xvector.py 78.6 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
25
Copyright 2014-2021 Anthony Larcher, Yevhenii Prokopalo
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
30

import pdb
import traceback
Anthony Larcher's avatar
Anthony Larcher committed
31
import logging
Anthony Larcher's avatar
debug    
Anthony Larcher committed
32
import math
Anthony Larcher's avatar
Anthony Larcher committed
33
import os
Anthony Larcher's avatar
Anthony Larcher committed
34
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
35
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
36
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
37
import shutil
Anthony Larcher's avatar
Anthony Larcher committed
38
import sys
39
import time
Anthony Larcher's avatar
Anthony Larcher committed
40
import torch
Anthony Larcher's avatar
debug    
Anthony Larcher committed
41
import torchaudio
Anthony Larcher's avatar
Anthony Larcher committed
42
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
43
44
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
45
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
46
from .xsets import SideSet
Anthony Larcher's avatar
debug    
Anthony Larcher committed
47
from .xsets import FileSet
Anthony Larcher's avatar
Anthony Larcher committed
48
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
49
from .xsets import IdMapSet_per_speaker
Anthony Larcher's avatar
debug    
Anthony Larcher committed
50
from .xsets import SpkSet
Anthony Larcher's avatar
Anthony Larcher committed
51
from .xsets import SideSampler
Anthony Larcher's avatar
Anthony Larcher committed
52
from .res_net import RawPreprocessor, ResBlockWFMS, ResBlock, PreResNet34, PreFastResNet34
Anthony Larcher's avatar
Anthony Larcher committed
53
from ..bosaris import IdMap
Anthony Larcher's avatar
Anthony Larcher committed
54
55
from ..bosaris import Key
from ..bosaris import Ndx
Anthony Larcher's avatar
Anthony Larcher committed
56
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
57
from ..iv_scoring import cosine_scoring
Anthony Larcher's avatar
Anthony Larcher committed
58
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
59
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
60
from .sincnet import SincNet
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
61
62
from .loss import ArcLinear
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
63
from .loss import ArcMarginProduct
Anthony Larcher's avatar
Anthony Larcher committed
64

Anthony Larcher's avatar
ddp    
Anthony Larcher committed
65

Anthony Larcher's avatar
Anthony Larcher committed
66
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
67

Anthony Larcher's avatar
Anthony Larcher committed
68
69
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
70
__copyright__ = "Copyright 2015-2021 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
71
72
73
74
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
75
76


Anthony Larcher's avatar
Anthony Larcher committed
77
78
logging.basicConfig(format='%(asctime)s %(message)s')

Anthony Larcher's avatar
Anthony Larcher committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

# Make PyTorch Deterministic
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
numpy.random.seed(0)


class GuruMeditation (torch.autograd.detect_anomaly):
    
    def __init__(self):
        super(GuruMeditation, self).__init__()

    def __enter__(self):
        super(GuruMeditation, self).__enter__()
        return self

    def __exit__(self, type, value, trace):
        super(GuruMeditation, self).__exit__()
        if isinstance(value, RuntimeError):
            traceback.print_tb(trace)
Anthony Larcher's avatar
Anthony Larcher committed
100
            self.halt(str(value))
Anthony Larcher's avatar
Anthony Larcher committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

    def halt(msg):
        print (msg)
        pdb.set_trace()


def select_n_random(data, labels, n=100):
    '''
    Selects n random datapoints and their corresponding labels from a dataset
    '''
    assert len(data) == len(labels)

    perm = torch.randperm(len(data))
    return data[perm][:n], labels[perm][:n]


def matplotlib_imshow(img, one_channel=False):
    if one_channel:
        img = img.mean(dim=0)
    img = img / 2 + 0.5     # unnormalize
    npimg = img.cpu().numpy()
    if one_channel:
        plt.imshow(npimg, cmap="Greys")
    else:
Anthony Larcher's avatar
Anthony Larcher committed
125
        plt.imshow(numpy.transpose(npimg, (1, 2, 0)))
Anthony Larcher's avatar
Anthony Larcher committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

