xvector.py 33.4 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
Anthony Larcher committed
25
Copyright 2014-2020 Yevhenii Prokopalo, Anthony Larcher
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
30

import pdb
import traceback
Anthony Larcher's avatar
Anthony Larcher committed
31
import logging
Anthony Larcher's avatar
Anthony Larcher committed
32
import matplotlib.pyplot as plt
Anthony Larcher's avatar
Anthony Larcher committed
33
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
34
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
35
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
36
import shutil
37
import time
Anthony Larcher's avatar
Anthony Larcher committed
38
import torch
Anthony Larcher's avatar
Anthony Larcher committed
39
40
import torch.optim as optim
import torch.multiprocessing as mp
Anthony Larcher's avatar
Anthony Larcher committed
41
42
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
43
from torchvision import transforms
Anthony Larcher's avatar
Anthony Larcher committed
44
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
45
from .xsets import XvectorMultiDataset, StatDataset, VoxDataset, SideSet
Anthony Larcher's avatar
Anthony Larcher committed
46
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
47
from .xsets import FrequencyMask, CMVN, TemporalMask, MFCC
Anthony Larcher's avatar
Anthony Larcher committed
48
from .res_net import RawPreprocessor, ResBlockWFMS
Anthony Larcher's avatar
Anthony Larcher committed
49
50
from ..bosaris import IdMap
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
51
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
52
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
53
from .sincnet import SincNet, SincConv1d
Anthony Larcher's avatar
Anthony Larcher committed
54
55
#from torch.utils.tensorboard import SummaryWriter

Anthony Larcher's avatar
Anthony Larcher committed
56
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
57

Anthony Larcher's avatar
Anthony Larcher committed
58
59
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
60
__copyright__ = "Copyright 2015-2020 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
61
62
63
64
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
65
66


Anthony Larcher's avatar
Anthony Larcher committed
67
68
logging.basicConfig(format='%(asctime)s %(message)s')

Anthony Larcher's avatar
Anthony Larcher committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

# Make PyTorch Deterministic
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
numpy.random.seed(0)


class GuruMeditation (torch.autograd.detect_anomaly):
    
    def __init__(self):
        super(GuruMeditation, self).__init__()

    def __enter__(self):
        super(GuruMeditation, self).__enter__()
        return self

    def __exit__(self, type, value, trace):
        super(GuruMeditation, self).__exit__()
        if isinstance(value, RuntimeError):
            traceback.print_tb(trace)
            halt(str(value))

    def halt(msg):
        print (msg)
        pdb.set_trace()









def select_n_random(data, labels, n=100):
    '''
    Selects n random datapoints and their corresponding labels from a dataset
    '''
    assert len(data) == len(labels)

    perm = torch.randperm(len(data))
    return data[perm][:n], labels[perm][:n]


def matplotlib_imshow(img, one_channel=False):
    if one_channel:
        img = img.mean(dim=0)
    img = img / 2 + 0.5     # unnormalize
    npimg = img.cpu().numpy()
    if one_channel:
        plt.imshow(npimg, cmap="Greys")
    else:
        plt.imshow(np.transpose(npimg, (1, 2, 0)))

def speech_to_probs(model, speech):
    '''
    Generates predictions and corresponding probabilities from a trained
    network and a list of images
    '''
    output = model(speech)
    # convert output probabilities to predicted class
    _, preds_tensor = torch.max(output, 1)
    preds = numpy.squeeze(preds_tensor.cpu().numpy())
    return preds, [torch.nn.functional.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]


def plot_classes_preds(model, speech, labels):
    '''
    Generates matplotlib Figure using a trained network, along with images
    and labels from a batch, that shows the network's top prediction along
    with its probability, alongside the actual label, coloring this
    information based on whether the prediction was correct or not.
    Uses the "speech_to_probs" function.
    '''
    preds, probs = speech_to_probs(model, speech)
    # plot the images in the batch, along with predicted and true labels
    fig = plt.figure(figsize=(12, 48))
    for idx in numpy.arange(4):
         ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])
         #matplotlib_imshow(speech[idx], one_channel=True)
         ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
                                                           preds[idx],
                                                           probs[idx] * 100.0,
                                                           labels[idx]),
                                                           color=("green" if preds[idx]==labels[idx].item() else "red"))
    return fig



