xvector.py 31.3 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# -*- coding: utf-8 -*-
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
Anthony Larcher committed
25
Copyright 2014-2020 Yevhenii Prokopalo, Anthony Larcher
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
import logging
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
30
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
31
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
32
import shutil
Anthony Larcher's avatar
Anthony Larcher committed
33
import torch
Anthony Larcher's avatar
Anthony Larcher committed
34
35
import torch.optim as optim
import torch.multiprocessing as mp
Anthony Larcher's avatar
Anthony Larcher committed
36
37
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
38
from torchvision import transforms
Anthony Larcher's avatar
Anthony Larcher committed
39
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
40
41
from .xsets import XvectorMultiDataset, StatDataset, VoxDataset, SideSet
from .xsets import FrequencyMask, CMVN, TemporalMask, MFCC
Anthony Larcher's avatar
Anthony Larcher committed
42
43
from ..bosaris import IdMap
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
44
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
45
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
46
from .sincnet import SincNet
Anthony Larcher's avatar
Anthony Larcher committed
47

Anthony Larcher's avatar
Anthony Larcher committed
48
49
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
50
__copyright__ = "Copyright 2015-2020 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
51
52
53
54
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
55
56


Anthony Larcher's avatar
Anthony Larcher committed
57
# logging.basicConfig(stream=sys.stdout, level=logging.INFO)
Anthony Larcher's avatar
Anthony Larcher committed
58
59


60
61
62
63
64
def get_lr(optimizer):
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
65
66
67
68
69
70
71
def split_file_list(batch_files, num_processes):
    # Cut the list of files into args.num_processes lists of files
    batch_sub_lists = [[]] * num_processes
    x = [ii for ii in range(len(batch_files))]
    for ii in range(num_processes):
        batch_sub_lists[ii - 1] = [batch_files[z + ii] for z in x[::num_processes] if (z + ii) < len(batch_files)]
    return batch_sub_lists
Anthony Larcher's avatar
Anthony Larcher committed
72
73
74


class Xtractor(torch.nn.Module):
75
76
77
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
78

Anthony Larcher's avatar
Anthony Larcher committed
79
    def __init__(self, speaker_number, model_archi=None):
Anthony Larcher's avatar
Anthony Larcher committed
80
81
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
82
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
83
        """
Anthony Larcher's avatar
Anthony Larcher committed
84
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
85
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
86
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
87

Anthony Larcher's avatar
Anthony Larcher committed
88
        if model_archi is None:
Anthony Larcher's avatar
Anthony Larcher committed
89
            self.feature_size = 30
Anthony Larcher's avatar
Anthony Larcher committed
90
91
            self.activation = torch.nn.ReLU()

Anthony Larcher's avatar
xv    
Anthony Larcher committed
92
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
93
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
94
95
96
97
98
99
100
101
                ("activation1", torch.nn.LeakyReLU(0.2)),
                ("norm1", torch.nn.BatchNorm1d(512)),
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
                ("norm2", torch.nn.BatchNorm1d(512)),
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
                ("norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
102
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
103
104
                ("activation4", torch.nn.LeakyReLU(0.2)),
                ("norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
105
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
106
107
108
109
                ("activation5", torch.nn.LeakyReLU(0.2)),
                ("norm5", torch.nn.BatchNorm1d(1536))
            ]))

Anthony Larcher's avatar
xv    
Anthony Larcher committed
110
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
111
                ("linear6", torch.nn.Linear(1536, 512))
Anthony Larcher's avatar
Anthony Larcher committed
112
113
            ]))

Anthony Larcher's avatar
xv    
Anthony Larcher committed
114
            self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
115
116
                ("activation6", torch.nn.LeakyReLU(0.2)),
                ("norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
117
                ("linear7", torch.nn.Linear(512, 512)),
Anthony Larcher's avatar
Anthony Larcher committed
118
119
                ("activation7", torch.nn.LeakyReLU(0.2)),
                ("norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
120
                ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
121
122
123
124
            ]))

        else:
            # Load Yaml configuration
Anthony Larcher's avatar
Anthony Larcher committed
125
            with open(model_archi, 'r') as fh:
Anthony Larcher's avatar
Anthony Larcher committed
126
127
                cfg = yaml.load(fh, Loader=yaml.FullLoader)

Anthony Larcher's avatar
Anthony Larcher committed
128
129
130
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
131
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
132
133
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
134
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
135
136
137
138
139
140
141
142
143
144
145
146
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
147
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
148
149
150
151