def speech_to_probs(model, speech):
    '''
    Generates predictions and corresponding probabilities from a trained
    network and a list of images
    '''
    output = model(speech)
    # convert output probabilities to predicted class
    _, preds_tensor = torch.max(output, 1)
    preds = numpy.squeeze(preds_tensor.cpu().numpy())
    return preds, [torch.nn.functional.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]


def plot_classes_preds(model, speech, labels):
    '''
Anthony Larcher's avatar
Anthony Larcher committed
141

Anthony Larcher's avatar
Anthony Larcher committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
    Generates matplotlib Figure using a trained network, along with images
    and labels from a batch, that shows the network's top prediction along
    with its probability, alongside the actual label, coloring this
    information based on whether the prediction was correct or not.
    Uses the "speech_to_probs" function.
    '''
    preds, probs = speech_to_probs(model, speech)
    # plot the images in the batch, along with predicted and true labels
    fig = plt.figure(figsize=(12, 48))
    for idx in numpy.arange(4):
         ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])
         #matplotlib_imshow(speech[idx], one_channel=True)
         ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
                                                           preds[idx],
                                                           probs[idx] * 100.0,
                                                           labels[idx]),
                                                           color=("green" if preds[idx]==labels[idx].item() else "red"))
    return fig


Anthony Larcher's avatar
debug    
Anthony Larcher committed
162
163
def test_metrics(model,
                 device,
Anthony Larcher's avatar
Anthony Larcher committed
164
165
166
                 speaker_number,
                 num_thread,
                 mixed_precision):
Anthony Larcher's avatar
Anthony Larcher committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
Anthony Larcher's avatar
debug    
Anthony Larcher committed
183
184
185
    idmap_test_filename = 'h5f/idmap_test.h5'
    ndx_test_filename = 'h5f/ndx_test.h5'
    key_test_filename = 'h5f/key_test.h5'
Anthony Larcher's avatar
Anthony Larcher committed
186
    data_root_name='/data/larcher/voxceleb1/test/wav'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
187
188

    transform_pipeline = dict()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
189
190
191
192
193
194
195
196
197
198
    #mfcc_config = dict()
    #mfcc_config['nb_filters'] = 81
    #mfcc_config['nb_ceps'] = 80
    #mfcc_config['lowfreq'] = 133.333
    #mfcc_config['maxfreq'] = 6855.4976
    #mfcc_config['win_time'] = 0.025
    #mfcc_config['shift'] = 0.01
    #mfcc_config['n_fft'] = 2048
    #transform_pipeline['MFCC'] = mfcc_config
    #transform_pipeline['CMVN'] = {}
Anthony Larcher's avatar
debug    
Anthony Larcher committed
199
200
201
202
203
204

    xv_stat = extract_embeddings(idmap_name=idmap_test_filename,
                                 speaker_number=speaker_number,
                                 model_filename=model,
                                 data_root_name=data_root_name,
                                 device=device,
Anthony Larcher's avatar
Anthony Larcher committed
205
206
207
                                 transform_pipeline=transform_pipeline,
                                 num_thread=num_thread,
                                 mixed_precision=mixed_precision)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
208
209
210
211
212
213
214
215
216
217
218
219

    scores = cosine_scoring(xv_stat,
                            xv_stat,
                            Ndx(ndx_test_filename),
                            wccn=None,
                            check_missing=True)

    tar, non = scores.get_tar_non(Key(key_test_filename))

    test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))

    return test_eer
Anthony Larcher's avatar
Anthony Larcher committed
220

Anthony Larcher's avatar
Anthony Larcher committed
221

222
def get_lr(optimizer):
Anthony Larcher's avatar
Anthony Larcher committed
223
224
225
226
227
    """

