xvector.py 74.6 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
25
Copyright 2014-2021 Anthony Larcher, Yevhenii Prokopalo
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28

Anthony Larcher's avatar
Anthony Larcher committed
29
import logging
Anthony Larcher's avatar
debug    
Anthony Larcher committed
30
import math
Anthony Larcher's avatar
Anthony Larcher committed
31
import os
Anthony Larcher's avatar
Anthony Larcher committed
32
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
33
import random
Anthony Larcher's avatar
Anthony Larcher committed
34
import pandas
Anthony Larcher's avatar
Anthony Larcher committed
35
import shutil
Anthony Larcher's avatar
Anthony Larcher committed
36
import torch
Anthony Larcher's avatar
Anthony Larcher committed
37
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
38
39
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
40
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
41
42
from torch.utils.data import DataLoader
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
43
44
45
from .pooling import MeanStdPooling
from .pooling import AttentivePooling
from .pooling import GruPooling
Anthony Larcher's avatar
Anthony Larcher committed
46
47
48
from .preprocessor import MfccFrontEnd
from .preprocessor import MelSpecFrontEnd
from .preprocessor import RawPreprocessor
Anthony Larcher's avatar
Anthony Larcher committed
49
from .xsets import SideSet
Anthony Larcher's avatar
Anthony Larcher committed
50
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
51
from .xsets import IdMapSetPerSpeaker
Anthony Larcher's avatar
Anthony Larcher committed
52
from .xsets import SideSampler
Anthony Larcher's avatar
Anthony Larcher committed
53
54
55
56
from .res_net import ResBlockWFMS
from .res_net import ResBlock
from .res_net import PreResNet34
from .res_net import PreFastResNet34
Anthony Larcher's avatar
Anthony Larcher committed
57
from ..bosaris import IdMap
Anthony Larcher's avatar
Anthony Larcher committed
58
59
from ..bosaris import Key
from ..bosaris import Ndx
Anthony Larcher's avatar
Anthony Larcher committed
60
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
61
from ..iv_scoring import cosine_scoring
Anthony Larcher's avatar
Anthony Larcher committed
62
from .sincnet import SincNet
Anthony Larcher's avatar
merge    
Anthony Larcher committed
63
from ..bosaris.detplot import rocch, rocch2eer
Anthony Larcher's avatar
Anthony Larcher committed
64
from .loss import SoftmaxAngularProto
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
65
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
66
from .loss import ArcMarginProduct
Anthony Larcher's avatar
Anthony Larcher committed
67
68
from .loss import ArcLinear
from .loss import AngularProximityMagnet
Anthony Larcher's avatar
Anthony Larcher committed
69

Anthony Larcher's avatar
Anthony Larcher committed
70

Anthony Larcher's avatar
Anthony Larcher committed
71
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
72

Anthony Larcher's avatar
Anthony Larcher committed
73
74
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
75
__copyright__ = "Copyright 2015-2021 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
76
77
78
79
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
80
81


Anthony Larcher's avatar
debug    
Anthony Larcher committed
82
def seed_worker(seed_val):
Anthony Larcher's avatar
Anthony Larcher committed
83
    """
Anthony Larcher's avatar
Anthony Larcher committed
84

Anthony Larcher's avatar
Anthony Larcher committed
85
86
87
88
89
90
    :param worker_id:
    :return:
    """
    worker_seed = torch.initial_seed() % 2**32
    numpy.random.seed(worker_seed)
    random.seed(worker_seed)
Anthony Larcher's avatar
Anthony Larcher committed
91

Anthony Larcher's avatar
Anthony Larcher committed
92
93

def eer(negatives, positives):
Anthony Larcher's avatar
Anthony Larcher committed
94
    """
Anthony Larcher's avatar
Anthony Larcher committed
95
    Logarithmic complexity EER computation
Anthony Larcher's avatar
Anthony Larcher committed
96

Anthony Larcher's avatar
Anthony Larcher committed
97
98
99
100
    :param negatives: negative_scores (numpy array): impostor scores
    :param positives: positive_scores (numpy array): genuine scores
    :return: float: Equal Error Rate (EER)
    """
Anthony Larcher's avatar
Anthony Larcher committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
    positives = numpy.sort(positives)
    negatives = numpy.sort(negatives)[::-1]

    pos_count = positives.shape[0]
    neg_count = negatives.shape[0]

    p_score = positives[0]
    n_score = negatives[0]

    p_index = 0
    n_index = 0

    next_p_jump = pos_count//2
    next_n_jump = neg_count//2

    kdx = 0
    while True:
        kdx += 1
        if p_index < 0 or n_index < 0:
            return 0
        if p_index > pos_count or n_index > neg_count:
            return 100
        if p_score < n_score:
            p_index = p_index + next_p_jump
            n_index = n_index + next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break
        elif p_score >= n_score:
            p_index = p_index - next_p_jump
            n_index = n_index - next_n_jump
            if next_p_jump == 0 and next_n_jump == 0:
                break