159
def get_lr(optimizer):
Anthony Larcher's avatar
Anthony Larcher committed
160
161
162
163
164
    """

    :param optimizer:
    :return:
    """
165
166
167
168
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
169
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
170
171
172
173
174
175
176
177
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
178
179
180
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
181

Anthony Larcher's avatar
Anthony Larcher committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
class MeanStdPooling(torch.nn.Module):
    """
    Mean and Standard deviation pooling
    """
    def __init__(self):
        """

        """
        super(MeanStdPooling, self).__init__()
        pass

    def forward(self, x):
        """

        :param x:
        :return:
        """
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        return torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
202

Anthony Larcher's avatar
Anthony Larcher committed
203

Anthony Larcher's avatar
Anthony Larcher committed
204
205
206
207
208
209
210
211
212
213
214
class GruPooling(torch.nn.Module):
    """

    """
    def __init__(self, input_size, gru_node, nb_gru_layer):
        """

        :param input_size:
        :param gru_node:
        :param nb_gru_layer:
        """
Anthony Larcher's avatar
Anthony Larcher committed
215
        super(GruPooling, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        self.lrelu_keras = torch.nn.LeakyReLU(negative_slope = 0.3)
        self.bn_before_gru = torch.nn.BatchNorm1d(num_features = input_size)
        self.gru = torch.nn.GRU(input_size = input_size,
                          hidden_size = gru_node,
                          num_layers = nb_gru_layer,
                          batch_first = True)

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = self.bn_before_gru(x)
        x = self.lrelu_keras(x)
        x = x.permute(0, 2, 1)  #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
        x = x[:,-1,:]

        return x

Anthony Larcher's avatar
Anthony Larcher committed
238

Anthony Larcher's avatar
Anthony Larcher committed
239
class Xtractor(torch.nn.Module):
240
241
242
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
243

Anthony Larcher's avatar
Anthony Larcher committed
244
    def __init__(self, speaker_number, model_archi="xvector", norm_embedding=False):
Anthony Larcher's avatar
Anthony Larcher committed
245
246
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
247
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
248
        """
Anthony Larcher's avatar
Anthony Larcher committed
249
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
250
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
251
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
252
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
253

Anthony Larcher's avatar
Anthony Larcher committed
254
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
255
            self.feature_size = 30
Anthony Larcher's avatar
Anthony Larcher committed
256
257
258
            self.activation = torch.nn.LeakyReLU(0.2)

            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
259

Anthony Larcher's avatar
xv    
Anthony Larcher committed
260
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
261
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
262
263
264
265
266
267
268
269
                ("activation1", torch.nn.LeakyReLU(0.2)),
                ("norm1", torch.nn.BatchNorm1d(512)),
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
                ("norm2", torch.nn.BatchNorm1d(512)),
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
                ("norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
270
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
271
272
                ("activation4", torch.nn.LeakyReLU(0.2)),
                ("norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
273
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
274
275
276
277
                ("activation5", torch.nn.LeakyReLU(0.2)),
                ("norm5", torch.nn.BatchNorm1d(1536))
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
278
279
            self.stat_pooling = MeanStdPooling()

Anthony Larcher's avatar
xv    
Anthony Larcher committed
280
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
281
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
282
283
            ]))

Anthony Larcher's avatar
xv    
Anthony Larcher committed
284
            self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
285
286
                ("activation6", torch.nn.LeakyReLU(0.2)),
                ("norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
287
                ("dropout6", torch.nn.Dropout(p=0.05)),
Anthony Larcher's avatar
Anthony Larcher committed
288
                ("linear7", torch.nn.Linear(512, 512)),
Anthony Larcher's avatar
Anthony Larcher committed
289
290
                ("activation7", torch.nn.LeakyReLU(0.2)),
                ("norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
291
                ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
292
293
            ]))