            """
            Prepapre sequence network
            """
Anthony Larcher's avatar
Anthony Larcher committed
152
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
153
154
155
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
                if k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
172
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
173
174
175
176
177
178
179
180
181
182
183
                                                                cfg["segmental"][k]["output_channels"],
                                                                cfg["segmental"][k]["kernel_size"],
                                                                cfg["segmental"][k]["dilation"])))
                    input_size = cfg["segmental"][k]["output_channels"]

                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

                elif k.startswith('norm'):
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
184
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
185
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
186

Anthony Larcher's avatar
Anthony Larcher committed
187
188
189
            """
            Prepapre last part of the network (after pooling)
            """
Anthony Larcher's avatar
Anthony Larcher committed
190
191
            # Create sequential object for the second part of the network
            input_size = input_size * 2
Anthony Larcher's avatar
xv    
Anthony Larcher committed
192
193
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
194
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
195
196
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
197
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
198
199
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, cfg["before_embedding"][k]["output"])))
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
200
201

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
202
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
203
204

                elif k.startswith('norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
205
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
206
207

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
208
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
209

Anthony Larcher's avatar
Anthony Larcher committed
210
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
211
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
212
213
214
215
216

            # Create sequential object for the second part of the network
            after_embedding_layers = []
            for k in cfg["after_embedding"].keys():
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
217
218
                    if cfg["after_embedding"][k]["output"] == "speaker_number":
                        after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
219
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
220
221
                        after_embedding_layers.append((k, torch.nn.Linear(input_size, cfg["after_embedding"][k]["output"])))
                        input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
222
223
224
225
226
227
228
229

                elif k.startswith("activation"):
                    after_embedding_layers.append((k, self.activation))

                elif k.startswith('norm'):
                    after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
230
                    after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))
Anthony Larcher's avatar
Anthony Larcher committed
231

Anthony Larcher's avatar
Anthony Larcher committed
232
            self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
233
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
234

Anthony Larcher's avatar
Anthony Larcher committed
235
    def forward(self, x, is_eval=False):
236
237
238
239
240
        """

        :param x:
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
241
242
243
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
244
        x = self.sequence_network(x)
245

Anthony Larcher's avatar
Anthony Larcher committed
246
247
248
249
250
251
252
253
        # Mean and Standard deviation pooling
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        x = torch.cat([mean, std], dim=1)

        x = self.before_speaker_embedding(x)
        if is_eval:
            return x
254

Anthony Larcher's avatar
Anthony Larcher committed
255
256
        x = self.after_speaker_embedding(x)
        return x
Anthony Larcher's avatar
Anthony Larcher committed
257

Anthony Larcher's avatar
Anthony Larcher committed
258

Anthony Larcher's avatar
Anthony Larcher committed
259
260
261
262
263
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)

Anthony Larcher's avatar
minor    
Anthony Larcher committed
264

Anthony Larcher's avatar
Anthony Larcher committed
265
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
266
           dataset_yaml,
Anthony Larcher's avatar
Anthony Larcher committed
267
268
           epochs=10,
           lr=0.01,
Anthony Larcher's avatar
Anthony Larcher committed
269
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
270
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
271
272
           tmp_model_name=None,
           output_model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
273
           num_thread=1):
274
275
276
277
278
279
    """
    Initialize and train an x-vector on a single GPU

    :param args:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
280
281
    device = torch.device("cuda:0")

282
    # If we start from an existing model
Anthony Larcher's avatar
Anthony Larcher committed
283
    if model_name is not None:
284
        # Load the model
Anthony Larcher's avatar
Anthony Larcher committed
285
286
        logging.critical(f"*** Load model from = {model_name}")
        checkpoint = torch.load(model_name)
Anthony Larcher's avatar
Anthony Larcher committed
287
        model = Xtractor(speaker_number, model_yaml)
Anthony Larcher's avatar
Anthony Larcher committed
288
        model.load_state_dict(checkpoint["model_state_dict"])
289
    else:
Anthony Larcher's avatar
Anthony Larcher committed
290
291
        # Initialize a first model
        if model_yaml is None:
Anthony Larcher's avatar
Anthony Larcher committed
292
            model = Xtractor(speaker_number)
Anthony Larcher's avatar
Anthony Larcher committed
293
        else:
Anthony Larcher's avatar
Anthony Larcher committed
294
            model = Xtractor(speaker_number, model_yaml)
Anthony Larcher's avatar
Anthony Larcher committed
295
296

    model.train()
Anthony Larcher's avatar
Anthony Larcher committed
297
298
299
300
301

    if torch.cuda.device_count() > 1:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)