        p_score = positives[p_index]
        n_score = negatives[n_index]
        next_p_jump = next_p_jump//2
        next_n_jump = next_n_jump//2

    eer_predicate = 100

    tfr = (abs(p_index))/pos_count
    tfa = (1+abs(n_index))/neg_count
    if (p_score == n_score and tfr == tfa):
        return tfr

    while positives[p_index] < negatives[n_index]:
        if p_index < pos_count - 1:
            p_index += 1
        elif n_index < neg_count - 1:
            n_index += 1
        else:
            break

    while positives[p_index] > negatives[n_index] and n_index >= 1:
        n_index -= 1

    tfr = (1+p_index)/pos_count
    tfa = (1+n_index)/neg_count

    while tfa > tfr:
        p_index += 1
        while positives[p_index] > negatives[n_index] and n_index >= 1:
            n_index -= 1
        tfr = (1+p_index)/pos_count
        tfa = (1+n_index)/neg_count

    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    tfr = p_index/pos_count
    tfa = (1+n_index)/neg_count
    if abs(tfr - tfa) <= eer_predicate:
        eer_predicate = abs(tfr - tfa)
        eer = (tfr + tfa) / 2
    else:
        return eer

    while True:
        while negatives[n_index + 1] <= positives[p_index - 1]:
            p_index -= 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer
        while negatives[n_index + 1] > positives[p_index - 1]:
            n_index += 1
            tfr = p_index/pos_count
            tfa = (1+n_index)/neg_count
            if abs(tfr - tfa) <= eer_predicate:
                eer_predicate = abs(tfr - tfa)
                eer = (tfr + tfa) / 2
            else:
                return eer

    return eer


Anthony Larcher's avatar
debug    
Anthony Larcher committed
204
205
def test_metrics(model,
                 device,
Anthony Larcher's avatar
Anthony Larcher committed
206
207
208
                 model_opts,
                 data_opts,
                 train_opts):
Anthony Larcher's avatar
Anthony Larcher committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
    transform_pipeline = dict()

Anthony Larcher's avatar
Anthony Larcher committed
227
    xv_stat = extract_embeddings(idmap_name=data_opts["test"]["idmap"],
Anthony Larcher's avatar
Anthony Larcher committed
228
                                 model_filename=model,
Anthony Larcher's avatar
Anthony Larcher committed
229
                                 data_root_name=data_opts["test"]["data_path"],
Anthony Larcher's avatar
Anthony Larcher committed
230
231
                                 device=device,
                                 transform_pipeline=transform_pipeline,
Anthony Larcher's avatar
Anthony Larcher committed
232
                                 num_thread=train_opts["num_cpu"],
Anthony Larcher's avatar
Anthony Larcher committed
233
234
235
236
                                 mixed_precision=train_opts["mixed_precision"])

    tar, non = cosine_scoring(xv_stat,
                              xv_stat,
Anthony Larcher's avatar
Anthony Larcher committed
237
                              Ndx(data_opts["test"]["ndx"]),
Anthony Larcher's avatar
Anthony Larcher committed
238
239
240
                              wccn=None,
                              check_missing=True,
                              device=device
Anthony Larcher's avatar
Anthony Larcher committed
241
                              ).get_tar_non(Key(data_opts["test"]["key"]))
Anthony Larcher's avatar
Anthony Larcher committed
242
243
244
245
246

    pmiss, pfa = rocch(tar, non)

    return rocch2eer(pmiss, pfa)

Anthony Larcher's avatar
Anthony Larcher committed
247

Anthony Larcher's avatar
Anthony Larcher committed
248
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
249
250
251
252
253
254
255
256
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
257
258
259
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
260

Anthony Larcher's avatar
Anthony Larcher committed
261

Anthony Larcher's avatar
Anthony Larcher committed
262
class TrainingMonitor():
Anthony Larcher's avatar
Anthony Larcher committed
263
    """
Anthony Larcher's avatar
Anthony Larcher committed
264

Anthony Larcher's avatar
Anthony Larcher committed
265
    """
Anthony Larcher's avatar
Anthony Larcher committed
266
    def __init__(self,
Anthony Larcher's avatar
Anthony Larcher committed
267
                 output_file,
Anthony Larcher's avatar
Anthony Larcher committed
268
                 log_interval=10,
Anthony Larcher's avatar
Anthony Larcher committed
269
270
                 patience=numpy.inf,
                 best_accuracy=0.0,
Anthony Larcher's avatar
Anthony Larcher committed
271
                 best_eer_epoch=1,
Anthony Larcher's avatar
Anthony Larcher committed
272
273
274
                 best_eer=100,
                 compute_test_eer=False
                 ):
Anthony Larcher's avatar
Anthony Larcher committed
275