    :param optimizer:
    :return:
    """
228
229
230
231
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
232
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
233
234
235
236
237
238
239
240
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
241
242
243
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
244

Anthony Larcher's avatar
Anthony Larcher committed
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
class MeanStdPooling(torch.nn.Module):
    """
    Mean and Standard deviation pooling
    """
    def __init__(self):
        """

        """
        super(MeanStdPooling, self).__init__()
        pass

    def forward(self, x):
        """

        :param x:
        :return:
        """
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        return torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
265

Anthony Larcher's avatar
Anthony Larcher committed
266

Anthony Larcher's avatar
Anthony Larcher committed
267
268
269
270
271
272
273
274
275
276
277
class GruPooling(torch.nn.Module):
    """

    """
    def __init__(self, input_size, gru_node, nb_gru_layer):
        """

        :param input_size:
        :param gru_node:
        :param nb_gru_layer:
        """
Anthony Larcher's avatar
Anthony Larcher committed
278
        super(GruPooling, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
        self.lrelu_keras = torch.nn.LeakyReLU(negative_slope = 0.3)
        self.bn_before_gru = torch.nn.BatchNorm1d(num_features = input_size)
        self.gru = torch.nn.GRU(input_size = input_size,
                          hidden_size = gru_node,
                          num_layers = nb_gru_layer,
                          batch_first = True)

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = self.bn_before_gru(x)
        x = self.lrelu_keras(x)
        x = x.permute(0, 2, 1)  #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
        x = x[:,-1,:]

        return x

Anthony Larcher's avatar
Anthony Larcher committed
301

Anthony Larcher's avatar
Anthony Larcher committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
class PreEmphasis(torch.nn.Module):

    def __init__(self, coef: float = 0.97):
        super().__init__()
        self.coef = coef
        # make kernel
        # In pytorch, the convolution operation uses cross-correlation. So, filter is flipped.
        self.register_buffer(
            'flipped_filter', torch.FloatTensor([-self.coef, 1.]).unsqueeze(0).unsqueeze(0)
        )

    def forward(self, input: torch.tensor) -> torch.tensor:
        assert len(input.size()) == 2, 'The number of dimensions of input tensor must be 2!'
        # reflect padding to match lengths of in/out
        input = input.unsqueeze(1)
        input = torch.nn.functional.pad(input, (1, 0), 'reflect')
        return torch.nn.functional.conv1d(input, self.flipped_filter).squeeze(1)


class MfccFrontEnd(torch.nn.Module):
    """

    """

    def __init__(self,
                 pre_emphasis=0.97,
                 sample_rate=16000,
                 n_fft=2048,
                 f_min=133.333,
                 f_max=6855.4976,
                 win_length=1024,
                 window_fn=torch.hann_window,
                 hop_length=512,
                 power=2.0,
                 n_mels=100,
                 n_mfcc=80):

        super(MfccFrontEnd, self).__init__()

        self.pre_emphasis = pre_emphasis
        self.sample_rate = sample_rate
        self.n_fft = n_fft
        self.f_min = f_min
        self.f_max = f_max
        self.win_length = win_length
        self.window_fn=window_fn
        self.hop_length = hop_length
        self.power=power
        self.window_fn = window_fn
        self.n_mels = n_mels
        self.n_mfcc = n_mfcc

        self.PreEmphasis = PreEmphasis(self.pre_emphasis)

Anthony Larcher's avatar
Anthony Larcher committed
356
357
358
359
360
361
362
363
        self.melkwargs = {"n_fft":self.n_fft,
                          "f_min":self.f_min,
                          "f_max":self.f_max,
                          "win_length":self.win_length,
                          "window_fn":self.window_fn,
                          "hop_length":self.hop_length,
                          "power":self.power,
                          "n_mels":self.n_mels}
Anthony Larcher's avatar
Anthony Larcher committed
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

        self.MFCC = torchaudio.transforms.MFCC(
            sample_rate=self.sample_rate,
            n_mfcc=self.n_mfcc,
            dct_type=2,
            log_mels=True,
            melkwargs=self.melkwargs)

        self.CMVN = torch.nn.InstanceNorm1d(self.n_mfcc)

    def forward(self, x):
        """

