xvector.py 56.1 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
Anthony Larcher committed
25
Copyright 2014-2020 Yevhenii Prokopalo, Anthony Larcher
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
30

import pdb
import traceback
Anthony Larcher's avatar
Anthony Larcher committed
31
import logging
Anthony Larcher's avatar
Anthony Larcher committed
32
import matplotlib.pyplot as plt
Anthony Larcher's avatar
Anthony Larcher committed
33
import multiprocessing
Anthony Larcher's avatar
Anthony Larcher committed
34
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
35
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
36
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
37
import shutil
38
import time
Anthony Larcher's avatar
Anthony Larcher committed
39
import torch
Anthony Larcher's avatar
Anthony Larcher committed
40
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
41
42
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
43
from torchvision import transforms
Anthony Larcher's avatar
Anthony Larcher committed
44
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
45
from .xsets import SideSet
Anthony Larcher's avatar
debug    
Anthony Larcher committed
46
from .xsets import FileSet
Anthony Larcher's avatar
Anthony Larcher committed
47
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
48
from .res_net import RawPreprocessor, ResBlockWFMS
Anthony Larcher's avatar
Anthony Larcher committed
49
50
from ..bosaris import IdMap
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
51
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
52
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
53
from .sincnet import SincNet
Anthony Larcher's avatar
Anthony Larcher committed
54
#from torch.utils.tensorboard import SummaryWriter
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
55
56
57
from .loss import ArcLinear
from .loss import ArcFace
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
58

Anthony Larcher's avatar
debug    
Anthony Larcher committed
59
import torch.autograd.profiler as profiler
Anthony Larcher's avatar
debug    
Anthony Larcher committed
60
from torch.nn.parallel import DistributedDataParallel as DDP
Anthony Larcher's avatar
ddp    
Anthony Larcher committed
61
62
63
64
import torch.distributed as dist
import torch.multiprocessing as mp


Anthony Larcher's avatar
debug    
Anthony Larcher committed
65

Anthony Larcher's avatar
Anthony Larcher committed
66
67
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
68
__copyright__ = "Copyright 2015-2020 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
69
70
71
72
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
73
74


Anthony Larcher's avatar
Anthony Larcher committed
75
76
logging.basicConfig(format='%(asctime)s %(message)s')

Anthony Larcher's avatar
Anthony Larcher committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

# Make PyTorch Deterministic
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
numpy.random.seed(0)


class GuruMeditation (torch.autograd.detect_anomaly):
    
    def __init__(self):
        super(GuruMeditation, self).__init__()

    def __enter__(self):
        super(GuruMeditation, self).__enter__()
        return self

    def __exit__(self, type, value, trace):
        super(GuruMeditation, self).__exit__()
        if isinstance(value, RuntimeError):
            traceback.print_tb(trace)
            halt(str(value))

    def halt(msg):
        print (msg)
        pdb.set_trace()









def select_n_random(data, labels, n=100):
    '''
    Selects n random datapoints and their corresponding labels from a dataset
    '''
    assert len(data) == len(labels)

    perm = torch.randperm(len(data))
    return data[perm][:n], labels[perm][:n]


def matplotlib_imshow(img, one_channel=False):
    if one_channel:
        img = img.mean(dim=0)
    img = img / 2 + 0.5     # unnormalize
    npimg = img.cpu().numpy()
    if one_channel:
        plt.imshow(npimg, cmap="Greys")
    else:
        plt.imshow(np.transpose(npimg, (1, 2, 0)))

def speech_to_probs(model, speech):
    '''
    Generates predictions and corresponding probabilities from a trained
    network and a list of images
    '''
    output = model(speech)
    # convert output probabilities to predicted class
    _, preds_tensor = torch.max(output, 1)
    preds = numpy.squeeze(preds_tensor.cpu().numpy())
    return preds, [torch.nn.functional.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]


def plot_classes_preds(model, speech, labels):
    '''
Anthony Larcher's avatar
Anthony Larcher committed
146

