xvector.py 92.4 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
25
Copyright 2014-2021 Anthony Larcher, Yevhenii Prokopalo
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28

Anthony Larcher's avatar
Anthony Larcher committed
29
import logging
Anthony Larcher's avatar
debug    
Anthony Larcher committed
30
import math
Anthony Larcher's avatar
Anthony Larcher committed
31
import os
Anthony Larcher's avatar
Anthony Larcher committed
32
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
33
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
34
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
35
import shutil
Anthony Larcher's avatar
Anthony Larcher committed
36
import tabulate
37
import time
Anthony Larcher's avatar
Anthony Larcher committed
38
import torch
Anthony Larcher's avatar
debug    
Anthony Larcher committed
39
import torchaudio
Anthony Larcher's avatar
Anthony Larcher committed
40
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
41
42
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
43
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
44
45
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
46
47
48
from .pooling import MeanStdPooling
from .pooling import AttentivePooling
from .pooling import GruPooling
Anthony Larcher's avatar
Anthony Larcher committed
49
50
51
from .preprocessor import MfccFrontEnd
from .preprocessor import MelSpecFrontEnd
from .preprocessor import RawPreprocessor
Anthony Larcher's avatar
Anthony Larcher committed
52
from .xsets import SideSet
Anthony Larcher's avatar
Anthony Larcher committed
53
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
54
from .xsets import IdMapSetPerSpeaker
Anthony Larcher's avatar
Anthony Larcher committed
55
from .xsets import SideSampler
Anthony Larcher's avatar
Anthony Larcher committed
56
57
58
59
from .res_net import ResBlockWFMS
from .res_net import ResBlock
from .res_net import PreResNet34
from .res_net import PreFastResNet34
Anthony Larcher's avatar
Anthony Larcher committed
60
from ..bosaris import IdMap
Anthony Larcher's avatar
Anthony Larcher committed
61
62
from ..bosaris import Key
from ..bosaris import Ndx
Anthony Larcher's avatar
Anthony Larcher committed
63
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
64
from ..iv_scoring import cosine_scoring
Anthony Larcher's avatar
Anthony Larcher committed
65
from .sincnet import SincNet
Anthony Larcher's avatar
merge    
Anthony Larcher committed
66
from ..bosaris.detplot import rocch, rocch2eer
Anthony Larcher's avatar
merge    
Anthony Larcher committed
67
from .loss import SoftmaxAngularProto, ArcLinear
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
68
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
69
from .loss import ArcMarginProduct
Anthony Larcher's avatar
Anthony Larcher committed
70

Anthony Larcher's avatar
Anthony Larcher committed
71

Anthony Larcher's avatar
Anthony Larcher committed
72
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
73

Anthony Larcher's avatar
Anthony Larcher committed
74
75
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
76
__copyright__ = "Copyright 2015-2021 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
77
78
79
80
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
81
82


Anthony Larcher's avatar
Anthony Larcher committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
def eer(negatives, positives):
    """Logarithmic complexity EER computation

    Args:
        negative_scores (numpy array): impostor scores
        positive_scores (numpy array): genuine scores

    Returns:
        float: Equal Error Rate (EER)
    """

    positives = numpy.sort(positives)
    negatives = numpy.sort(negatives)[::-1]

    pos_count = positives.shape[0]
    neg_count = negatives.shape[0]

    p_score = positives[0]
    n_score = negatives[0]

    p_index = 0
    n_index = 0

    next_p_jump = pos_count//2
    next_n_jump = neg_count//2

    kdx = 0
    while True:
        kdx += 1
        if p_index < 0 or n_index < 0:
            return 0
        if p_index > pos_count or n_index > neg_count:
            return 100
        if p_score < n_score:
            p_index = p_index + next_p_jump
            n_index = n_index + next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break
        elif p_score >= n_score:
            p_index = p_index - next_p_jump
            n_index = n_index - next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break

        p_score = positives[p_index]
        n_score = negatives[n_index]
        next_p_jump = next_p_jump//2
        next_n_jump = next_n_jump//2

    eer_predicate = 100

    tfr = (abs(p_index))/pos_count
    tfa = (1+abs(n_index))/neg_count
    if (p_score == n_score and tfr == tfa):
        return tfr

    while positives[p_index] < negatives[n_index]:
        if p_index < pos_count - 1:
            p_index += 1
        elif n_index < neg_count - 1:
            n_index += 1
        else:
            break

    while positives[p_index] > negatives[n_index] and n_index >= 1:
        n_index -= 1

    tfr = (1+p_index)/pos_count
    tfa = (1+n_index)/neg_count

    while tfa > tfr:
        p_index += 1
        while positives[p_index] > negatives[n_index] and n_index >= 1:
            n_index -= 1
        tfr = (1+p_index)/pos_count
        tfa = (1+n_index)/neg_count