        :param x:
        :return:
        """
        with torch.no_grad():
            with torch.cuda.amp.autocast(enabled=False):
                mfcc = self.PreEmphasis(x)
                mfcc = self.MFCC(mfcc)
                mfcc = self.CMVN(mfcc)
        return mfcc

Anthony Larcher's avatar
Anthony Larcher committed
387
class Xtractor(torch.nn.Module):
388
389
390
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
391

Anthony Larcher's avatar
Anthony Larcher committed
392
393
394
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
395
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
396
                 norm_embedding=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
397
398
                 aam_margin=0.2,
                 aam_s=30):
Anthony Larcher's avatar
Anthony Larcher committed
399
400
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
401
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
402
        """
Anthony Larcher's avatar
Anthony Larcher committed
403
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
404
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
405
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
406
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
407

Anthony Larcher's avatar
Anthony Larcher committed
408
409
        print(f"Speaker number : {self.speaker_number}")

Anthony Larcher's avatar
Anthony Larcher committed
410
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
411

Anthony Larcher's avatar
Anthony Larcher committed
412
413
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
414
415
416
417
418
            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
419
420
            self.activation = torch.nn.LeakyReLU(0.2)

Anthony Larcher's avatar
Anthony Larcher committed
421
            self.preprocessor = MfccFrontEnd()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
422
            self.feature_size = self.preprocessor.n_mfcc
Anthony Larcher's avatar
Anthony Larcher committed
423

Anthony Larcher's avatar
xv    
Anthony Larcher committed
424
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
425
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
426
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
427
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
428
429
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
430
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
431
432
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
433
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
434
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
435
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
436
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
437
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
438
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
439
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
440
441
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
442
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
443
            self.stat_pooling_weight_decay = 0
Anthony Larcher's avatar
xv    
Anthony Larcher committed
444
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
445
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
446
447
            ]))

448
449
            self.embedding_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
450
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
451
452
453
454
455
                self.after_speaker_embedding = ArcMarginProduct(512,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)
Anthony Larcher's avatar
Anthony Larcher committed
456
457
458
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
459
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
460
461
462
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
463
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
464
465
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
466

Anthony Larcher's avatar
debug    
Anthony Larcher committed
467
468
469
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002
470
            self.embedding_size = 512
Anthony Larcher's avatar
Anthony Larcher committed
471

Anthony Larcher's avatar
Anthony Larcher committed
472
        elif model_archi == "resnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
473

Anthony Larcher's avatar
Anthony Larcher committed
474
            self.preprocessor = MfccFrontEnd()
Anthony Larcher's avatar
Anthony Larcher committed
475
476
477
478
479
480
481
482
            self.sequence_network = PreResNet34()

            self.before_speaker_embedding = torch.nn.Linear(in_features = 5120,
                                                            out_features = 256)

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

483
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
484

485
            self.loss = "aam"
Anthony Larcher's avatar
Anthony Larcher committed
486
487
488
            self.after_speaker_embedding = ArcMarginProduct(256,
                                                            int(self.speaker_number),
                                                            s = 30.0,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
489
                                                            m = 0.20,
Anthony Larcher's avatar
Anthony Larcher committed
490
                                                            easy_margin = True)
Anthony Larcher's avatar
Anthony Larcher committed
491
492
493
494
495
496
497

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
498
        elif model_archi == "fastresnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
499

Anthony Larcher's avatar
Anthony Larcher committed
500
            self.preprocessor = MfccFrontEnd()
Anthony Larcher's avatar
Anthony Larcher committed
501
            self.sequence_network = PreFastResNet34()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
502
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
503