Anthony Larcher's avatar
Anthony Larcher committed
302
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
303
304

    """
Anthony Larcher's avatar
Anthony Larcher committed
305
306
307
308
    Set the dataloaders according to the dataset_yaml
    
    First we load the dataframe from CSV file in order to split it for training and validation purpose
    Then we provide those two 
Anthony Larcher's avatar
Anthony Larcher committed
309
    """
Anthony Larcher's avatar
Anthony Larcher committed
310
311
312
313
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])
    training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"])
314

Anthony Larcher's avatar
Anthony Larcher committed
315
    torch.manual_seed(dataset_params['seed'])
Anthony Larcher's avatar
Anthony Larcher committed
316
317
318
319
    training_set = SideSet(dataset_yaml, set_type="train", dataset_df=training_df)
    training_loader = DataLoader(training_set,
                                 batch_size=dataset_params["batch_size"],
                                 shuffle=True,
Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
320
                                 drop_last=True,
Anthony Larcher's avatar
Anthony Larcher committed
321
                                 num_workers=num_thread)
322

Anthony Larcher's avatar
Anthony Larcher committed
323
324
325
    validation_set = SideSet(dataset_yaml, set_type="validation", dataset_df=validation_df)
    validation_loader = DataLoader(validation_set,
                                   batch_size=dataset_params["batch_size"],
Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
326
                                   drop_last=True,
Anthony Larcher's avatar
Anthony Larcher committed
327
                                   num_workers=num_thread)
Anthony Larcher's avatar
Anthony Larcher committed
328

Anthony Larcher's avatar
Anthony Larcher committed
329
330
    print(f"Length of training: {len(training_set)}, length of validation: {len(validation_set)}")

Anthony Larcher's avatar
Anthony Larcher committed
331
332
333
334
335
    """
    Set the training options
    """
    if type(model) is Xtractor:
        optimizer = torch.optim.SGD([
Anthony Larcher's avatar
Anthony Larcher committed
336
337
338
339
340
341
            {'params': model.sequence_network.parameters(),
             'weight_decay': model.sequence_network_weight_decay},
            {'params': model.before_speaker_embedding.parameters(),
             'weight_decay': model.before_speaker_embedding_weight_decay},
            {'params': model.after_speaker_embedding.parameters(),
             'weight_decay': model.after_speaker_embedding_weight_decay}],
Anthony Larcher's avatar
Anthony Larcher committed
342
343
344
345
            lr=lr, momentum=0.9
        )
    else:
        optimizer = torch.optim.SGD([
Anthony Larcher's avatar
Anthony Larcher committed
346
347
348
349
350
351
            {'params': model.module.sequence_network.parameters(),
             'weight_decay': model.module.sequence_network_weight_decay},
            {'params': model.module.before_speaker_embedding.parameters(),
             'weight_decay': model.module.before_speaker_embedding_weight_decay},
            {'params': model.module.after_speaker_embedding.parameters(),
             'weight_decay': model.module.after_speaker_embedding_weight_decay}],
Anthony Larcher's avatar
Anthony Larcher committed
352
353
            lr=lr, momentum=0.9
        )
354
355
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min')

Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
356
    best_accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
357
    for epoch in range(1, epochs + 1):
358
        # Process one epoch and return the current model
Anthony Larcher's avatar
Anthony Larcher committed
359
        model = train_epoch(model, epoch, training_loader, optimizer, dataset_params["log_interval"], device=device)
360
361

        # Add the cross validation here
Anthony Larcher's avatar
Anthony Larcher committed
362
        accuracy, val_loss = cross_validation(model, validation_loader, device=device)
363
364
365
366
367
        logging.critical("*** Cross validation accuracy = {} %".format(accuracy))

        # Decrease learning rate according to the scheduler policy
        scheduler.step(val_loss)

Anthony Larcher's avatar
Anthony Larcher committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
        # remember best accuracy and save checkpoint
        is_best = accuracy > best_accuracy
        best_accuracy = max(accuracy, best_accuracy)

        save_checkpoint({
            'epoch': epoch,
            'model_state_dict': model.state_dict(),
            'optimizer_state_dict': optimizer.state_dict(),
            'accuracy': best_accuracy,
            'scheduler': scheduler
        }, is_best, filename = tmp_model_name+".pt", best_filename=output_model_name+'.pt')

        if is_best:
            best_accuracy_epoch = epoch
382

Anthony Larcher's avatar
Anthony Larcher committed
383
    logging.critical(f"Best accuracy {best_accuracy * 100.} obtained at epoch {best_accuracy_epoch}")
384