Anthony Larcher's avatar
Anthony Larcher committed
276
        self.current_epoch = 0
Anthony Larcher's avatar
Anthony Larcher committed
277
        self.log_interval = log_interval
Anthony Larcher's avatar
Anthony Larcher committed
278
279
280
        self.init_patience = patience
        self.current_patience = patience
        self.best_accuracy = best_accuracy
Anthony Larcher's avatar
Anthony Larcher committed
281
        self.best_eer_epoch = best_eer_epoch
Anthony Larcher's avatar
Anthony Larcher committed
282
        self.best_eer = best_eer
Anthony Larcher's avatar
Anthony Larcher committed
283
        self.compute_test_eer = compute_test_eer
Anthony Larcher's avatar
Anthony Larcher committed
284
        self.test_eer = []
Anthony Larcher's avatar
Anthony Larcher committed
285
286
287
288

        self.training_loss = []
        self.training_acc = []

Anthony Larcher's avatar
Anthony Larcher committed
289
290
        self.val_loss = []
        self.val_acc = []
Anthony Larcher's avatar
Anthony Larcher committed
291
292
        self.val_eer = []

Anthony Larcher's avatar
Anthony Larcher committed
293
294
        self.is_best = True

Anthony Larcher's avatar
Anthony Larcher committed
295
        # Initialize the logger
Anthony Larcher's avatar
Anthony Larcher committed
296
        logging_format = '%(asctime)-15s %(message)s'
Anthony Larcher's avatar
Anthony Larcher committed
297
        logging.basicConfig(level=logging.DEBUG, format=logging_format, datefmt='%m-%d %H:%M')
Anthony Larcher's avatar
Anthony Larcher committed
298
299
        self.logger = logging.getLogger('Monitoring')
        self.logger.setLevel(logging.DEBUG)
Anthony Larcher's avatar
Anthony Larcher committed
300
301
        # create file handler which logs even debug messages
        fh = logging.FileHandler(output_file)
Anthony Larcher's avatar
Anthony Larcher committed
302
303
        formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
        fh.setFormatter(formatter)
Anthony Larcher's avatar
Anthony Larcher committed
304
        fh.setLevel(logging.DEBUG)
Anthony Larcher's avatar
Anthony Larcher committed
305
        self.logger.addHandler(fh)
Anthony Larcher's avatar
Anthony Larcher committed
306

Anthony Larcher's avatar
Anthony Larcher committed
307
308
309
310
311
312
    def display(self):
        """

        :return:
        """
        # TODO
Anthony Larcher's avatar
Anthony Larcher committed
313
314
        self.logger.critical(f"***Validation metrics - Cross validation accuracy = {self.val_acc[-1]} %, EER = {self.val_eer[-1] * 100} %")
        self.logger.critical(f"***Test metrics - Test EER = {self.test_eer[-1] * 100} %")
Anthony Larcher's avatar
Anthony Larcher committed
315
316
317
318
319
320

    def display_final(self):
        """

        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
321
        self.logger.critical(f"Best accuracy {self.best_accuracy * 100.} obtained at epoch {self.best_accuracy_epoch}")
Anthony Larcher's avatar
Anthony Larcher committed
322
323

    def update(self,
Anthony Larcher's avatar
Anthony Larcher committed
324
               epoch=None,
Anthony Larcher's avatar
Anthony Larcher committed
325
326
               training_acc=None,
               training_loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
327
328
329
330
331
               test_eer=None,
               val_eer=None,
               val_loss=None,
               val_acc=None):

Anthony Larcher's avatar
Anthony Larcher committed
332
333
334
        if epoch is not None:
            self.current_epoch = epoch
        if training_acc is not None:
Anthony Larcher's avatar
Anthony Larcher committed
335
            self.training_acc.append(training_acc)
Anthony Larcher's avatar
Anthony Larcher committed
336
        if training_loss is not None:
Anthony Larcher's avatar
Anthony Larcher committed
337
            self.training_loss.append(training_loss)
Anthony Larcher's avatar
Anthony Larcher committed
338
        if val_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
339
            self.val_eer.append(val_eer)
Anthony Larcher's avatar
Anthony Larcher committed
340
        if val_loss is not None:
Anthony Larcher's avatar
Anthony Larcher committed
341
            self.val_loss.append(val_loss)
Anthony Larcher's avatar
Anthony Larcher committed
342
        if val_acc is not None:
Anthony Larcher's avatar
Anthony Larcher committed
343
            self.val_acc.append(val_acc)
Anthony Larcher's avatar
Anthony Larcher committed
344
345