Anthony Larcher's avatar
Anthony Larcher committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    Generates matplotlib Figure using a trained network, along with images
    and labels from a batch, that shows the network's top prediction along
    with its probability, alongside the actual label, coloring this
    information based on whether the prediction was correct or not.
    Uses the "speech_to_probs" function.
    '''
    preds, probs = speech_to_probs(model, speech)
    # plot the images in the batch, along with predicted and true labels
    fig = plt.figure(figsize=(12, 48))
    for idx in numpy.arange(4):
         ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])
         #matplotlib_imshow(speech[idx], one_channel=True)
         ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
                                                           preds[idx],
                                                           probs[idx] * 100.0,
                                                           labels[idx]),
                                                           color=("green" if preds[idx]==labels[idx].item() else "red"))
    return fig



168
def get_lr(optimizer):
Anthony Larcher's avatar
Anthony Larcher committed
169
170
171
172
173
    """

    :param optimizer:
    :return:
    """
174
175
176
177
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
178
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
179
180
181
182
183
184
185
186
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
187
188
189
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
190

Anthony Larcher's avatar
Anthony Larcher committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
class MeanStdPooling(torch.nn.Module):
    """
    Mean and Standard deviation pooling
    """
    def __init__(self):
        """

        """
        super(MeanStdPooling, self).__init__()
        pass

    def forward(self, x):
        """

        :param x:
        :return:
        """
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        return torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
211

Anthony Larcher's avatar
Anthony Larcher committed
212

Anthony Larcher's avatar
Anthony Larcher committed
213
214
215
216
217
218
219
220
221
222
223
class GruPooling(torch.nn.Module):
    """

    """
    def __init__(self, input_size, gru_node, nb_gru_layer):
        """

        :param input_size:
        :param gru_node:
        :param nb_gru_layer:
        """
Anthony Larcher's avatar
Anthony Larcher committed
224
        super(GruPooling, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        self.lrelu_keras = torch.nn.LeakyReLU(negative_slope = 0.3)
        self.bn_before_gru = torch.nn.BatchNorm1d(num_features = input_size)
        self.gru = torch.nn.GRU(input_size = input_size,
                          hidden_size = gru_node,
                          num_layers = nb_gru_layer,
                          batch_first = True)

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = self.bn_before_gru(x)
        x = self.lrelu_keras(x)
        x = x.permute(0, 2, 1)  #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
        x = x[:,-1,:]

        return x

Anthony Larcher's avatar
Anthony Larcher committed
247

Anthony Larcher's avatar
Anthony Larcher committed
248
class Xtractor(torch.nn.Module):
249
250
251
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
252

Anthony Larcher's avatar
Anthony Larcher committed
253
254
255
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
256
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
257
258
259
                 norm_embedding=False,
                 aam_margin=0.5,
                 aam_s=0.5):
Anthony Larcher's avatar
Anthony Larcher committed
260
261
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
262
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
263
        """
Anthony Larcher's avatar
Anthony Larcher committed
264
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
265
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
266
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
267
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
268

Anthony Larcher's avatar
Anthony Larcher committed
269
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
270
271
272
273
274
275

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
276
            self.feature_size = 30
Anthony Larcher's avatar
Anthony Larcher committed
277
278
279
            self.activation = torch.nn.LeakyReLU(0.2)

            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
280

Anthony Larcher's avatar
xv    
Anthony Larcher committed
281
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
282
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
283
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
284
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
285
286
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
287
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
288
289
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
290
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
291
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
292
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
293
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
294
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
295
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
296
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
297
298
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
299
300
            self.stat_pooling = MeanStdPooling()

Anthony Larcher's avatar
xv    
Anthony Larcher committed
301
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
302
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
303
304
            ]))

Anthony Larcher's avatar
Anthony Larcher committed
305
306
            if self.loss == "aam":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
307
                  ("arclinear", ArcLinear(512, int(self.speaker_number), margin=aam_margin, s=aam_s))
Anthony Larcher's avatar
Anthony Larcher committed
308
309
310
311
                ]))
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
312
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
313
314
315
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
316
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
317
318
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
319

Anthony Larcher's avatar
Anthony Larcher committed
320
321
322
323
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002

Anthony Larcher's avatar
Anthony Larcher committed
324
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
325
326
327
328
329
330

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
331
332
333
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
334
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
335
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
336
337
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
355
356
357
358
359
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
360
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
361
362
363
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
364