Anthony Larcher's avatar
Anthony Larcher committed
385
def train_epoch(model, epoch, training_loader, optimizer, log_interval, device):
386
387
388
389
390
391
392
393
394
395
396
397
398
    """

    :param model:
    :param epoch:
    :param train_seg_df:
    :param speaker_dict:
    :param optimizer:
    :param args:
    :return:
    """
    criterion = torch.nn.CrossEntropyLoss()

    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
399
    for batch_idx, (data, target) in enumerate(training_loader):
400
401
402
403
404
405
406
407
        target = target.squeeze()
        optimizer.zero_grad()
        output = model(data.to(device))
        loss = criterion(output, target.to(device))
        loss.backward()
        optimizer.step()
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()

Anthony Larcher's avatar
Anthony Larcher committed
408
        if batch_idx % log_interval == 0:
Anthony Larcher's avatar
Anthony Larcher committed
409
            batch_size = target.shape[0]
410
            logging.critical('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
Anthony Larcher's avatar
Anthony Larcher committed
411
412
                epoch, batch_idx + 1, training_loader.__len__(),
                       100. * batch_idx / training_loader.__len__(), loss.item(),
Anthony Larcher's avatar
Anthony Larcher committed
413
                       100.0 * accuracy.item() / ((batch_idx + 1) * batch_size)))
414
415
416
    return model


Anthony Larcher's avatar
Anthony Larcher committed
417
def cross_validation(model, validation_loader, device):
418
419
420
421
422
423
424
425
426
427
428
429
430
    """

    :param args:
    :param model:
    :param cv_seg_df:
    :return:
    """
    model.eval()
    model.to(device)

    accuracy = 0.0
    criterion = torch.nn.CrossEntropyLoss()

Anthony Larcher's avatar
Anthony Larcher committed
431
    for batch_idx, (data, target) in enumerate(validation_loader):
Anthony Larcher's avatar
Anthony Larcher committed
432
        batch_size = target.shape[0]
433
434
435
436
437
438
        target = target.squeeze()
        output = model(data.to(device))
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()

    loss = criterion(output, target.to(device))

Anthony Larcher's avatar
Anthony Larcher committed
439
    return 100. * accuracy.cpu().numpy() / ((batch_idx + 1) * batch_size), loss
440
441
442


def xtrain_asynchronous(args):
443
444
445
446
447
448
    """
    Initialize and train an x-vector in asynchronous manner

    :param args:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
449
    # Initialize a first model and save to disk
Anthony Larcher's avatar
Anthony Larcher committed
450
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
451
452
453
454
    current_model_file_name = "initial_model"
    torch.save(model.state_dict(), current_model_file_name)

    for epoch in range(1, args.epochs + 1):
455
        current_model_file_name = train_asynchronous_epoch(epoch, args, current_model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
456
457

        # Add the cross validation here
458
        accuracy = cross_asynchronous_validation(args, current_model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
459
        print("*** Cross validation accuracy = {} %".format(accuracy))
Anthony Larcher's avatar
Anthony Larcher committed
460

Anthony Larcher's avatar
Anthony Larcher committed
461
        # Decrease learning rate after every epoch
Anthony Larcher's avatar
sad    
Anthony Larcher committed
462
463
        args.lr = args.lr * 0.9
        print("        Decrease learning rate: {}".format(args.lr))
Anthony Larcher's avatar
Anthony Larcher committed
464

Anthony Larcher's avatar
Anthony Larcher committed
465

466
def train_asynchronous_epoch(epoch, args, initial_model_file_name):
467
468
469
470
471
472
473
474
    """
    Process one training epoch using an asynchronous implementation of the training

    :param epoch:
    :param args:
    :param initial_model_file_name:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
    # Compute the megabatch number
    with open(args.batch_training_list, 'r') as fh:
        batch_file_list = [l.rstrip() for l in fh]

    # Shorten the batch_file_list to be a multiple of

    megabatch_number = len(batch_file_list) // (args.averaging_step * args.num_processes)
    megabatch_size = args.averaging_step * args.num_processes
    print("Epoch {}, number of megabatches = {}".format(epoch, megabatch_number))

    current_model = initial_model_file_name

    # For each sublist: run an asynchronous training and averaging of the model
    for ii in range(megabatch_number):
        print('Process megabatch [{} / {}]'.format(ii + 1, megabatch_number))
        current_model = train_asynchronous(epoch,
                                           args,
                                           current_model,
                                           batch_file_list[megabatch_size * ii: megabatch_size * (ii + 1)],
                                           ii,
495
                                           megabatch_number)  # function that split train, fuse and write the new model
Anthony Larcher's avatar
Anthony Larcher committed
496
497
498
    return current_model