        # remember best accuracy and save checkpoint
Anthony Larcher's avatar
Anthony Larcher committed
346
        if self.compute_test_eer and test_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
347
348
349
            self.test_eer.append(test_eer)
            self.is_best = test_eer < self.best_eer
            self.best_eer = min(test_eer, self.best_eer)
Anthony Larcher's avatar
Anthony Larcher committed
350
351
352
353
354
            if self.is_best:
                self.best_eer_epoch = epoch
                self.current_patience = self.init_patience
            else:
                self.current_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
355
        elif val_eer is not None:
Anthony Larcher's avatar
Anthony Larcher committed
356
357
            self.is_best = val_eer < self.best_eer
            self.best_eer = min(val_eer, self.best_eer)
Anthony Larcher's avatar
Anthony Larcher committed
358
359
360
361
362
            if self.is_best:
                self.best_eer_epoch = epoch
                self.current_patience = self.init_patience
            else:
                self.current_patience -= 1
Anthony Larcher's avatar
Anthony Larcher committed
363
364


Anthony Larcher's avatar
Anthony Larcher committed
365
class Xtractor(torch.nn.Module):
366
367
368
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
369

Anthony Larcher's avatar
Anthony Larcher committed
370
371
372
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
373
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
374
                 norm_embedding=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
375
376
                 aam_margin=0.2,
                 aam_s=30):
Anthony Larcher's avatar
Anthony Larcher committed
377
378
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
379
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
380
        """
Anthony Larcher's avatar
Anthony Larcher committed
381
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
382
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
383
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
384
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
385

Anthony Larcher's avatar
Anthony Larcher committed
386
387
        print(f"Speaker number : {self.speaker_number}")

Anthony Larcher's avatar
Anthony Larcher committed
388
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
389

Anthony Larcher's avatar
Anthony Larcher committed
390
391
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
392
393
394
395
396
            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
397
398
            self.activation = torch.nn.LeakyReLU(0.2)

Anthony Larcher's avatar
Anthony Larcher committed
399
            self.preprocessor = MfccFrontEnd()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
400
            self.feature_size = self.preprocessor.n_mfcc
Anthony Larcher's avatar
Anthony Larcher committed
401

Anthony Larcher's avatar
xv    
Anthony Larcher committed
402
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
403
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
404
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
405
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
406
407
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
408
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
409
410
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
411
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
412
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
413
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
414
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
415
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
416
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
417
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
418
419
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
420
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
421
            self.stat_pooling_weight_decay = 0
Anthony Larcher's avatar
xv    
Anthony Larcher committed
422
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
423
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
424
425
            ]))

426
427
            self.embedding_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
428
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
429
430
431
432
433
                self.after_speaker_embedding = ArcMarginProduct(512,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)
Anthony Larcher's avatar
Anthony Larcher committed
434
435
436
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
437
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
438
439
440
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
441
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
442
443
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
444

445
            self.preprocessor_weight_decay = 0.0002
Anthony Larcher's avatar
debug    
Anthony Larcher committed
446
447
448
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002
449
            self.embedding_size = 512
Anthony Larcher's avatar
Anthony Larcher committed
450

Anthony Larcher's avatar
Anthony Larcher committed
451
        elif model_archi == "resnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
452

Anthony Larcher's avatar
Anthony Larcher committed
453
            self.preprocessor = MelSpecFrontEnd(n_mels=80)
Anthony Larcher's avatar
Anthony Larcher committed
454
            self.sequence_network = PreResNet34()
Anthony Larcher's avatar
Anthony Larcher committed
455
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
456

Anthony Larcher's avatar
Anthony Larcher committed
457
458
            self.before_speaker_embedding = torch.nn.Linear(in_features=5120,
                                                            out_features=self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
459
460
461
462

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

463
            self.loss = "aam"
Anthony Larcher's avatar
Anthony Larcher committed
464
            self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
Anthony Larcher's avatar
Anthony Larcher committed
465
466
                                                            int(self.speaker_number),
                                                            s = 30.0,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
467
                                                            m = 0.20,
Anthony Larcher's avatar
Anthony Larcher committed
468
                                                            easy_margin = False)
Anthony Larcher's avatar
Anthony Larcher committed
469
470
471
472
473
474
475

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
476
        elif model_archi == "fastresnet34":
Anthony Larcher's avatar
Anthony Larcher committed
477
            self.preprocessor = MelSpecFrontEnd()
Anthony Larcher's avatar
Anthony Larcher committed
478
            self.sequence_network = PreFastResNet34()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
479
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
480

Anthony Larcher's avatar
Anthony Larcher committed
481
            self.before_speaker_embedding = torch.nn.Linear(in_features = 2560,
Anthony Larcher's avatar
Anthony Larcher committed
482
                                                            out_features = self.embedding_size)
Anthony Larcher's avatar
Anthony Larcher committed
483