    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    tfr = p_index/pos_count
    tfa = (1+n_index)/neg_count
    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    while True:
        while negatives[n_index + 1] <= positives[p_index - 1]:
            p_index -= 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer
        while negatives[n_index + 1] > positives[p_index - 1]:
            n_index += 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer

    return eer


Anthony Larcher's avatar
debug    
Anthony Larcher committed
197
198
def test_metrics(model,
                 device,
Anthony Larcher's avatar
Anthony Larcher committed
199
200
                 num_thread,
                 mixed_precision):
Anthony Larcher's avatar
Anthony Larcher committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
Anthony Larcher's avatar
Anthony Larcher committed
217

Anthony Larcher's avatar
Anthony Larcher committed
218
219
220
221
    idmap_test_filename = '/lium/raid01_c/larcher/data/allies_dev_verif_idmap.h5'
    ndx_test_filename = '/lium/raid01_c/larcher/data/allies_dev_verif_ndx.h5'
    key_test_filename = '/lium/raid01_c/larcher/data/allies_dev_verif_key.h5'
    data_root_name='/lium/corpus/base/ALLIES/wav'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
222

223
    transform_pipeline = dict()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
224
225
226
227
228

    xv_stat = extract_embeddings(idmap_name=idmap_test_filename,
                                 model_filename=model,
                                 data_root_name=data_root_name,
                                 device=device,
Anthony Larcher's avatar
Anthony Larcher committed
229
                                 loss="aam",
Anthony Larcher's avatar
Anthony Larcher committed
230
231
                                 transform_pipeline=transform_pipeline,
                                 num_thread=num_thread,
Anthony Larcher's avatar
Anthony Larcher committed
232
                                 mixed_precision=mixed_precision)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
233

Anthony Larcher's avatar
merge    
Anthony Larcher committed
234
235
236
237
238
239
240
    tar, non = cosine_scoring(xv_stat,
                              xv_stat,
                              Ndx(ndx_test_filename),
                              wccn=None,
                              check_missing=True,
                              device=device
                              ).get_tar_non(Key(key_test_filename))
Anthony Larcher's avatar
debug    
Anthony Larcher committed
241

Anthony Larcher's avatar
merge    
Anthony Larcher committed
242
243
244
245
    #test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))
    pmiss, pfa = rocch(tar, non)

    return rocch2eer(pmiss, pfa)
Anthony Larcher's avatar
Anthony Larcher committed
246

Anthony Larcher's avatar
Anthony Larcher committed
247
def new_test_metrics(model,
Anthony Larcher's avatar
Anthony Larcher committed
248
                     device,
Anthony Larcher's avatar
Anthony Larcher committed
249
                     model_opts,
Anthony Larcher's avatar
Anthony Larcher committed
250
251
                     data_opts,
                     train_opts):
Anthony Larcher's avatar
Anthony Larcher committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
    transform_pipeline = dict()

Anthony Larcher's avatar
Anthony Larcher committed
270
    xv_stat = extract_embeddings(idmap_name=data_opts["test"]["idmap"],
Anthony Larcher's avatar
Anthony Larcher committed
271
                                 model_filename=model,
Anthony Larcher's avatar
Anthony Larcher committed
272
                                 data_root_name=data_opts["test"]["data_path"],
Anthony Larcher's avatar
Anthony Larcher committed
273
                                 device=device,
Anthony Larcher's avatar
Anthony Larcher committed
274
                                 loss=model_opts["loss"]["type"],
Anthony Larcher's avatar
Anthony Larcher committed
275
                                 transform_pipeline=transform_pipeline,
Anthony Larcher's avatar
Anthony Larcher committed
276
                                 num_thread=train_opts["num_cpu"],
Anthony Larcher's avatar
Anthony Larcher committed
277
278
279
280
                                 mixed_precision=train_opts["mixed_precision"])

    tar, non = cosine_scoring(xv_stat,
                              xv_stat,
Anthony Larcher's avatar
Anthony Larcher committed
281
                              Ndx(data_opts["test"]["ndx"]),
Anthony Larcher's avatar
Anthony Larcher committed
282
283
284
                              wccn=None,
                              check_missing=True,
                              device=device
Anthony Larcher's avatar
Anthony Larcher committed
285
                              ).get_tar_non(Key(data_opts["test"]["key"]))
Anthony Larcher's avatar
Anthony Larcher committed
286
287
288
289
290
291