499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
def train_asynchronous(epoch, args, initial_model_file_name, batch_file_list, megabatch_idx, megabatch_number):
    """
    Process one mega-batch of data asynchronously, average the model parameters across
    subrocesses and return the updated version of the model

    :param epoch:
    :param args:
    :param initial_model_file_name:
    :param batch_file_list:
    :param megabatch_idx:
    :param megabatch_number:
    :return:
    """
    # Split the list of files for each process
    sub_lists = split_file_list(batch_file_list, args.num_processes)

    #
    output_queue = mp.Queue()
    # output_queue = multiprocessing.Queue()

    processes = []
    for rank in range(args.num_processes):
521
        p = mp.Process(target=train_asynchronous_worker,
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
                       args=(rank, epoch, args, initial_model_file_name, sub_lists[rank], output_queue)
                       )
        # We first train the model across `num_processes` processes
        p.start()
        processes.append(p)

    # Average the models and write the new one to disk
    asynchronous_model = []
    for ii in range(args.num_processes):
        asynchronous_model.append(dict(output_queue.get()))

    for p in processes:
        p.join()

    av_model = Xtractor(args.class_number, args.dropout)
    tmp = av_model.state_dict()

    average_param = dict()
    for k in list(asynchronous_model[0].keys()):
        average_param[k] = asynchronous_model[0][k]

        for mod in asynchronous_model[1:]:
            average_param[k] += mod[k]

        if 'num_batches_tracked' not in k:
            tmp[k] = torch.FloatTensor(average_param[k] / len(asynchronous_model))

    # return the file name of the new model
    current_model_file_name = "{}/model_{}_epoch_{}_batch_{}".format(args.model_path, args.expe_id, epoch,
                                                                     megabatch_idx)
    torch.save(tmp, current_model_file_name)
    if megabatch_idx == megabatch_number:
        torch.save(tmp, "{}/model_{}_epoch_{}".format(args.model_path, args.expe_id, epoch))

    return current_model_file_name


559
def train_asynchronous_worker(rank, epoch, args, initial_model_file_name, batch_list, output_queue):
560
561
562
563
564
565
566
567
568
569
570
    """


    :param rank:
    :param epoch:
    :param args:
    :param initial_model_file_name:
    :param batch_list:
    :param output_queue:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
571
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
572
573
574
575
    model.load_state_dict(torch.load(initial_model_file_name))
    model.train()

    torch.manual_seed(args.seed + rank)
Anthony Larcher's avatar
Anthony Larcher committed
576
    train_loader = XvectorMultiDataset(batch_list, args.batch_path)
Anthony Larcher's avatar
Anthony Larcher committed
577
578
579
580
581
582
583
584
585
586
587
588

    device = torch.device("cuda:{}".format(rank))
    model.to(device)

    optimizer = optim.Adam([{'params': model.frame_conv0.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv1.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv2.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv3.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.frame_conv4.parameters(), 'weight_decay': args.l2_frame},
                            {'params': model.seg_lin0.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin1.parameters(), 'weight_decay': args.l2_seg},
                            {'params': model.seg_lin2.parameters(), 'weight_decay': args.l2_seg}
Anthony Larcher's avatar
Anthony Larcher committed
589
                            ], lr=args.lr)
Anthony Larcher's avatar
Anthony Larcher committed
590

Anthony Larcher's avatar
Anthony Larcher committed
591
    criterion = torch.nn.CrossEntropyLoss()
Anthony Larcher's avatar
Anthony Larcher committed
592
593
594
595
596
597
598
599

    accuracy = 0.0
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = model(data.to(device))
        loss = criterion(output, target.to(device))
        loss.backward()
        optimizer.step()
Anthony Larcher's avatar
Anthony Larcher committed
600

Anthony Larcher's avatar
Anthony Larcher committed
601
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
Anthony Larcher's avatar
Anthony Larcher committed
602

Anthony Larcher's avatar
Anthony Larcher committed
603
604
605
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                epoch, batch_idx + 1, train_loader.__len__(),
606
607
                100. * batch_idx / train_loader.__len__(), loss.item(),
                100.0 * accuracy.item() / ((batch_idx + 1) * args.batch_size)))
Anthony Larcher's avatar
Anthony Larcher committed
608

Anthony Larcher's avatar
Anthony Larcher committed
609
610
    model_param = OrderedDict()
    params = model.state_dict()
Anthony Larcher's avatar
Anthony Larcher committed
611