Anthony Larcher's avatar
Anthony Larcher committed
484
            self.stat_pooling = AttentivePooling(128, 80, global_context=False)
Anthony Larcher's avatar
Anthony Larcher committed
485
486
            self.stat_pooling_weight_decay = 0

Anthony Larcher's avatar
merge    
Anthony Larcher committed
487
488
489
490
            self.loss = loss
            if self.loss == "aam":
                self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
                                                                int(self.speaker_number),
Anthony Larcher's avatar
merge    
Anthony Larcher committed
491
492
                                                                s = 30,
                                                                m = 0.2,
Anthony Larcher's avatar
merge    
Anthony Larcher committed
493
494
495
496
                                                                easy_margin = False)

            elif self.loss == 'aps':
                self.after_speaker_embedding = SoftmaxAngularProto(int(self.speaker_number))
Anthony Larcher's avatar
Anthony Larcher committed
497
498
            elif self.loss == 'smn':
                self.after_speaker_embedding = AngularProximityMagnet(int(self.speaker_number))
Anthony Larcher's avatar
Anthony Larcher committed
499

Anthony Larcher's avatar
Anthony Larcher committed
500
501
502
503
504
            self.preprocessor_weight_decay = 0.00002
            self.sequence_network_weight_decay = 0.00002
            self.stat_pooling_weight_decay = 0.00002
            self.before_speaker_embedding_weight_decay = 0.00002
            self.after_speaker_embedding_weight_decay = 0.0002
Anthony Larcher's avatar
Anthony Larcher committed
505

Anthony Larcher's avatar
Anthony Larcher committed
506
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
507
508
509
510
511
512

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
513
514
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
515
516
517
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
518
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
519
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
520
521
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
539
540
541
542
543
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
544
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
545
546
547
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
548

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
549
550
551
552
553
554
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
555
        else:
Anthony Larcher's avatar
Anthony Larcher committed
556
557
            is_first_resblock = True

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
558
559
560
561
562
563
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
564

Anthony Larcher's avatar
Anthony Larcher committed
565
            self.loss = cfg["loss"]["type"]
Anthony Larcher's avatar
Anthony Larcher committed
566
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
567
568
                self.aam_margin = cfg["loss"]["aam_margin"]
                self.aam_s = cfg["loss"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
569

Anthony Larcher's avatar
Anthony Larcher committed
570
571
572
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
573
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
574
575
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
576
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
577
578
579
580
581
582
583
584
585
586
587
588
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
589
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
590
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
591
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
592
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
593
594
595
596
597
598
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
599
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
600
601

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
602
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
603
            """
Anthony Larcher's avatar
Anthony Larcher committed
604
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
605
            if self.feature_size is None:
Anthony Larcher's avatar
Anthony Larcher committed
606
                self.feature_size = cfg["preprocessor"]["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
607

Anthony Larcher's avatar
Anthony Larcher committed
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
623
624
625
626
627
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

Anthony Larcher's avatar
Anthony Larcher committed
628
629
630
631
632
                elif k.startswith("conv2D"):
                    segmental_layers.append((k, torch.nn.Conv2d(in_channels=1,
                                                                out_channels=entry_conv_out_channels,
                                                                kernel_size=entry_conv_kernel_size,
                                                                padding=3,
Anthony Larcher's avatar
Anthony Larcher committed
633
                                                                stride=1)))
Anthony Larcher's avatar
Anthony Larcher committed
634

Anthony Larcher's avatar
Anthony Larcher committed
635
                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
636
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
637
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
638
639
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
640
641
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
642
643
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
644
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
645
646
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
647
648
649
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
650
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
651
652
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
653
654
655
656
657
658
                elif k.startswith('resblock'):
                    segmental_layers.append((ResBlock(cfg["segmental"][k]["input_channel"],
                                                      cfg["segmental"][k]["output_channel"],
                                                      is_first_resblock)))
                    is_first_resblock = False

Anthony Larcher's avatar
Anthony Larcher committed
659
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
660
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
661

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
662
663
664
665
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
666
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
667
668
669
670
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
671
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
672

Anthony Larcher's avatar
Anthony Larcher committed
673
674
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
675
            """
Anthony Larcher's avatar
Anthony Larcher committed
676
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
677
            """
Anthony Larcher's avatar
Anthony Larcher committed
678
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
679
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
680
681
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
682
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
683
684
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
685
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
686
687
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
688
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
689
690

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
691
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
692

Anthony Larcher's avatar
Anthony Larcher committed
693
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
694
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
695
696

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
697
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
698

Anthony Larcher's avatar
Anthony Larcher committed
699
            self.embedding_size = input_size
Anthony Larcher's avatar
Anthony Larcher committed
700
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
701
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
702