    #test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))
    pmiss, pfa = rocch(tar, non)

    return rocch2eer(pmiss, pfa)

Anthony Larcher's avatar
Anthony Larcher committed
292

Anthony Larcher's avatar
Anthony Larcher committed
293
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
294
295
296
297
298
299
300
301
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
302
303
304
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
305

Anthony Larcher's avatar
Anthony Larcher committed
306

Anthony Larcher's avatar
Anthony Larcher committed
307
class TrainingMonitor():
Anthony Larcher's avatar
Anthony Larcher committed
308
    """
Anthony Larcher's avatar
Anthony Larcher committed
309

Anthony Larcher's avatar
Anthony Larcher committed
310
    """
Anthony Larcher's avatar
Anthony Larcher committed
311
    def __init__(self,
Anthony Larcher's avatar
Anthony Larcher committed
312
                 output_file,
Anthony Larcher's avatar
Anthony Larcher committed
313
                 log_interval=10,
Anthony Larcher's avatar
Anthony Larcher committed
314
315
                 patience=numpy.inf,
                 best_accuracy=0.0,
Anthony Larcher's avatar
Anthony Larcher committed
316
                 best_eer_epoch=1,
Anthony Larcher's avatar
Anthony Larcher committed
317
318
319
                 best_eer=100,
                 compute_test_eer=False
                 ):
Anthony Larcher's avatar
Anthony Larcher committed
320

Anthony Larcher's avatar
Anthony Larcher committed
321
        self.current_epoch = 0
Anthony Larcher's avatar
Anthony Larcher committed
322
        self.log_interval = log_interval
Anthony Larcher's avatar
Anthony Larcher committed
323
324
325
        self.init_patience = patience
        self.current_patience = patience
        self.best_accuracy = best_accuracy
Anthony Larcher's avatar
Anthony Larcher committed
326
        self.best_eer_epoch = best_eer_epoch
Anthony Larcher's avatar
Anthony Larcher committed
327
        self.best_eer = best_eer
Anthony Larcher's avatar
Anthony Larcher committed
328
        self.compute_test_eer = compute_test_eer
Anthony Larcher's avatar
Anthony Larcher committed
329
        self.test_eer = []
Anthony Larcher's avatar
Anthony Larcher committed
330
331
332
333

        self.training_loss = []
        self.training_acc = []

Anthony Larcher's avatar
Anthony Larcher committed
334
335
        self.val_loss = []
        self.val_acc = []
Anthony Larcher's avatar
Anthony Larcher committed
336
337
        self.val_eer = []

Anthony Larcher's avatar
Anthony Larcher committed
338
339
        self.is_best = True

Anthony Larcher's avatar
Anthony Larcher committed
340
        # Initialize the logger
Anthony Larcher's avatar
Anthony Larcher committed
341
        logging_format = '%(asctime)-15s %(message)s'
Anthony Larcher's avatar
Anthony Larcher committed
342
        logging.basicConfig(level=logging.DEBUG, format=logging_format, datefmt='%m-%d %H:%M')
Anthony Larcher's avatar
Anthony Larcher committed
343
344
        self.logger = logging.getLogger('Monitoring')
        self.logger.setLevel(logging.DEBUG)
Anthony Larcher's avatar
Anthony Larcher committed
345
346
        # create file handler which logs even debug messages
        fh = logging.FileHandler(output_file)
Anthony Larcher's avatar
Anthony Larcher committed
347
348
        formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
        fh.setFormatter(formatter)
Anthony Larcher's avatar
Anthony Larcher committed
349
        fh.setLevel(logging.DEBUG)
Anthony Larcher's avatar
Anthony Larcher committed
350
        self.logger.addHandler(fh)
Anthony Larcher's avatar
Anthony Larcher committed
351

Anthony Larcher's avatar
Anthony Larcher committed
352
353
354
355
356
357
    def display(self):
        """