Anthony Larcher's avatar
Anthony Larcher committed
612
613
614
    for k in list(params.keys()):
        model_param[k] = params[k].cpu().detach().numpy()
    output_queue.put(model_param)
Anthony Larcher's avatar
Anthony Larcher committed
615
616


617
def cross_asynchronous_validation(args, current_model_file_name):
Anthony Larcher's avatar
Anthony Larcher committed
618
619
    """

Anthony Larcher's avatar
Anthony Larcher committed
620
621
    :param args:
    :param current_model_file_name:
Anthony Larcher's avatar
Anthony Larcher committed
622
623
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
624
    with open(args.cross_validation_list, 'r') as fh:
Anthony Larcher's avatar
Anthony Larcher committed
625
        cross_validation_list = [l.rstrip() for l in fh]
Anthony Larcher's avatar
Anthony Larcher committed
626
        sub_lists = split_file_list(cross_validation_list, args.num_processes)
Anthony Larcher's avatar
Anthony Larcher committed
627

Anthony Larcher's avatar
Anthony Larcher committed
628
629
    #
    output_queue = mp.Queue()
Anthony Larcher's avatar
Anthony Larcher committed
630

Anthony Larcher's avatar
Anthony Larcher committed
631
632
    processes = []
    for rank in range(args.num_processes):
633
        p = mp.Process(target=cv_asynchronous_worker,
Anthony Larcher's avatar
Anthony Larcher committed
634
635
636
637
638
                       args=(rank, args, current_model_file_name, sub_lists[rank], output_queue)
                       )
        # We first evaluate the model across `num_processes` processes
        p.start()
        processes.append(p)
Anthony Larcher's avatar
Anthony Larcher committed
639

Anthony Larcher's avatar
Anthony Larcher committed
640
641
642
643
    # Average the models and write the new one to disk
    result = []
    for ii in range(args.num_processes):
        result.append(output_queue.get())
Anthony Larcher's avatar
Anthony Larcher committed
644

Anthony Larcher's avatar
Anthony Larcher committed
645
646
    for p in processes:
        p.join()
Anthony Larcher's avatar
Anthony Larcher committed
647

Anthony Larcher's avatar
Anthony Larcher committed
648
649
650
    # Compute the global accuracy
    accuracy = 0.0
    total_batch_number = 0
Anthony Larcher's avatar
Anthony Larcher committed
651
    for bn, acc in result:
Anthony Larcher's avatar
Anthony Larcher committed
652
        accuracy += acc
Anthony Larcher's avatar
Anthony Larcher committed
653
654
        total_batch_number += bn
    
Anthony Larcher's avatar
Anthony Larcher committed
655
    return 100. * accuracy / (total_batch_number * args.batch_size)
Anthony Larcher's avatar
Anthony Larcher committed
656
657


658
def cv_asynchronous_worker(rank, args, current_model_file_name, batch_list, output_queue):
Anthony Larcher's avatar
Anthony Larcher committed
659
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
660
661
    model.load_state_dict(torch.load(current_model_file_name))
    model.eval()
Anthony Larcher's avatar
Anthony Larcher committed
662

Anthony Larcher's avatar
Anthony Larcher committed
663
    cv_loader = XvectorMultiDataset(batch_list, args.batch_path)
Anthony Larcher's avatar
Anthony Larcher committed
664

Anthony Larcher's avatar
Anthony Larcher committed
665
666
    device = torch.device("cuda:{}".format(rank))
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
667

Anthony Larcher's avatar
Anthony Larcher committed
668
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
669
    for batch_idx, (data, target) in enumerate(cv_loader):
Anthony Larcher's avatar
Anthony Larcher committed
670
671
        output = model(data.to(device))
        accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
Anthony Larcher's avatar
Anthony Larcher committed
672
    output_queue.put((cv_loader.__len__(), accuracy.cpu().numpy()))
Anthony Larcher's avatar
Anthony Larcher committed
673

Anthony Larcher's avatar
hot    
Anthony Larcher committed
674

675
def extract_idmap(args, device_id, segment_indices, fs_params, idmap_name, output_queue):
Anthony Larcher's avatar
Anthony Larcher committed
676
    """
Anthony Larcher's avatar
Anthony Larcher committed
677
678
    Function that takes a model and an idmap and extract all x-vectors based on this model
    and return a StatServer containing the x-vectors
Anthony Larcher's avatar
Anthony Larcher committed
679
    """
680
    # device = torch.device("cuda:{}".format(device_ID))
Anthony Larcher's avatar
Anthony Larcher committed
681
    device = torch.device('cpu')
Anthony Larcher's avatar
Anthony Larcher committed
682
683
684
685
686
687
688
689
690
691
692
693
694