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
365
366
367
368
369
370
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
371
        else:
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
372
373
374
375
376
377
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
378

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
379
            self.loss = cfg["training"]["loss"]
Anthony Larcher's avatar
Anthony Larcher committed
380
            if self.loss == "aam":
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
381
382
                self.aam_margin = cfg["training"]["aam_margin"]
                self.aam_s = cfg["training"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
383

Anthony Larcher's avatar
Anthony Larcher committed
384
385
386
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
387
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
388
389
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
390
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
391
392
393
394
395
396
397
398
399
400
401
402
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
403
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
404
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
405
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
406
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
407
408
409
410
411
412
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
413
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
414
415

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
416
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
417
            """
Anthony Larcher's avatar
Anthony Larcher committed
418
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
419
420
421
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
437
438
439
440
441
442
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
443
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
444
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
445
446
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
447
448
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
449
450
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
451
                                                                         cfg["segmental"][k][":"],
Anthony Larcher's avatar
Anthony Larcher committed
452
453
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
454
455
456
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
457
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
458
459
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
460
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
461
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
462

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
463
464
465
466
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
467
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
468
469
470
471
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
472
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
473

Anthony Larcher's avatar
Anthony Larcher committed
474
475
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
476
            """
Anthony Larcher's avatar
Anthony Larcher committed
477
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
478
            """
Anthony Larcher's avatar
Anthony Larcher committed
479
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
480
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
481
482
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
483
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
484
485
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
486
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
487
488
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
489
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
490
491

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
492
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
493

Anthony Larcher's avatar
Anthony Larcher committed
494
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
495
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
496
497

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
498
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
499

Anthony Larcher's avatar
Anthony Larcher committed
500
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
501
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
502

Anthony Larcher's avatar
Anthony Larcher committed
503
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
504
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
505
506
507
508
509
510
511
512
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
513
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
514
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
515

Anthony Larcher's avatar
Anthony Larcher committed
516
517
518
519
520
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
521

Anthony Larcher's avatar
Anthony Larcher committed
522
523
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
524

Anthony Larcher's avatar
Anthony Larcher committed
525
526
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
527

Anthony Larcher's avatar
Anthony Larcher committed
528
529
530
531
532
533
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
534
                self.norm_embedding = True
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
535
536
537
538
539
540
541
                #self.after_speaker_embedding = ArcLinear(input_size,
                #                                         self.speaker_number,
                #                                         margin=self.aam_margin,
                #                                         s=self.aam_s)
                self.after_speaker_embedding = ArcFace(embedding_size=input_size,
                                                       classnum=self.speaker_number,
                                                       s=64.,
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
542
                                                       m=0.5)
Anthony Larcher's avatar
Anthony Larcher committed
543

Anthony Larcher's avatar
Anthony Larcher committed
544
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
545

Anthony Larcher's avatar
Anthony Larcher committed
546

Anthony Larcher's avatar
Anthony Larcher committed
547
    def forward(self, x, is_eval=False, target=None):
548
549
550
        """

        :param x:
Anthony Larcher's avatar
Anthony Larcher committed
551
        :param is_eval:
552
553
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
554
555
556
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
557
        x = self.sequence_network(x)
558

Anthony Larcher's avatar
Anthony Larcher committed
559
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
560
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
561
562

        x = self.before_speaker_embedding(x)
563

Anthony Larcher's avatar
Anthony Larcher committed
564
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
565
            #x_norm = x.norm(p=2,dim=1, keepdim=True) / 10. # Why  10. ?
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
566
567
568
            #x_norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True, out=None, dtype=None)
            #x = torch.div(x, x_norm)
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
569

Anthony Larcher's avatar
Anthony Larcher committed
570
571
572
        if is_eval:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
573
574
        if self.loss == "cce":
            x = self.after_speaker_embedding(x)
Anthony Larcher's avatar
Anthony Larcher committed
575

Anthony Larcher's avatar
Anthony Larcher committed
576
577
578
579
580
581
        elif self.loss == "aam":
            if not is_eval:
                x = self.after_speaker_embedding(x,target=target)
            else:
                x = self.after_speaker_embedding(x, target=None)