        :return:
        """
        # TODO
Anthony Larcher's avatar
Anthony Larcher committed
358
359
        self.logger.critical(f"***Validation metrics - Cross validation accuracy = {self.val_acc[-1]} %, EER = {self.val_eer[-1] * 100} %")
        self.logger.critical(f"***Test metrics - Test EER = {self.test_eer[-1] * 100} %")
Anthony Larcher's avatar
Anthony Larcher committed
360
361
362
363
364
365

    def display_final(self):
        """

        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
366
        self.logger.critical(f"Best accuracy {self.best_accuracy * 100.} obtained at epoch {self.best_accuracy_epoch}")
Anthony Larcher's avatar
Anthony Larcher committed
367
368

    def update(self,
Anthony Larcher's avatar
Anthony Larcher committed
369
               epoch=None,
Anthony Larcher's avatar
Anthony Larcher committed
370
371
               training_acc=None,
               training_loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
372
373
374
375
376
               test_eer=None,
               val_eer=None,
               val_loss=None,
               val_acc=None):

Anthony Larcher's avatar
Anthony Larcher committed
377
378
379
        if epoch is not None:
            self.current_epoch = epoch
        if training_acc is not None:
Anthony Larcher's avatar
Anthony Larcher committed
380
            self.training_acc.append(training_acc)
Anthony Larcher's avatar
Anthony Larcher committed
381
        if training_loss is not None:
Anthony Larcher's avatar
Anthony Larcher committed
382
            self.training_loss.append(training_loss)
Anthony Larcher's avatar
Anthony Larcher committed
383
        if val_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
384
            self.val_eer.append(val_eer)
Anthony Larcher's avatar
Anthony Larcher committed
385
        if val_loss is not None:
Anthony Larcher's avatar
Anthony Larcher committed
386
            self.val_loss.append(val_loss)
Anthony Larcher's avatar
Anthony Larcher committed
387
        if val_acc is not None:
Anthony Larcher's avatar
Anthony Larcher committed
388
            self.val_acc.append(val_acc)
Anthony Larcher's avatar
Anthony Larcher committed
389
390

        # remember best accuracy and save checkpoint
Anthony Larcher's avatar
Anthony Larcher committed
391
        if self.compute_test_eer and test_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
392
393
394
            self.test_eer.append(test_eer)
            self.is_best = test_eer < self.best_eer
            self.best_eer = min(test_eer, self.best_eer)
Anthony Larcher's avatar
Anthony Larcher committed
395
396
397
398
399
            if self.is_best:
                self.best_eer_epoch = epoch
                self.current_patience = self.init_patience
            else:
                self.current_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
400
        elif val_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
401
402
            self.is_best = val_eer < self.best_eer
            self.best_eer = min(val_eer, self.best_eer)
Anthony Larcher's avatar
Anthony Larcher committed
403
404
405
406
407
            if self.is_best:
                self.best_eer_epoch = epoch
                self.current_patience = self.init_patience
            else:
                self.current_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
408
409


Anthony Larcher's avatar
Anthony Larcher committed
410
class Xtractor(torch.nn.Module):
411
412
413
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
414

Anthony Larcher's avatar
Anthony Larcher committed
415
416
417
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
418
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
419
                 norm_embedding=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
420
421
                 aam_margin=0.2,
                 aam_s=30):
Anthony Larcher's avatar
Anthony Larcher committed
422
423
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
424
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
425
        """
Anthony Larcher's avatar
Anthony Larcher committed
426
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
427
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
428
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
429
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
430

Anthony Larcher's avatar
Anthony Larcher committed
431
432
        print(f"Speaker number : {self.speaker_number}")

Anthony Larcher's avatar
Anthony Larcher committed
433
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
434

Anthony Larcher's avatar
Anthony Larcher committed
435
436
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
437
438
439
440
441
            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
442
443
            self.activation = torch.nn.LeakyReLU(0.2)

Anthony Larcher's avatar
Anthony Larcher committed
444
            self.preprocessor = MfccFrontEnd()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
445
            self.feature_size = self.preprocessor.n_mfcc
Anthony Larcher's avatar
Anthony Larcher committed
446

Anthony Larcher's avatar
xv    
Anthony Larcher committed
447
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
448
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
449
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
450
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
451
452
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
453
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
454
455
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
456
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
457
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
458
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
459
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
460
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
461
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
462
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
463
464
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
465
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
466
            self.stat_pooling_weight_decay = 0
Anthony Larcher's avatar
xv    
Anthony Larcher committed
467
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
468
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
469
470
            ]))