Anthony Larcher's avatar
Anthony Larcher committed
703
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
704
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
705
706
707
708
709
710
711
712
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
713
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
714
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
715

Anthony Larcher's avatar
Anthony Larcher committed
716
717
718
719
720
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
721

Anthony Larcher's avatar
Anthony Larcher committed
722
723
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
724

Anthony Larcher's avatar
Anthony Larcher committed
725
726
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
727

Anthony Larcher's avatar
Anthony Larcher committed
728
729
730
731
732
733
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
734
735
736
737
738
739
740
                self.norm_embedding = True
                self.after_speaker_embedding = ArcMarginProduct(input_size,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)

Anthony Larcher's avatar
Anthony Larcher committed
741
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
742

743
    def forward(self, x, is_eval=False, target=None, extract_after_pooling=False):
744
745
746
        """

        :param x:
747
        :param is_eval: False for training
748
749
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
750
        if self.preprocessor is not None:
Anthony Larcher's avatar
merge    
Anthony Larcher committed
751
            x = self.preprocessor(x, is_eval)
Anthony Larcher's avatar
Anthony Larcher committed
752

Anthony Larcher's avatar
Anthony Larcher committed
753
        x = self.sequence_network(x)
754

Anthony Larcher's avatar
Anthony Larcher committed
755
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
756
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
757

758
759
760
        if extract_after_pooling:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
761
        x = self.before_speaker_embedding(x)
762

Anthony Larcher's avatar
Anthony Larcher committed
763
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
764
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
765

Anthony Larcher's avatar
Anthony Larcher committed
766
        if self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
767
            if is_eval:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
768
                return x
Anthony Larcher's avatar
debug    
Anthony Larcher committed
769
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
770
                return self.after_speaker_embedding(x), x
Anthony Larcher's avatar
Anthony Larcher committed
771

Anthony Larcher's avatar
merge    
Anthony Larcher committed
772
        elif self.loss in ['aam', 'aps']:
Anthony Larcher's avatar
merge    
Anthony Larcher committed
773
774
775
776
777
            x = self.after_speaker_embedding(x, target=target), torch.nn.functional.normalize(x, dim=1)
        elif self.loss == 'smn':
            if not is_eval:
                x = self.after_speaker_embedding(x, target=target), x

Anthony Larcher's avatar
Anthony Larcher committed
778

Anthony Larcher's avatar
Anthony Larcher committed
779
        return x
Anthony Larcher's avatar
Anthony Larcher committed
780

781
782
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
783
784
785
786
787
788
789
790
791
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
792

Anthony Larcher's avatar
Anthony Larcher committed
793

Anthony Larcher's avatar
Anthony Larcher committed
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
def fill_dict(target_dict, source_dict, prefix = ""):
    """
    Recursively Fill a dictionary target_dict by taking values from source_dict

    :param target_dict: output dictionary that is initialized with default values
    :param source_dict: input dictionary
    :return:
    """
    for k1, v1 in target_dict.items():

        if isinstance(v1, dict):
            if k1 in source_dict and isinstance(source_dict[k1], dict):
                fill_dict(v1, source_dict[k1], prefix + "\t")
            else:
                pass
        else:
            if k1 in source_dict and source_dict[k1] is not None:
                target_dict[k1] = source_dict[k1]
            else:
                pass


Anthony Larcher's avatar
Anthony Larcher committed
816
817
def update_training_dictionary(dataset_description,
                               model_description,
Anthony Larcher's avatar
Anthony Larcher committed
818
819
                               training_description,
                               kwargs=None):
Anthony Larcher's avatar
Anthony Larcher committed
820
821
    """

Anthony Larcher's avatar
Anthony Larcher committed
822
823
824
825
    :param dataset_description:
    :param model_description:
    :param training_description:
    :param kwargs:
Anthony Larcher's avatar
Anthony Larcher committed
826
827
828
829
830
831
    :return:
    """
    dataset_opts=dict()
    model_opts=dict()
    training_opts=dict()

Anthony Larcher's avatar
Anthony Larcher committed
832
833
834
835
836
    if isinstance(dataset_description, str) and os.path.isfile(dataset_description):
        with open(dataset_description, 'r') as fh:
            tmp_data_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_data_dict = dataset_description
Anthony Larcher's avatar
Anthony Larcher committed
837

Anthony Larcher's avatar
Anthony Larcher committed
838
839
840
841
842
    if isinstance(model_description, str) and os.path.isfile(model_description):
        with open(model_description, 'r') as fh:
            tmp_model_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_model_dict = model_description
Anthony Larcher's avatar
Anthony Larcher committed
843