Anthony Larcher's avatar
Anthony Larcher committed
504
            self.before_speaker_embedding = torch.nn.Linear(in_features = 2560,
Anthony Larcher's avatar
Anthony Larcher committed
505
                                                            out_features = self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
506
507
508
509
510

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

            self.loss = "aam"
Anthony Larcher's avatar
debug    
Anthony Larcher committed
511
            self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
Anthony Larcher's avatar
Anthony Larcher committed
512
                                                            int(self.speaker_number),
Anthony Larcher's avatar
debug    
Anthony Larcher committed
513
514
                                                            s = 30,
                                                            m = 0.2,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
515
                                                            easy_margin = False)
Anthony Larcher's avatar
Anthony Larcher committed
516
517
518
519
520
521

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00
Anthony Larcher's avatar
Anthony Larcher committed
522

Anthony Larcher's avatar
Anthony Larcher committed
523
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
524
525
526
527
528
529

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
530
531
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
532
533
534
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
535
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
536
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
537
538
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
556
557
558
559
560
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
561
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
562
563
564
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
565

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
566
567
568
569
570
571
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
572
        else:
Anthony Larcher's avatar
Anthony Larcher committed
573
574
            is_first_resblock = True

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
575
576
577
578
579
580
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
581

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
582
            self.loss = cfg["training"]["loss"]
Anthony Larcher's avatar
Anthony Larcher committed
583
            if self.loss == "aam":
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
584
585
                self.aam_margin = cfg["training"]["aam_margin"]
                self.aam_s = cfg["training"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
586

Anthony Larcher's avatar
Anthony Larcher committed
587
588
589
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
590
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
591
592
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
593
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
594
595
596
597
598
599
600
601
602
603
604
605
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
606
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
607
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
608
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
609
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
610
611
612
613
614
615
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
616
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
617
618

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
619
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
620
            """
Anthony Larcher's avatar
Anthony Larcher committed
621
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
622
623
624
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
640
641
642
643
644
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

Anthony Larcher's avatar
Anthony Larcher committed
645
646
647
648
649
                elif k.startswith("conv2D"):
                    segmental_layers.append((k, torch.nn.Conv2d(in_channels=1,
                                                                out_channels=entry_conv_out_channels,
                                                                kernel_size=entry_conv_kernel_size,
                                                                padding=3,
Anthony Larcher's avatar
Anthony Larcher committed
650
                                                                stride=1)))
Anthony Larcher's avatar
Anthony Larcher committed
651

Anthony Larcher's avatar
Anthony Larcher committed
652
                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
653
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
654
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
655
656
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
657
658
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
659
660
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
661
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
662
663
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
664
665
666
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
667
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
668
669
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
670
671
672
673
674
675
                elif k.startswith('resblock'):
                    segmental_layers.append((ResBlock(cfg["segmental"][k]["input_channel"],
                                                      cfg["segmental"][k]["output_channel"],
                                                      is_first_resblock)))
                    is_first_resblock = False

Anthony Larcher's avatar
Anthony Larcher committed
676
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
677
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
678

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
679
680
681
682
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
683
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
684
685
686
687
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
688
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
689

Anthony Larcher's avatar
Anthony Larcher committed
690
691
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
692
            """
Anthony Larcher's avatar
Anthony Larcher committed
693
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
694
            """
Anthony Larcher's avatar
Anthony Larcher committed
695
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
696
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
697
698
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
699
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
700
701
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
702
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
703
704
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
705
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
706
707

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
708
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
709

Anthony Larcher's avatar
Anthony Larcher committed
710
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
711
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
712
713

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
714
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
715

Anthony Larcher's avatar
Anthony Larcher committed
716
            self.embedding_size = input_size
Anthony Larcher's avatar
Anthony Larcher committed
717
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
718
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
719

Anthony Larcher's avatar
Anthony Larcher committed
720
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
721
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
722
723
724
725
726
727
728
729
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
730
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
731
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
732

Anthony Larcher's avatar
Anthony Larcher committed
733
734
735
736
737
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
738