471
472
            self.embedding_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
473
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
474
475
476
477
478
                self.after_speaker_embedding = ArcMarginProduct(512,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)
Anthony Larcher's avatar
Anthony Larcher committed
479
480
481
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
482
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
483
484
485
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
486
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
487
488
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
489

490
            self.preprocessor_weight_decay = 0.0002
Anthony Larcher's avatar
debug    
Anthony Larcher committed
491
492
493
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002
494
            self.embedding_size = 512
Anthony Larcher's avatar
Anthony Larcher committed
495

Anthony Larcher's avatar
Anthony Larcher committed
496
        elif model_archi == "resnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
497

Anthony Larcher's avatar
Anthony Larcher committed
498
            self.preprocessor = MelSpecFrontEnd(n_mels=80)
Anthony Larcher's avatar
Anthony Larcher committed
499
            self.sequence_network = PreResNet34()
Anthony Larcher's avatar
Anthony Larcher committed
500
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
501

Anthony Larcher's avatar
Anthony Larcher committed
502
503
            self.before_speaker_embedding = torch.nn.Linear(in_features=5120,
                                                            out_features=self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
504
505
506
507

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

508
            self.loss = "aam"
Anthony Larcher's avatar
Anthony Larcher committed
509
            self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
Anthony Larcher's avatar
Anthony Larcher committed
510
511
                                                            int(self.speaker_number),
                                                            s = 30.0,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
512
                                                            m = 0.20,
Anthony Larcher's avatar
Anthony Larcher committed
513
                                                            easy_margin = False)
Anthony Larcher's avatar
Anthony Larcher committed
514
515
516
517
518
519
520

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
521
        elif model_archi == "fastresnet34":
Anthony Larcher's avatar
Anthony Larcher committed
522
            self.preprocessor = MelSpecFrontEnd()
Anthony Larcher's avatar
Anthony Larcher committed
523
            self.sequence_network = PreFastResNet34()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
524
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
525

Anthony Larcher's avatar
Anthony Larcher committed
526
            self.before_speaker_embedding = torch.nn.Linear(in_features = 2560,
Anthony Larcher's avatar
Anthony Larcher committed
527
                                                            out_features = self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
528
529
530
531

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

Anthony Larcher's avatar
merge    
Anthony Larcher committed
532
533
534
535
            self.loss = loss
            if self.loss == "aam":
                self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
                                                                int(self.speaker_number),
Anthony Larcher's avatar
merge    
Anthony Larcher committed
536
537
                                                                s = 30,
                                                                m = 0.2,
Anthony Larcher's avatar
merge    
Anthony Larcher committed
538
539
540
541
                                                                easy_margin = False)

            elif self.loss == 'aps':
                self.after_speaker_embedding = SoftmaxAngularProto(int(self.speaker_number))
Anthony Larcher's avatar
Anthony Larcher committed
542

Anthony Larcher's avatar
Anthony Larcher committed
543
544
545
546
547
            self.preprocessor_weight_decay = 0.00002
            self.sequence_network_weight_decay = 0.00002
            self.stat_pooling_weight_decay = 0.00002
            self.before_speaker_embedding_weight_decay = 0.00002
            self.after_speaker_embedding_weight_decay = 0.0002
Anthony Larcher's avatar
Anthony Larcher committed
548

Anthony Larcher's avatar
Anthony Larcher committed
549
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
550
551
552
553
554
555

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
556
557
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
558
559
560
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
561
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
562
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
563
564
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
582
583
584
585
586
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
587
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
588
589
590
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
591

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
592
593
594
595
596
597
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
598
        else:
Anthony Larcher's avatar
Anthony Larcher committed
599
600
            is_first_resblock = True

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
601
602
603
604
605
606
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
607

Anthony Larcher's avatar
Anthony Larcher committed
608
            self.loss = cfg["loss"]["type"]
Anthony Larcher's avatar
Anthony Larcher committed
609
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
610
611
                self.aam_margin = cfg["loss"]["aam_margin"]
                self.aam_s = cfg["loss"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
612

Anthony Larcher's avatar
Anthony Larcher committed
613
614
615
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
616
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
617
618
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
619
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
620
621
622
623
624
625
626
627
628
629
630
631
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
632
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
633
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
634
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
635
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
636
637
638
639
640
641
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
642
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
643
644