Anthony Larcher's avatar
Anthony Larcher committed
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
    if isinstance(training_description, str) and os.path.isfile(training_description):
        with open(training_description, 'r') as fh:
            tmp_train_dict = yaml.load(fh, Loader=yaml.FullLoader)
    else:
        tmp_train_dict = training_description

    # Initialize default dictionaries
    dataset_opts["data_path"] = None
    dataset_opts["dataset_csv"] = None
    dataset_opts["data_file_extension"] = ".wav"
    dataset_opts["sample_rate"] = 16000

    dataset_opts["validation_ratio"] = 0.1
    dataset_opts["batch_size"] = 64

    dataset_opts["train"] = dict()
Anthony Larcher's avatar
Anthony Larcher committed
860
    dataset_opts["train"]["duration"] = 4.
Anthony Larcher's avatar
Anthony Larcher committed
861
    dataset_opts["train"]["chunk_per_segment"] = -1
Anthony Larcher's avatar
Anthony Larcher committed
862
    dataset_opts["train"]["overlap"] = 3.9
Anthony Larcher's avatar
Anthony Larcher committed
863
864
865
    dataset_opts["train"]["sampler"] = dict()
    dataset_opts["train"]["sampler"]["examples_per_speaker"] = 1
    dataset_opts["train"]["sampler"]["samples_per_speaker"] = 100
Anthony Larcher's avatar
debug    
Anthony Larcher committed
866
    dataset_opts["train"]["sampler"]["augmentation_replica"] = 1
Anthony Larcher's avatar
Anthony Larcher committed
867
    dataset_opts["train"]["transform_number"] = 2
Anthony Larcher's avatar
Anthony Larcher committed
868
869
870
871
872
873
    dataset_opts["train"]["transformation"] = dict()
    dataset_opts["train"]["transformation"]["pipeline"] = ""
    dataset_opts["train"]["transformation"]["add_noise"] = dict()
    dataset_opts["train"]["transformation"]["add_noise"]["noise_db_csv"] = ""
    dataset_opts["train"]["transformation"]["add_noise"]["data_path"] = ""
    dataset_opts["train"]["transformation"]["add_reverb"] = dict()
Anthony Larcher's avatar
Anthony Larcher committed
874
    dataset_opts["train"]["transformation"]["add_reverb"]["rir_db_csv"] = ""
Anthony Larcher's avatar
Anthony Larcher committed
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
    dataset_opts["train"]["transformation"]["add_reverb"]["data_path"] = ""

    dataset_opts["valid"] = dict()
    dataset_opts["valid"]["duration"] = 2.
    dataset_opts["valid"]["transformation"] = dict()
    dataset_opts["valid"]["transformation"]["pipeline"] = ""
    dataset_opts["valid"]["transformation"]["add_noise"] = dict()
    dataset_opts["valid"]["transformation"]["add_noise"]["noise_db_csv"] = ""
    dataset_opts["valid"]["transformation"]["add_noise"]["data_path"] = ""
    dataset_opts["valid"]["transformation"]["add_reverb"] = dict()
    dataset_opts["valid"]["transformation"]["add_reverb"]["noise_db_csv"] = ""
    dataset_opts["valid"]["transformation"]["add_reverb"]["data_path"] = ""

    dataset_opts["test"] = dict()
    dataset_opts["test"]["idmap"] = ""
    dataset_opts["test"]["ndx"] = ""
    dataset_opts["test"]["key"] = ""
    dataset_opts["test"]["data_path"] =""

    # Initialize model options
    model_opts["speaker_number"] = None
    model_opts["loss"] = dict()
    model_opts["loss"]["type"] ="aam"
    model_opts["loss"]["aam_margin"] = 0.2
    model_opts["loss"]["aam_s"] = 30

    model_opts["initial_model_name"] = None
    model_opts["reset_parts"] = []
    model_opts["freeze_parts"] = []

    model_opts["model_type"] = "fastresnet"

Anthony Larcher's avatar
Anthony Larcher committed
907
908
909
    model_opts["preprocessor"] = dict()
    model_opts["preprocessor"]["type"] =  "mel_spec"
    model_opts["preprocessor"]["feature_size"] = 80
Anthony Larcher's avatar
Anthony Larcher committed
910
911
912