    # Create the dataset
    tmp_idmap = IdMap(idmap_name)
    idmap = IdMap()
    idmap.leftids = tmp_idmap.leftids[segment_indices]
    idmap.rightids = tmp_idmap.rightids[segment_indices]
    idmap.start = tmp_idmap.start[segment_indices]
    idmap.stop = tmp_idmap.stop[segment_indices]

    segment_loader = StatDataset(idmap, fs_params)

    # Load the model
    model_file_name = '/'.join([args.model_path, args.model_name])
Anthony Larcher's avatar
Anthony Larcher committed
695
    model = Xtractor(args.class_number, args.dropout)
Anthony Larcher's avatar
Anthony Larcher committed
696
697
698
699
700
701
702
703
    model.load_state_dict(torch.load(model_file_name))
    model.eval()

    # Get the size of embeddings
    emb_a_size = model.seg_lin0.weight.data.shape[0]
    emb_b_size = model.seg_lin1.weight.data.shape[0]

    # Create a Tensor to store all x-vectors on the GPU
Anthony Larcher's avatar
Anthony Larcher committed
704
705
706
707
708
709
    emb_1 = numpy.zeros((idmap.leftids.shape[0], emb_a_size)).astype(numpy.float32)
    emb_2 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_3 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_4 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_5 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
    emb_6 = numpy.zeros((idmap.leftids.shape[0], emb_b_size)).astype(numpy.float32)
Anthony Larcher's avatar
Anthony Larcher committed
710
711
712
713
714
715

    # Send on selected device
    model.to(device)

    # Loop to extract all x-vectors
    for idx, (model_id, segment_id, data) in enumerate(segment_loader):
Anthony Larcher's avatar
Anthony Larcher committed
716
        logging.critical('Process file {}, [{} / {}]'.format(segment_id, idx, segment_loader.__len__()))
Anthony Larcher's avatar
Anthony Larcher committed
717

Anthony Larcher's avatar
Anthony Larcher committed
718
719
720
        if list(data.shape)[2] < 20:
            pass
        else:
Anthony Larcher's avatar
Anthony Larcher committed
721
722
723
724
725
726
727
            seg_1, seg_2, seg_3, seg_4, seg_5, seg_6 = model.extract(data.to(device))
            emb_1[idx, :] = seg_1.detach().cpu()
            emb_2[idx, :] = seg_2.detach().cpu()
            emb_3[idx, :] = seg_3.detach().cpu()
            emb_4[idx, :] = seg_4.detach().cpu()
            emb_5[idx, :] = seg_5.detach().cpu()
            emb_6[idx, :] = seg_6.detach().cpu()
Anthony Larcher's avatar
Anthony Larcher committed
728

Anthony Larcher's avatar
Anthony Larcher committed
729
    output_queue.put((segment_indices, emb_1, emb_2, emb_3, emb_4, emb_5, emb_6))
Anthony Larcher's avatar
Anthony Larcher committed
730
731


Anthony Larcher's avatar
Anthony Larcher committed
732
def extract_parallel(args, fs_params):
733
734
735
736
737
738
    """

    :param args:
    :param fs_params:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
739
740
741
    emb_a_size = 512
    emb_b_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
742
    idmap = IdMap(args.idmap)
Anthony Larcher's avatar
Anthony Larcher committed
743

Anthony Larcher's avatar
Anthony Larcher committed
744
745
746
747
748
749
750
751
752
753
754
755
756
    x_server_1 = StatServer(idmap, 1, emb_a_size)
    x_server_2 = StatServer(idmap, 1, emb_b_size)
    x_server_3 = StatServer(idmap, 1, emb_b_size)
    x_server_4 = StatServer(idmap, 1, emb_b_size)
    x_server_5 = StatServer(idmap, 1, emb_b_size)
    x_server_6 = StatServer(idmap, 1, emb_b_size)

    x_server_1.stat0 = numpy.ones(x_server_1.stat0.shape)
    x_server_2.stat0 = numpy.ones(x_server_2.stat0.shape)
    x_server_3.stat0 = numpy.ones(x_server_3.stat0.shape)
    x_server_4.stat0 = numpy.ones(x_server_4.stat0.shape)
    x_server_5.stat0 = numpy.ones(x_server_5.stat0.shape)
    x_server_6.stat0 = numpy.ones(x_server_6.stat0.shape)
Anthony Larcher's avatar
Anthony Larcher committed
757
758
759