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
645
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
646
            """
Anthony Larcher's avatar
Anthony Larcher committed
647
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
648
            if self.feature_size is None:
Anthony Larcher's avatar
Anthony Larcher committed
649
                self.feature_size = cfg["preprocessor"]["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
650

Anthony Larcher's avatar
Anthony Larcher committed
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
666
667
668
669
670
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

Anthony Larcher's avatar
Anthony Larcher committed
671
672
673
674
675
                elif k.startswith("conv2D"):
                    segmental_layers.append((k, torch.nn.Conv2d(in_channels=1,
                                                                out_channels=entry_conv_out_channels,
                                                                kernel_size=entry_conv_kernel_size,
                                                                padding=3,
Anthony Larcher's avatar
Anthony Larcher committed
676
                                                                stride=1)))
Anthony Larcher's avatar
Anthony Larcher committed
677

Anthony Larcher's avatar
Anthony Larcher committed
678
                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
679
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
680
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
681
682
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
683
684
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
685
686
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
687
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
688
689
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
690
691
692
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
693
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
694
695
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
696
697
698
699
700
701
                elif k.startswith('resblock'):
                    segmental_layers.append((ResBlock(cfg["segmental"][k]["input_channel"],
                                                      cfg["segmental"][k]["output_channel"],
                                                      is_first_resblock)))
                    is_first_resblock = False

Anthony Larcher's avatar
Anthony Larcher committed
702
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
703
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
704

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
705
706
707
708
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
709
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
710
711
712
713
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
714
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
715

Anthony Larcher's avatar
Anthony Larcher committed
716
717
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
718
            """
Anthony Larcher's avatar
Anthony Larcher committed
719
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
720
            """
Anthony Larcher's avatar
Anthony Larcher committed
721
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
722
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
723
724
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
725
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
726
727
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
728
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
729
730
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
731
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
732
733

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
734
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
735

Anthony Larcher's avatar
Anthony Larcher committed
736
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
737
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
738
739

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
740
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
741

Anthony Larcher's avatar
Anthony Larcher committed
742
            self.embedding_size = input_size
Anthony Larcher's avatar
Anthony Larcher committed
743
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
744
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
745

Anthony Larcher's avatar
Anthony Larcher committed
746
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
747
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
748
749
750
751
752
753
754
755
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
756
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
757
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
758

Anthony Larcher's avatar
Anthony Larcher committed
759
760
761
762
763
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
764

Anthony Larcher's avatar
Anthony Larcher committed
765
766
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
767

Anthony Larcher's avatar
Anthony Larcher committed
768
769
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
770

Anthony Larcher's avatar
Anthony Larcher committed
771
772
773
774
775
776
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
777
778
779
780
781
782
783
                self.norm_embedding = True
                self.after_speaker_embedding = ArcMarginProduct(input_size,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)

Anthony Larcher's avatar
Anthony Larcher committed
784
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
785

786
    def forward(self, x, is_eval=False, target=None, extract_after_pooling=False):
787
788
789
        """

        :param x:
790
        :param is_eval: False for training
791
792
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
793
        if self.preprocessor is not None:
Anthony Larcher's avatar
merge    
Anthony Larcher committed
794
            x = self.preprocessor(x, is_eval)
Anthony Larcher's avatar
Anthony Larcher committed
795

Anthony Larcher's avatar
Anthony Larcher committed
796
        x = self.sequence_network(x)
797

Anthony Larcher's avatar
Anthony Larcher committed
798
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
799
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
800

801
802
803
        if extract_after_pooling:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
804
        x = self.before_speaker_embedding(x)
805

Anthony Larcher's avatar
Anthony Larcher committed
806
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
807
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
808

Anthony Larcher's avatar
Anthony Larcher committed
809
        if self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
810
            if is_eval:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
811
                return x
Anthony Larcher's avatar
debug    
Anthony Larcher committed
812
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
813
                return self.after_speaker_embedding(x), x
Anthony Larcher's avatar
Anthony Larcher committed
814

Anthony Larcher's avatar
merge    
Anthony Larcher committed
815
        elif self.loss in ['aam', 'aps']:
Anthony Larcher's avatar
merge    
Anthony Larcher committed
816
817
818
819
820
            x = self.after_speaker_embedding(x, target=target), torch.nn.functional.normalize(x, dim=1)
        elif self.loss == 'smn':
            if not is_eval:
                x = self.after_speaker_embedding(x, target=target), x