Anthony Larcher's avatar
Anthony Larcher committed
582
        return x
Anthony Larcher's avatar
Anthony Larcher committed
583

584
585
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
586
587
588
589
590
591
592
593
594
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
595

Anthony Larcher's avatar
Anthony Larcher committed
596
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
597
           dataset_yaml,
Anthony Larcher's avatar
Anthony Larcher committed
598
599
           epochs=None,
           lr=None,
Anthony Larcher's avatar
Anthony Larcher committed
600
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
601
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
602
603
604
605
           loss=None,
           aam_margin=None,
           aam_s=None,
           patience=None,
Anthony Larcher's avatar
Anthony Larcher committed
606
           tmp_model_name=None,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
607
           best_model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
608
           multi_gpu=True,
609
           clipping=False,
Anthony Larcher's avatar
Anthony Larcher committed
610
           opt=None,
Anthony Larcher's avatar
Anthony Larcher committed
611
612
           reset_parts=[],
           freeze_parts=[],
Anthony Larcher's avatar
Anthony Larcher committed
613
614
615
616
           num_thread=None,
           write_batches_to_disk=False,
           load_batches_from_disk=False,
           tmp_batch_dir=None):
617
618
    """

Anthony Larcher's avatar
Anthony Larcher committed
619
620
621
622
623
624
    :param speaker_number:
    :param dataset_yaml:
    :param epochs:
    :param lr:
    :param model_yaml:
    :param model_name:
Anthony Larcher's avatar
Anthony Larcher committed
625
626
627
628
    :param loss:
    :param aam_margin:
    :param aam_s:
    :param patience:
Anthony Larcher's avatar
Anthony Larcher committed
629
630
631
632
    :param tmp_model_name:
    :param best_model_name:
    :param multi_gpu:
    :param clipping:
Anthony Larcher's avatar
Anthony Larcher committed
633
634
635
    :param opt:
    :param reset_parts:
    :param freeze_parts:
Anthony Larcher's avatar
Anthony Larcher committed
636
    :param num_thread:
637
638
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
639
640
641
642
    # Add for tensorboard
    # Writer will output to ./runs/ directory by default
    #writer = SummaryWriter("runs/xvectors_experiments_2")
    writer = None
Anthony Larcher's avatar
Anthony Larcher committed
643

Anthony Larcher's avatar
Anthony Larcher committed
644
645
646
    if write_batches_to_disk:
        load_batches_from_disk = True

Anthony Larcher's avatar
Anthony Larcher committed
647
648
649
    if num_thread is None:
        num_thread = multiprocessing.cpu_count()

Anthony Larcher's avatar
Anthony Larcher committed
650
    logging.critical(f"Start process at {time.strftime('%H:%M:%S', time.localtime())}")
651

Anthony Larcher's avatar
ddp    
Anthony Larcher committed
652
653
654
    


Anthony Larcher's avatar
Anthony Larcher committed
655
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Anthony Larcher's avatar
Anthony Larcher committed
656

Anthony Larcher's avatar
Anthony Larcher committed
657
    # Start from scratch
Anthony Larcher's avatar
Anthony Larcher committed
658
    if model_name is None and model_yaml in ["xvector", "rawnet2"]:
Anthony Larcher's avatar
Anthony Larcher committed
659
        # Initialize a first model
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
660
        if model_yaml == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
661
            model = Xtractor(speaker_number, "xvector")
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
662
        elif model_yaml == "rawnet2":
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
663
            model = Xtractor(speaker_number, "rawnet2")
Anthony Larcher's avatar
Anthony Larcher committed
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
    else:
        with open(model_yaml, 'r') as fh:
            model_archi = yaml.load(fh, Loader=yaml.FullLoader)
            if epochs is None:
                epochs = model_archi["training"]["epochs"]
            if patience is None:
                patience = model_archi["training"]["patience"]
            if opt is None:
                opt = model_archi["training"]["opt"]
            if lr is None:
                lr = model_archi["training"]["lr"]
            if loss is None:
                loss = model_archi["training"]["loss"]
            if aam_margin is None and model_archi["training"]["loss"] == "aam":
                aam_margin = model_archi["training"]["aam_margin"]
            if aam_s is None and model_archi["training"]["loss"] == "aam":
                aam_s = model_archi["training"]["aam_s"]
            if tmp_model_name is None:
                tmp_model_name = model_archi["training"]["tmp_model_name"]
            if best_model_name is None:
                best_model_name = model_archi["training"]["best_model_name"]
            if multi_gpu is None:
                multi_gpu = model_archi["training"]["multi_gpu"]
            if clipping is None:
                clipping = model_archi["training"]["clipping"]