    # Split the indices
    mega_batch_size = idmap.leftids.shape[0] // args.num_processes
Anthony Larcher's avatar
Anthony Larcher committed
760
761
762

    logging.critical("Number of sessions to process: {}".format(idmap.leftids.shape[0]))

Anthony Larcher's avatar
Anthony Larcher committed
763
764
765
    segment_idx = []
    for ii in range(args.num_processes):
        segment_idx.append(
Anthony Larcher's avatar
Anthony Larcher committed
766
767
768
769
            numpy.arange(ii * mega_batch_size, numpy.min([(ii + 1) * mega_batch_size, idmap.leftids.shape[0]])))

    for idx, si in enumerate(segment_idx):
        logging.critical("Number of session on process {}: {}".format(idx, len(si)))
Anthony Larcher's avatar
Anthony Larcher committed
770
771
772
773
774
775
776

    # Extract x-vectors in parallel
    output_queue = mp.Queue()

    processes = []
    for rank in range(args.num_processes):
        p = mp.Process(target=extract_idmap,
Anthony Larcher's avatar
Anthony Larcher committed
777
                       args=(args, rank, segment_idx[rank], fs_params, args.idmap, output_queue)
Anthony Larcher's avatar
Anthony Larcher committed
778
779
780
781
782
783
784
                       )
        # We first train the model across `num_processes` processes
        p.start()
        processes.append(p)

    # Get the x-vectors and fill the StatServer
    for ii in range(args.num_processes):
Anthony Larcher's avatar
Anthony Larcher committed
785
786
787
788
789
790
791
        indices, seg_1, seg_2, seg_3, seg_4, seg_5, seg_6 = output_queue.get()
        x_server_1.stat1[indices, :] = seg_1
        x_server_2.stat1[indices, :] = seg_2
        x_server_3.stat1[indices, :] = seg_3
        x_server_4.stat1[indices, :] = seg_4
        x_server_5.stat1[indices, :] = seg_5
        x_server_6.stat1[indices, :] = seg_6
Anthony Larcher's avatar
Anthony Larcher committed
792
793
794
795

    for p in processes:
        p.join()

Anthony Larcher's avatar
Anthony Larcher committed
796
    return x_server_1, x_server_2, x_server_3, x_server_4, x_server_5, x_server_6
Anthony Larcher's avatar
Anthony Larcher committed
797
798


Anthony Larcher's avatar
Anthony Larcher committed
799
def extract_embeddings(args):
800
801
802
803
804
805
806
807
808
809
810
811
812
    """

    :param args:
    :param device_id:
    :param fs_params:
    :return:
    """
    device = torch.device("cuda:0")

    # Load the model
    logging.critical("*** Load model from = {}/{}".format(args.model_path, args.init_model_name))
    model_file_name = '/'.join([args.model_path, args.init_model_name])
    model = torch.load(model_file_name)
Anthony Larcher's avatar
Anthony Larcher committed
813
    model = torch.nn.DataParallel(model)
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
    model.eval()
    model.to(device)

    # Get the list of files
    total_seg_df = pickle.load(open(args.batch_training_list, "rb"))

    speaker_dict = {}
    tmp = total_seg_df.speaker_id.unique()
    tmp.sort()
    for idx, spk in enumerate(tmp):
        speaker_dict[spk] = idx

    extract_transform = [CMVN(), ]
    extract_set = VoxDataset(total_seg_df, speaker_dict, None, transform=transforms.Compose(extract_transform),
                             spec_aug_ratio=args.spec_aug, temp_aug_ratio=args.temp_aug)
    extract_loader = DataLoader(extract_set, batch_size=1, shuffle=False, num_workers=5)
Anthony Larcher's avatar
Anthony Larcher committed
830

831
    #CREER UN TENSEUR DE LA BONNE TAILLE POUR STOCKER LES X-VECTEURS
Anthony Larcher's avatar
Anthony Larcher committed
832

833
834
835
836
    for batch_idx, (data, target, _, __) in enumerate(extract_loader):
        print("extrait x-vecteur numero {}".format(batch_idx))
        embedding = model.produce_embeddings(data.to(device))
        #REMPLIR LE TENSEUR AVEC LE NOUVEAU X-VECTEUR
Anthony Larcher's avatar
Anthony Larcher committed
837

838
839
    #FAIRE CORRESPONDRE LES SPK_ID AVEC LES X-VECTEURS
    #RENVOYER LE TENSEUR DE X-VECTEURS SUR LE CPU OU L ECRTIRE SUR LE DISQUE