    # Initialize training options
    training_opts["log_file"] = "sidekit.log"
Anthony Larcher's avatar
Anthony Larcher committed
913
914
915
    training_opts["numpy_seed"] = 0
    training_opts["torch_seed"] = 0
    training_opts["random_seed"] = 0
Anthony Larcher's avatar
Anthony Larcher committed
916
    training_opts["deterministic"] = False
Anthony Larcher's avatar
Anthony Larcher committed
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
    training_opts["epochs"] = 100
    training_opts["lr"] = 1e-3
    training_opts["patience"] = 50
    training_opts["multi_gpu"] = False
    training_opts["num_cpu"] = 5
    training_opts["mixed_precision"] = False
    training_opts["clipping"] = False

    training_opts["optimizer"] = dict()
    training_opts["optimizer"]["type"] = "sgd"
    training_opts["optimizer"]["options"] = None

    training_opts["scheduler"] = dict()
    training_opts["scheduler"]["type"] = "ReduceLROnPlateau"
    training_opts["scheduler"]["options"] = None

    training_opts["compute_test_eer"] = False
    training_opts["log_interval"] = 10
Anthony Larcher's avatar
Anthony Larcher committed
935
    training_opts["validation_frequency"] = 1
Anthony Larcher's avatar
Anthony Larcher committed
936
937
938
939
940
941
942
943
944
945
946

    training_opts["tmp_model_name"] = "tmp_model.pt"
    training_opts["best_model_name"] = "best_model.pt"
    training_opts["checkpoint_frequency"] = "10"

    # Use options from the YAML config files
    fill_dict(dataset_opts, tmp_data_dict)
    fill_dict(model_opts, tmp_model_dict)
    fill_dict(training_opts, tmp_train_dict)

    # Overwrite with manually given parameters
Anthony Larcher's avatar
Anthony Larcher committed
947
948
949
950
951
952
953
954
955
956
957
958
    if "lr" in kwargs:
        training_opts["lr"] = kwargs['lr']
    if "batch_size" in kwargs:
        dataset_opts["batch_size"] = kwargs["batch_size"]
    if "optimizer" in kwargs:
        training_opts["optimizer"]["type"] = kwargs["optimizer"]
    if "scheduler" in kwargs:
        training_opts["scheduler"]["type"] = kwargs["scheduler"]
    if "margin" in kwargs:
        model_opts["loss"]["aam_margin"] = kwargs["margin"]
    if "aam_s" in kwargs:
        model_opts["loss"]["aam_s"] = kwargs["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
959
960
961
962

    return dataset_opts, model_opts, training_opts


Anthony Larcher's avatar
debug    
Anthony Larcher committed
963
def get_network(model_opts, local_rank):
Anthony Larcher's avatar
Anthony Larcher committed
964
    """
Anthony Larcher's avatar
Anthony Larcher committed
965
966

    :param model_opts:
Anthony Larcher's avatar
Anthony Larcher committed
967
    :param local_rank:
Anthony Larcher's avatar
Anthony Larcher committed
968
    :return:
Anthony Larcher's avatar
Anthony Larcher committed
969
970
    """

Anthony Larcher's avatar
Anthony Larcher committed
971
972
    if model_opts["model_type"] in ["xvector", "rawnet2", "resnet34", "fastresnet34"]:
        model = Xtractor(model_opts["speaker_number"], model_opts["model_type"], loss=model_opts["loss"]["type"])
Anthony Larcher's avatar
Anthony Larcher committed
973
    else:
Anthony Larcher's avatar
Anthony Larcher committed
974
        # Custom type of model
Anthony Larcher's avatar
Anthony Larcher committed
975
        model = Xtractor(model_opts["speaker_number"], model_opts, loss=model_opts["loss"]["type"])
Anthony Larcher's avatar
Anthony Larcher committed
976

Anthony Larcher's avatar
Anthony Larcher committed
977
978
979
980
    # Load the model if it exists
    if model_opts["initial_model_name"] is not None and os.path.isfile(model_opts["initial_model_name"]):
        logging.critical(f"*** Load model from = {model_opts['initial_model_name']}")
        checkpoint = torch.load(model_opts["initial_model_name"])
Anthony Larcher's avatar
Anthony Larcher committed
981

Anthony Larcher's avatar
Anthony Larcher committed
982
983
        """
        Here we remove all layers that we don't want to reload
Anthony Larcher's avatar
Anthony Larcher committed
984

Anthony Larcher's avatar
Anthony Larcher committed
985
986
987
988
        """
        pretrained_dict = checkpoint["model_state_dict"]
        for part in model_opts["reset_parts"]:
            pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}
Anthony Larcher's avatar
Anthony Larcher committed
989

Anthony Larcher's avatar
Anthony Larcher committed
990
991
992
        new_model_dict = model.state_dict()
        new_model_dict.update(pretrained_dict)
        model.load_state_dict(new_model_dict)
Anthony Larcher's avatar
Anthony Larcher committed
993
994
995

        # Freeze required layers
        for name, param in model.named_parameters():
Anthony Larcher's avatar
Anthony Larcher committed
996
            if name.split(".")[0] in model_opts["reset_parts"]:
Anthony Larcher's avatar
Anthony Larcher committed
997
998
                param.requires_grad = False

Anthony Larcher's avatar
debug    
Anthony Larcher committed
999
1000
    if local_rank < 1:
        logging.info(model)