Anthony Larcher's avatar
Anthony Larcher committed
739
740
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
741

Anthony Larcher's avatar
Anthony Larcher committed
742
743
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
744

Anthony Larcher's avatar
Anthony Larcher committed
745
746
747
748
749
750
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
751
752
753
754
755
756
757
                self.norm_embedding = True
                self.after_speaker_embedding = ArcMarginProduct(input_size,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)

Anthony Larcher's avatar
arcface    
Anthony Larcher committed
758
759
760
761
                #self.after_speaker_embedding = ArcLinear(input_size,
                #                                         self.speaker_number,
                #                                         margin=self.aam_margin,
                #                                         s=self.aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
762
763
764
765
                #self.after_speaker_embedding = ArcFace(embedding_size=input_size,
                #                                       classnum=self.speaker_number,
                #                                       s=64.,
                #                                       m=0.5)
Anthony Larcher's avatar
Anthony Larcher committed
766

Anthony Larcher's avatar
Anthony Larcher committed
767
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
768

Anthony Larcher's avatar
Anthony Larcher committed
769

770
    def forward(self, x, is_eval=False, target=None, extract_after_pooling=False):
771
772
773
        """

        :param x:
774
        :param is_eval: False for training
775
776
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
777
778
779
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
780
        x = self.sequence_network(x)
781

Anthony Larcher's avatar
Anthony Larcher committed
782
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
783
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
784

785
786
787
        if extract_after_pooling:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
788
        x = self.before_speaker_embedding(x)
789

Anthony Larcher's avatar
Anthony Larcher committed
790
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
791
            #x_norm = x.norm(p=2,dim=1, keepdim=True) / 10. # Why  10. ?
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
792
793
794
            #x_norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True, out=None, dtype=None)
            #x = torch.div(x, x_norm)
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
795

Anthony Larcher's avatar
Anthony Larcher committed
796
        if self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
797
            if is_eval:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
798
                return x
Anthony Larcher's avatar
debug    
Anthony Larcher committed
799
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
800
                return self.after_speaker_embedding(x), x
Anthony Larcher's avatar
Anthony Larcher committed
801

Anthony Larcher's avatar
Anthony Larcher committed
802
        elif self.loss == "aam":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
803
804
            if is_eval:
                x = torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
805
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
806
                x = self.after_speaker_embedding(torch.nn.functional.normalize(x, dim=1), target=target), torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
807

Anthony Larcher's avatar
Anthony Larcher committed
808
        return x
Anthony Larcher's avatar
Anthony Larcher committed
809

810
811
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
812
813
814
815
816
817
818
819
820
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
821

Anthony Larcher's avatar
Anthony Larcher committed
822
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
823
           dataset_yaml,
Anthony Larcher's avatar
Anthony Larcher committed
824
825
           epochs=None,
           lr=None,
Anthony Larcher's avatar
Anthony Larcher committed
826
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
827
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
828
829
830
831
           loss=None,
           aam_margin=None,
           aam_s=None,
           patience=None,
Anthony Larcher's avatar
Anthony Larcher committed
832
           tmp_model_name=None,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
833
           best_model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
834
           multi_gpu=True,
Anthony Larcher's avatar
Anthony Larcher committed
835
           mixed_precision=False,
836
           clipping=False,
Anthony Larcher's avatar
Anthony Larcher committed
837
           opt=None,
Anthony Larcher's avatar
Anthony Larcher committed
838
839
           reset_parts=[],
           freeze_parts=[],
Anthony Larcher's avatar
Anthony Larcher committed
840
841
842
843
           num_thread=None,
           write_batches_to_disk=False,
           load_batches_from_disk=False,
           tmp_batch_dir=None):
844
845
    """

