony Larcher committed
967
                       file_extension="wav",
968
                       transform_pipeline=None,
969
970
                       frame_shift=0.01,
                       frame_duration=0.025,
971
                       num_thread=1):
972
973
974
    # Load the model
    if isinstance(model_filename, str):
        checkpoint = torch.load(model_filename)
Anthony Larcher's avatar
Anthony Larcher committed
975
976
977
978
        if speaker_number is None:
            speaker_number = checkpoint["speaker_number"]
        if model_yaml is None:
            model_yaml = checkpoint["model_archi"]
979
980
981
982
        model = Xtractor(speaker_number, model_archi=model_yaml)
        model.load_state_dict(checkpoint["model_state_dict"])
    else:
        model = model_filename
Anthony Larcher's avatar
Anthony Larcher committed
983

Anthony Larcher's avatar
Anthony Larcher committed
984
    if isinstance(idmap_name, IdMap):
985
986
987
988
        idmap = idmap_name
    else:
        idmap = IdMap(idmap_name)

989
990
    min_duration = (model.context_size() - 1) * frame_shift + frame_duration

Anthony Larcher's avatar
debug    
Anthony Larcher committed
991
    print(f"min duration pour IdMapSet = {(model.context_size() + 1) * frame_shift}, frame_shift = {frame_shift}")
Anthony Larcher's avatar
Anthony Larcher committed
992
    # Create dataset to load the data
Anthony Larcher's avatar
Anthony Larcher committed
993
994
995
    dataset = IdMapSet(idmap_name=idmap_name,
                       data_root_path=data_root_name,
                       file_extension=file_extension,
996
                       transform_pipeline=transform_pipeline,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
997
                       frame_rate=int(1. / frame_shift),
Anthony Larcher's avatar
Anthony Larcher committed
998
                       min_duration=(model.context_size() + 2) * frame_shift * 2
999
                       )
Anthony Larcher's avatar
Anthony Larcher committed
1000