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
690
        if model_name is None:
Anthony Larcher's avatar
Anthony Larcher committed
691
692
693
            model = Xtractor(speaker_number, model_yaml)

         # If we start from an existing model
Anthony Larcher's avatar
Anthony Larcher committed
694
        else:
Anthony Larcher's avatar
Anthony Larcher committed
695
696
697
            # Load the model
            logging.critical(f"*** Load model from = {model_name}")
            checkpoint = torch.load(model_name)
Anthony Larcher's avatar
Anthony Larcher committed
698
            model = Xtractor(speaker_number, model_yaml)
Anthony Larcher's avatar
Anthony Larcher committed
699

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
700
701
            """
            Here we remove all layers that we don't want to reload
Anthony Larcher's avatar
Anthony Larcher committed
702
        
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
703
704
705
706
707
708
709
710
711
712
713
714
715
            """
            pretrained_dict = checkpoint["model_state_dict"]
            for part in reset_parts:
                pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

            new_model_dict = model.state_dict()
            new_model_dict.update(pretrained_dict)
            model.load_state_dict(new_model_dict)

        # Freeze required layers
        for name, param in model.named_parameters():
            if name.split(".")[0] in freeze_parts:
                param.requires_grad = False
Anthony Larcher's avatar
Anthony Larcher committed
716

Anthony Larcher's avatar
Anthony Larcher committed
717
    print(model)
Anthony Larcher's avatar
Anthony Larcher committed
718

Anthony Larcher's avatar
Anthony Larcher committed
719
    if torch.cuda.device_count() > 1 and multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
720
721
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)
Anthony Larcher's avatar
Anthony Larcher committed
722
        #model = DDP(model)
Anthony Larcher's avatar
Anthony Larcher committed
723
724
    else:
        print("Train on a single GPU")
Anthony Larcher's avatar
Anthony Larcher committed
725
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
726

Anthony Larcher's avatar
debug    
Anthony Larcher committed
727
728
729
730
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])

Anthony Larcher's avatar
Anthony Larcher committed
731
732
733
    if load_batches_from_disk:
        train_batch_fn_format = tmp_batch_dir + "/train/train_{}_batch.h5"
        val_batch_fn_format = tmp_batch_dir + "/val/val_{}_batch.h5"
734

Anthony Larcher's avatar
Anthony Larcher committed
735
736
737
738
739
740
741
    if not load_batches_from_disk or write_batches_to_disk:
        """
        Set the dataloaders according to the dataset_yaml
        
        First we load the dataframe from CSV file in order to split it for training and validation purpose
        Then we provide those two 
        """
Anthony Larcher's avatar
Anthony Larcher committed
742
743
744
745
746
747

        if write_batches_to_disk:
            output_format = "numpy"
        else:
            output_format = "pytorch"

Anthony Larcher's avatar
Anthony Larcher committed
748
749
750
751
752
753
        training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"])
        torch.manual_seed(dataset_params['seed'])
        training_set = SideSet(dataset_yaml,
                               set_type="train",
                               dataset_df=training_df,
                               chunk_per_segment=dataset_params['train']['chunk_per_segment'],
Anthony Larcher's avatar
Anthony Larcher committed
754
755
                               overlap=dataset_params['train']['overlap'],
                               output_format=output_format)
Anthony Larcher's avatar
Anthony Larcher committed
756

Anthony Larcher's avatar
Anthony Larcher committed
757
758
759
760
        validation_set = SideSet(dataset_yaml,
                                 set_type="validation",
                                 dataset_df=validation_df,
                                 output_format=output_format)
Anthony Larcher's avatar
Anthony Larcher committed
761
762