Anthony Larcher's avatar
Anthony Larcher committed
846
847
848
849
850
851
    :param speaker_number:
    :param dataset_yaml:
    :param epochs:
    :param lr:
    :param model_yaml:
    :param model_name:
Anthony Larcher's avatar
Anthony Larcher committed
852
853
854
855
    :param loss:
    :param aam_margin:
    :param aam_s:
    :param patience:
Anthony Larcher's avatar
Anthony Larcher committed
856
857
858
859
    :param tmp_model_name:
    :param best_model_name:
    :param multi_gpu:
    :param clipping:
Anthony Larcher's avatar
Anthony Larcher committed
860
861
862
    :param opt:
    :param reset_parts:
    :param freeze_parts:
Anthony Larcher's avatar
Anthony Larcher committed
863
    :param num_thread:
864
865
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
866
867
868
869
    # Add for tensorboard
    # Writer will output to ./runs/ directory by default
    #writer = SummaryWriter("runs/xvectors_experiments_2")
    writer = None
Anthony Larcher's avatar
Anthony Larcher committed
870

Anthony Larcher's avatar
Anthony Larcher committed
871
872
873
    if write_batches_to_disk:
        load_batches_from_disk = True

Anthony Larcher's avatar
Anthony Larcher committed
874
    if num_thread is None:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
875
876
        import multiprocessing

Anthony Larcher's avatar
Anthony Larcher committed
877
878
        num_thread = multiprocessing.cpu_count()

Anthony Larcher's avatar
Anthony Larcher committed
879
    logging.critical(f"Use {num_thread} cpus")
Anthony Larcher's avatar
Anthony Larcher committed
880
    logging.critical(f"Start process at {time.strftime('%H:%M:%S', time.localtime())}")
881

Anthony Larcher's avatar
Anthony Larcher committed
882
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Anthony Larcher's avatar
Anthony Larcher committed
883
    # Start from scratch
Anthony Larcher's avatar
Anthony Larcher committed
884
    if model_name is None and model_yaml in ["xvector", "rawnet2", "resnet34", "fastresnet34"]:
Anthony Larcher's avatar
Anthony Larcher committed
885
        # Initialize a first model
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
886
        if model_yaml == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
887
            model = Xtractor(speaker_number, "xvector", loss=loss)
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
888
        elif model_yaml == "rawnet2":
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
889
            model = Xtractor(speaker_number, "rawnet2")
890
891
        elif model_yaml == "resnet34":
            model = Xtractor(speaker_number, "resnet34")
Anthony Larcher's avatar
Anthony Larcher committed
892
893
        elif model_yaml == "fastresnet34":
            model = Xtractor(speaker_number, "fastresnet34")
Anthony Larcher's avatar
Anthony Larcher committed
894
        model_archi = model_yaml
Anthony Larcher's avatar
Anthony Larcher committed
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
    else:
        with open(model_yaml, 'r') as fh:
            model_archi = yaml.load(fh, Loader=yaml.FullLoader)
            if epochs is None:
                epochs = model_archi["training"]["epochs"]
            if patience is None:
                patience = model_archi["training"]["patience"]
            if opt is None:
                opt = model_archi["training"]["opt"]
            if lr is None:
                lr = model_archi["training"]["lr"]
            if loss is None:
                loss = model_archi["training"]["loss"]
            if aam_margin is None and model_archi["training"]["loss"] == "aam":
                aam_margin = model_archi["training"]["aam_margin"]
            if aam_s is None and model_archi["training"]["loss"] == "aam":
                aam_s = model_archi["training"]["aam_s"]
            if tmp_model_name is None:
                tmp_model_name = model_archi["training"]["tmp_model_name"]
            if best_model_name is None:
                best_model_name = model_archi["training"]["best_model_name"]
            if multi_gpu is None:
                multi_gpu = model_archi["training"]["multi_gpu"]
            if clipping is None:
                clipping = model_archi["training"]["clipping"]

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
921
        if model_name is None:
Anthony Larcher's avatar
Anthony Larcher committed
922
923
924
            model = Xtractor(speaker_number, model_yaml)