Anthony Larcher's avatar
Anthony Larcher committed
821

Anthony Larcher's avatar
Anthony Larcher committed
822
        return x
Anthony Larcher's avatar
Anthony Larcher committed
823

824
825
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
826
827
828
829
830
831
832
833
834
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
835

Anthony Larcher's avatar
Anthony Larcher committed
836

Anthony Larcher's avatar
Anthony Larcher committed
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
def fill_dict(target_dict, source_dict, prefix = ""):
    """
    Recursively Fill a dictionary target_dict by taking values from source_dict

    :param target_dict: output dictionary that is initialized with default values
    :param source_dict: input dictionary
    :return:
    """
    for k1, v1 in target_dict.items():

        if isinstance(v1, dict):
            if k1 in source_dict and isinstance(source_dict[k1], dict):
                #print(f"\n{prefix}{k1}")
                fill_dict(v1, source_dict[k1], prefix + "\t")
                #print("\n")
            else:
                #print(f"{prefix}{k1} set to default value: {target_dict[k1]}")
                pass
        else:
            if k1 in source_dict and source_dict[k1] is not None:
                target_dict[k1] = source_dict[k1]
                #print(f"{prefix}{k1} set to: {source_dict[k1]}")
            else:
                #print(f"{prefix}{k1} set to default value: {target_dict[k1]}")
                pass


Anthony Larcher's avatar
Anthony Larcher committed
864
865
def update_training_dictionary(dataset_description,
                               model_description,
Anthony Larcher's avatar
Anthony Larcher committed
866
867
                               training_description,
                               kwargs=None):
Anthony Larcher's avatar
Anthony Larcher committed
868
869
    """

Anthony Larcher's avatar
Anthony Larcher committed
870
871
872
873
    :param dataset_description:
    :param model_description:
    :param training_description:
    :param kwargs:
Anthony Larcher's avatar
Anthony Larcher committed
874
875
876
877
878
879
    :return:
    """
    dataset_opts=dict()
    model_opts=dict()
    training_opts=dict()

Anthony Larcher's avatar
Anthony Larcher committed
880
881
882
883
884
    if isinstance(dataset_description, str) and os.path.isfile(dataset_description):
        with open(dataset_description, 'r') as fh:
            tmp_data_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_data_dict = dataset_description
Anthony Larcher's avatar
Anthony Larcher committed
885

Anthony Larcher's avatar
Anthony Larcher committed
886
887
888
889
890
    if isinstance(model_description, str) and os.path.isfile(model_description):
        with open(model_description, 'r') as fh:
            tmp_model_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_model_dict = model_description
Anthony Larcher's avatar
Anthony Larcher committed
891

Anthony Larcher's avatar
Anthony Larcher committed
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
    if isinstance(training_description, str) and os.path.isfile(training_description):
        with open(training_description, 'r') as fh:
            tmp_train_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_train_dict = training_description

    # Initialize default dictionaries
    dataset_opts["data_path"] = None
    dataset_opts["dataset_csv"] = None
    dataset_opts["data_file_extension"] = ".wav"
    dataset_opts["sample_rate"] = 16000

    dataset_opts["validation_ratio"] = 0.1
    dataset_opts["batch_size"] = 64

    dataset_opts["train"] = dict()
    dataset_opts["train"]["duration"] = 2.
    dataset_opts["train"]["chunk_per_segment"] = -1
    dataset_opts["train"]["overlap"] = 1.9
Anthony Larcher's avatar
Anthony Larcher committed
911
912
913
    dataset_opts["train"]["sampler"] = dict()
    dataset_opts["train"]["sampler"]["examples_per_speaker"] = 1
    dataset_opts["train"]["sampler"]["samples_per_speaker"] = 100
Anthony Larcher's avatar
Anthony Larcher committed
914
    dataset_opts["train"]["transform_number"] = 2
Anthony Larcher's avatar
Anthony Larcher committed
915
916
917
918
919
920
    dataset_opts["train"]["transformation"] = dict()
    dataset_opts["train"]["transformation"]["pipeline"] = ""
    dataset_opts["train"]["transformation"]["add_noise"] = dict()
    dataset_opts["train"]["transformation"]["add_noise"]["noise_db_csv"] = ""
    dataset_opts["train"]["transformation"]["add_noise"]["data_path"] = ""
    dataset_opts["train"]["transformation"]["add_reverb"] = dict()
Anthony Larcher's avatar
Anthony Larcher committed
921
    dataset_opts["train"]["transformation"]["add_reverb"]["rir_db_csv"] = ""
Anthony Larcher's avatar
Anthony Larcher committed
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
    dataset_opts["train"]["transformation"]["add_reverb"]["data_path"] = ""