Anthony Larcher's avatar
Anthony Larcher committed
763
        if write_batches_to_disk:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
764
            logging.critical("Start writing batches on disk")
Anthony Larcher's avatar
Anthony Larcher committed
765
766
            training_set.write_to_disk(dataset_params["batch_size"], train_batch_fn_format, num_thread)
            validation_set.write_to_disk(dataset_params["batch_size"], val_batch_fn_format, num_thread)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
767
            logging.critical("---> Done")
Anthony Larcher's avatar
Anthony Larcher committed
768
769

    if load_batches_from_disk:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
        training_set = FileSet(train_batch_fn_format)
        validation_set = FileSet(train_batch_fn_format)
        batch_size = 1
    else:
        batch_size = dataset_params["batch_size"]


    print(f"Size of batches = {batch_size}")
    training_loader = DataLoader(training_set,
                                 batch_size=batch_size,
                                 shuffle=True,
                                 drop_last=True,
                                 pin_memory=True,
                                 num_workers=num_thread)

    validation_loader = DataLoader(validation_set,
                                   batch_size=batch_size,
                                   drop_last=True,
                                   pin_memory=True,
                                   num_workers=num_thread)

Anthony Larcher's avatar
Anthony Larcher committed
791

Anthony Larcher's avatar
Anthony Larcher committed
792
793
794
    """
    Set the training options
    """
Anthony Larcher's avatar
Anthony Larcher committed
795
    if opt == 'adam':
Anthony Larcher's avatar
Anthony Larcher committed
796
        _optimizer = torch.optim.Adam
Anthony Larcher's avatar
Anthony Larcher committed
797
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
798
799
    elif opt == 'rmsprop':
        _optimizer = torch.optim.RMSprop
Anthony Larcher's avatar
Anthony Larcher committed
800
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
801
802
803
    else: # opt == 'sgd'
        _optimizer = torch.optim.SGD
        _options = {'lr': lr, 'momentum': 0.9}
Anthony Larcher's avatar
Anthony Larcher committed
804

Anthony Larcher's avatar
debug    
Anthony Larcher committed
805
806
807
808
809
810
811
812
813
814
815
816
817
    #params = [
    #    {
    #        'params': [
    #            param for name, param in model.named_parameters() if 'bn' not in name
    #        ]
    #    },
    #    {
    #        'params': [
    #            param for name, param in model.named_parameters() if 'bn' in name
    #        ],
    #        'weight_decay': 0
    #    },
    #]
Anthony Larcher's avatar
Anthony Larcher committed
818

Anthony Larcher's avatar
Anthony Larcher committed
819
    param_list = []
Anthony Larcher's avatar
Anthony Larcher committed
820
    if type(model) is Xtractor:
Anthony Larcher's avatar
Anthony Larcher committed
821
822
823
824
825
826
827
        if model.preprocessor is not None:
            param_list.append({'params': model.preprocessor.parameters(), 'weight_decay': model.preprocessor_weight_decay})
        param_list.append({'params': model.sequence_network.parameters(), 'weight_decay': model.sequence_network_weight_decay})
        param_list.append({'params': model.stat_pooling.parameters(), 'weight_decay': model.stat_pooling_weight_decay})
        param_list.append({'params': model.before_speaker_embedding.parameters(), 'weight_decay': model.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.after_speaker_embedding.parameters(), 'weight_decay': model.after_speaker_embedding_weight_decay})

Anthony Larcher's avatar
Anthony Larcher committed
828
    else:
Anthony Larcher's avatar
Anthony Larcher committed
829
830
831
832
833
834
835
836
837
        if model.module.preprocessor is not None:
            param_list.append({'params': model.module.preprocessor.parameters(), 'weight_decay': model.module.preprocessor_weight_decay})
        param_list.append({'params': model.module.sequence_network.parameters(), 'weight_decay': model.module.sequence_network_weight_decay})
        param_list.append({'params': model.module.stat_pooling.parameters(), 'weight_decay': model.module.stat_pooling_weight_decay})
        param_list.append({'params': model.module.before_speaker_embedding.parameters(), 'weight_decay': model.module.before_speaker_embedding_weight_decay})
        param_list.append({'params': model.module.after_speaker_embedding.parameters(), 'weight_decay': model.module.after_speaker_embedding_weight_decay})


    optimizer = _optimizer(param_list, **_options)
Anthony Larcher's avatar
Anthony Larcher committed
838
839
840
841
842
843