         # If we start from an existing model
Anthony Larcher's avatar
Anthony Larcher committed
925
        else:
Anthony Larcher's avatar
Anthony Larcher committed
926
927
928
            # Load the model
            logging.critical(f"*** Load model from = {model_name}")
            checkpoint = torch.load(model_name)
Anthony Larcher's avatar
Anthony Larcher committed
929
            model = Xtractor(speaker_number, model_yaml)
Anthony Larcher's avatar
Anthony Larcher committed
930

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
931
932
            """
            Here we remove all layers that we don't want to reload
Anthony Larcher's avatar
Anthony Larcher committed
933
        
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
934
935
936
937
938
939
940
941
942
943
944
945
946
            """
            pretrained_dict = checkpoint["model_state_dict"]
            for part in reset_parts:
                pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

            new_model_dict = model.state_dict()
            new_model_dict.update(pretrained_dict)
            model.load_state_dict(new_model_dict)

        # Freeze required layers
        for name, param in model.named_parameters():
            if name.split(".")[0] in freeze_parts:
                param.requires_grad = False
Anthony Larcher's avatar
Anthony Larcher committed
947

Anthony Larcher's avatar
Anthony Larcher committed
948
949
950
951
    logging.critical(model)

    logging.critical("model_parameters_count: {:d}".format(
        sum(p.numel()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
952
953
954
955
            for p in model.sequence_network.parameters()
            if p.requires_grad) + \
        sum(p.numel()
            for p in model.before_speaker_embedding.parameters()
Anthony Larcher's avatar
Anthony Larcher committed
956
957
            if p.requires_grad)))

Anthony Larcher's avatar
Anthony Larcher committed
958
    embedding_size = model.embedding_size
Anthony Larcher's avatar
Anthony Larcher committed
959

Anthony Larcher's avatar
Anthony Larcher committed
960
    if torch.cuda.device_count() > 1 and multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
961
962
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)
Anthony Larcher's avatar
Anthony Larcher committed
963
        #model = DDP(model)
Anthony Larcher's avatar
Anthony Larcher committed
964
965
    else:
        print("Train on a single GPU")
Anthony Larcher's avatar
Anthony Larcher committed
966
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
967

Anthony Larcher's avatar
debug    
Anthony Larcher committed
968
969
970
971
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])

Anthony Larcher's avatar
Anthony Larcher committed
972
973
974
    if load_batches_from_disk:
        train_batch_fn_format = tmp_batch_dir + "/train/train_{}_batch.h5"
        val_batch_fn_format = tmp_batch_dir + "/val/val_{}_batch.h5"
975

Anthony Larcher's avatar
Anthony Larcher committed
976
977
978
979
980
981
982
    if not load_batches_from_disk or write_batches_to_disk:
        """
        Set the dataloaders according to the dataset_yaml
        
        First we load the dataframe from CSV file in order to split it for training and validation purpose
        Then we provide those two 
        """
Anthony Larcher's avatar
Anthony Larcher committed
983

Anthony Larcher's avatar
minor    
Anthony Larcher committed
984
        if write_batches_to_disk or dataset_params["batch_size"] > 1:
Anthony Larcher's avatar
Anthony Larcher committed
985
986
987
988
            output_format = "numpy"
        else:
            output_format = "pytorch"

Anthony Larcher's avatar
Anthony Larcher committed
989
990
        training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"])
        torch.manual_seed(dataset_params['seed'])
Anthony Larcher's avatar
Anthony Larcher committed
991
992
993
994
995
996
997
998
999
1000
        #training_set = SpkSet(dataset_yaml,
        #                      set_type="train",
        #                      dataset_df=training_df,
        #                      overlap=dataset_params['train']['overlap'],
        #                      output_format=output_format,
        #                      windowed=True)

        training_set = SideSet(dataset_yaml,
                               set_type="train",
                               chunk_per_segment=-1,
For faster browsing, not all history is shown. View entire blame