    dataset_opts["valid"] = dict()
    dataset_opts["valid"]["duration"] = 2.
    dataset_opts["valid"]["transformation"] = dict()
    dataset_opts["valid"]["transformation"]["pipeline"] = ""
    dataset_opts["valid"]["transformation"]["add_noise"] = dict()
    dataset_opts["valid"]["transformation"]["add_noise"]["noise_db_csv"] = ""
    dataset_opts["valid"]["transformation"]["add_noise"]["data_path"] = ""
    dataset_opts["valid"]["transformation"]["add_reverb"] = dict()
    dataset_opts["valid"]["transformation"]["add_reverb"]["noise_db_csv"] = ""
    dataset_opts["valid"]["transformation"]["add_reverb"]["data_path"] = ""

    dataset_opts["test"] = dict()
    dataset_opts["test"]["idmap"] = ""
    dataset_opts["test"]["ndx"] = ""
    dataset_opts["test"]["key"] = ""
    dataset_opts["test"]["data_path"] =""

    # Initialize model options
    model_opts["speaker_number"] = None
    model_opts["loss"] = dict()
    model_opts["loss"]["type"] ="aam"
    model_opts["loss"]["aam_margin"] = 0.2
    model_opts["loss"]["aam_s"] = 30

    model_opts["initial_model_name"] = None
    model_opts["reset_parts"] = []
    model_opts["freeze_parts"] = []

    model_opts["model_type"] = "fastresnet"

Anthony Larcher's avatar
Anthony Larcher committed
954
955
956
    model_opts["preprocessor"] = dict()
    model_opts["preprocessor"]["type"] =  "mel_spec"
    model_opts["preprocessor"]["feature_size"] = 80
Anthony Larcher's avatar
Anthony Larcher committed
957
958
959
960

    # Initialize training options
    training_opts["log_file"] = "sidekit.log"
    training_opts["seed"] = 42
Anthony Larcher's avatar
Anthony Larcher committed
961
    training_opts["deterministic"] = False
Anthony Larcher's avatar
Anthony Larcher committed
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
    training_opts["epochs"] = 100
    training_opts["lr"] = 1e-3
    training_opts["patience"] = 50
    training_opts["multi_gpu"] = False
    training_opts["num_cpu"] = 5
    training_opts["mixed_precision"] = False
    training_opts["clipping"] = False

    training_opts["optimizer"] = dict()
    training_opts["optimizer"]["type"] = "sgd"
    training_opts["optimizer"]["options"] = None

    training_opts["scheduler"] = dict()
    training_opts["scheduler"]["type"] = "ReduceLROnPlateau"
    training_opts["scheduler"]["options"] = None

    training_opts["compute_test_eer"] = False
    training_opts["log_interval"] = 10
Anthony Larcher's avatar
Anthony Larcher committed
980
    training_opts["validation_frequency"] = 1
Anthony Larcher's avatar
Anthony Larcher committed
981
982
983
984
985
986
987
988
989
990
991
992

    training_opts["tmp_model_name"] = "tmp_model.pt"
    training_opts["best_model_name"] = "best_model.pt"
    training_opts["checkpoint_frequency"] = "10"


    # Use options from the YAML config files
    fill_dict(dataset_opts, tmp_data_dict)
    fill_dict(model_opts, tmp_model_dict)
    fill_dict(training_opts, tmp_train_dict)

    # Overwrite with manually given parameters
Anthony Larcher's avatar
Anthony Larcher committed
993
994
995
996
997
998
999
1000
    if "lr" in kwargs:
        training_opts["lr"] = kwargs['lr']
    if "batch_size" in kwargs:
        dataset_opts["batch_size"] = kwargs["batch_size"]
    if "optimizer" in kwargs:
        training_opts["optimizer"]["type"] = kwargs["optimizer"]
    if "scheduler" in kwargs:
        training_opts["scheduler"]["type"] = kwargs["scheduler"]