    #optimizer = torch.optim.SGD(params,
    #                            lr=lr,
    #                            momentum=0.9,
    #                            weight_decay=0.0005)
    #print(f"Learning rate = {lr}")
Anthony Larcher's avatar
Anthony Larcher committed
844

Anthony Larcher's avatar
Anthony Larcher committed
845
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', verbose=True)
846

Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
847
    best_accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
848
    best_accuracy_epoch = 1
Anthony Larcher's avatar
Anthony Larcher committed
849
    curr_patience = patience
Anthony Larcher's avatar
Anthony Larcher committed
850
    for epoch in range(1, epochs + 1):
851
        # Process one epoch and return the current model
Anthony Larcher's avatar
Anthony Larcher committed
852
853
854
        if curr_patience == 0:
            print(f"Stopping at epoch {epoch} for cause of patience")
            break
Anthony Larcher's avatar
Anthony Larcher committed
855
856
857
858
859
860
        model = train_epoch(model,
                            epoch,
                            training_loader,
                            optimizer,
                            dataset_params["log_interval"],
                            device=device,
Anthony Larcher's avatar
Anthony Larcher committed
861
862
                            clipping=clipping,
                            tb_writer=writer)
863
864

        # Add the cross validation here
Anthony Larcher's avatar
Anthony Larcher committed
865
        accuracy, val_loss = cross_validation(model, validation_loader, device=device)
Anthony Larcher's avatar
Anthony Larcher committed
866
        logging.critical(f"***{time.strftime('%H:%M:%S', time.localtime())} Cross validation accuracy = {accuracy} %")
867
868
869
870

        # Decrease learning rate according to the scheduler policy
        scheduler.step(val_loss)

Anthony Larcher's avatar
Anthony Larcher committed
871
872
873
874
        # remember best accuracy and save checkpoint
        is_best = accuracy > best_accuracy
        best_accuracy = max(accuracy, best_accuracy)

Anthony Larcher's avatar
Anthony Larcher committed
875
876
877
878
879
880
        if type(model) is Xtractor:
            save_checkpoint({
                'epoch': epoch,
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'accuracy': best_accuracy,
Anthony Larcher's avatar
Anthony Larcher committed
881
882
                'scheduler': scheduler,
                'speaker_number' : speaker_number,
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
883
                'model_archi': model_archi
Anthony Larcher's avatar
Anthony Larcher committed
884
885
886
887
888
889
890
            }, is_best, filename=tmp_model_name+".pt", best_filename=best_model_name+'.pt')
        else:
            save_checkpoint({
                'epoch': epoch,
                'model_state_dict': model.module.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'accuracy': best_accuracy,
Anthony Larcher's avatar
Anthony Larcher committed
891
892
                'scheduler': scheduler,
                'speaker_number': speaker_number,
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
893
                'model_archi': model_archi
Anthony Larcher's avatar
Anthony Larcher committed
894
            }, is_best, filename=tmp_model_name+".pt", best_filename=best_model_name+'.pt')
Anthony Larcher's avatar
Anthony Larcher committed
895
896
897

        if is_best:
            best_accuracy_epoch = epoch
Anthony Larcher's avatar
Anthony Larcher committed
898
899
900
            curr_patience = patience
        else:
            curr_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
901
    #writer.close()
902

903
904
905
    for ii in range(torch.cuda.device_count()):
        print(torch.cuda.memory_summary(ii))

Anthony Larcher's avatar
Anthony Larcher committed
906
    logging.critical(f"Best accuracy {best_accuracy * 100.} obtained at epoch {best_accuracy_epoch}")
907

Anthony Larcher's avatar
Anthony Larcher committed
908
def train_epoch(model, epoch, training_loader, optimizer, log_interval, device, clipping=False, tb_writer=None):
909
910
911
912
    """

    :param model:
    :param epoch:
Anthony Larcher's avatar
Anthony Larcher committed
913
    :param training_loader:
914
    :param optimizer:
Anthony Larcher's avatar
Anthony Larcher committed
915
916
917
    :param log_interval:
    :param device:
    :param clipping:
918
919
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
920
    model.train()
Anthony Larcher's avatar
Anthony Larcher committed
921
    criterion = torch.nn.CrossEntropyLoss(reduction='mean')
922

Anthony Larcher's avatar
Anthony Larcher committed
923
924
925
926
927
    if isinstance(model, Xtractor):
        loss_criteria = model.loss
    else:
        loss_criteria = model.module.loss

928
    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
929
    running_loss = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
930
    for batch_idx, (data, target) in enumerate(training_loader):
Anthony Larcher's avatar
debug    
Anthony Larcher committed
931
932
        data = data.squeeze().to(device)
        print(f"Shape of data: {data.shape}")
933
        target = target.squeeze()
Anthony Larcher's avatar
Anthony Larcher committed
934
        target = target.to(device)
935
        optimizer.zero_grad()
Anthony Larcher's avatar
Anthony Larcher committed
936
937

        if loss_criteria == 'aam':
Anthony Larcher's avatar
debug    
Anthony Larcher committed
938
            output = model(data, target=target)
Anthony Larcher's avatar
Anthony Larcher committed
939
        else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
940
            output = model(data, target=None)
Anthony Larcher's avatar
Anthony Larcher committed
941

Anthony Larcher's avatar
Anthony Larcher committed
942
        #with GuruMeditation():
Anthony Larcher's avatar
Anthony Larcher committed
943
        loss = criterion(output, target)
Anthony Larcher's avatar
Anthony Larcher committed
944
945
946
947
948
949
950
951
        if not torch.isnan(loss):
            loss.backward()
            if clipping:
                torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
            running_loss += loss.item()
            optimizer.step()

            running_loss += loss.item()
Anthony Larcher's avatar
Anthony Larcher committed
952
            accuracy += (torch.argmax(output.data, 1) == target).sum()
Anthony Larcher's avatar
Anthony Larcher committed
953
954
            if batch_idx % log_interval == 0:
                batch_size = target.shape[0]
Anthony Larcher's avatar
debug    
Anthony Larcher committed
955
956
                logging.critical('{}, Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                    time.strftime('%H:%M:%S', time.localtime()),
Anthony Larcher's avatar
Anthony Larcher committed
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
                    epoch, batch_idx + 1, training_loader.__len__(),
                    100. * batch_idx / training_loader.__len__(), loss.item(),
                    100.0 * accuracy.item() / ((batch_idx + 1) * batch_size)))
                #tb_writer.add_scalar('training loss',
                #                     running_loss / log_interval,
                #                     epoch * len(training_loader) + batch_idx)
                #tb_writer.add_scalar('training_accuracy',
                #                      100.0 * accuracy.item() / ((batch_idx + 1) * batch_size),
                #                      epoch * len(training_loader) + batch_idx)

                # ...log a Matplotlib Figure showing the model's predictions on a
                # random mini-batch
                #tb_writer.add_figure('predictions vs. actuals',
                #                     plot_classes_preds(model, data.to(device), target.to(device)),
                #                     global_step=epoch * len(training_loader) + batch_idx)

973
974
975
976
977
978
979
980
981
982
983
984
985
        else:
            save_checkpoint({
                             'epoch': epoch,
                             'model_state_dict': model.state_dict(),
                             'optimizer_state_dict': optimizer.state_dict(),
                             'accuracy': 0.0,
                             'scheduler': 0.0
                             }, False, filename="model_loss_NAN.pt", best_filename='toto.pt')
            with open("batch_loss_NAN.pkl", "wb") as fh:
                pickle.dump(data.cpu(), fh)
            import sys
            sys.exit()
        running_loss = 0.0
986
987
988
    return model


Anthony Larcher's avatar
Anthony Larcher committed
989
def cross_validation(model, validation_loader, device):
990
991
992
    """

    :param model:
Anthony Larcher's avatar
Anthony Larcher committed
993
994
    :param validation_loader:
    :param device:
995
996
997
998
    :return:
    """
    model.eval()

Anthony Larcher's avatar
Anthony Larcher committed
999
1000
    if isinstance(model, Xtractor):
        loss_criteria = model.loss