Anthony Larcher's avatar
Anthony Larcher committed
294
295
296
297
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002

Anthony Larcher's avatar
Anthony Larcher committed
298
299
300
301
        elif model_archi == "rawnet2":
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
302
            self.preprocessor = RawPreprocessor(nb_samp=32000,
Anthony Larcher's avatar
Anthony Larcher committed
303
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
304
305
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

            self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                           out_features = int(self.speaker_number),
                                                           bias = True)

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
327
328
329
330
331
332
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
333
334
        else:
            # Load Yaml configuration
Anthony Larcher's avatar
Anthony Larcher committed
335
            with open(model_archi, 'r') as fh:
Anthony Larcher's avatar
Anthony Larcher committed
336
337
                cfg = yaml.load(fh, Loader=yaml.FullLoader)

Anthony Larcher's avatar
Anthony Larcher committed
338
339
340
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
341
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
342
343
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
344
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
345
346
347
348
349
350
351
352
353
354
355
356
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
357
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
358
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
359
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
360
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
361
362
363
364
365
366
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
367
368

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
369
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
370
            """
Anthony Larcher's avatar
Anthony Larcher committed
371
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
372
373
374
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
                if k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
391
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
392
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
393
394
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
395
396
397
398
399
400
401
402
                    input_size = cfg["segmental"][k]["output_channels"]

                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

                elif k.startswith('norm'):
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
403
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
404
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
405

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
406
407
408
409
410
411
412
413
414
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])

Anthony Larcher's avatar
Anthony Larcher committed
415
416
417
            """
            Prepapre last part of the network (after pooling)
            """
Anthony Larcher's avatar
Anthony Larcher committed
418
419
            # Create sequential object for the second part of the network
            input_size = input_size * 2
Anthony Larcher's avatar
xv    
Anthony Larcher committed
420
421
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
422
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
423
424
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
425
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
426
427
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
428
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
429
430

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
431
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
432
433

                elif k.startswith('norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
434
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
435
436

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
437
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
438

Anthony Larcher's avatar
Anthony Larcher committed
439
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
440
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
441
442
443
444
445

            # Create sequential object for the second part of the network
            after_embedding_layers = []
            for k in cfg["after_embedding"].keys():
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
446
447
                    if cfg["after_embedding"][k]["output"] == "speaker_number":
                        after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
448
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
449
450
                        after_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
451
                        input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
452
453
454
455
456
457
458
459

                elif k.startswith("activation"):
                    after_embedding_layers.append((k, self.activation))

                elif k.startswith('norm'):
                    after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
460
                    after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))
Anthony Larcher's avatar
Anthony Larcher committed
461

Anthony Larcher's avatar
Anthony Larcher committed
462
            self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
463
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
464

Anthony Larcher's avatar
Anthony Larcher committed
465

Anthony Larcher's avatar
Anthony Larcher committed
466
    def forward(self, x, is_eval=False):
467
468
469
        """

        :param x:
Anthony Larcher's avatar
Anthony Larcher committed
470
        :param is_eval:
471
472
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
473
474
        if self.preprocessor is not None:
            x = self.preprocessor(x)
Anthony Larcher's avatar
Anthony Larcher committed
475
            print("go through preprocessor")
Anthony Larcher's avatar
Anthony Larcher committed
476

Anthony Larcher's avatar
Anthony Larcher committed
477
        x = self.sequence_network(x)
478

Anthony Larcher's avatar
Anthony Larcher committed
479
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
480
481
482
483
        #mean = torch.mean(x, dim=2)
        #std = torch.std(x, dim=2)
        #x = torch.cat([mean, std], dim=1)
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
484
485
486
487

        x = self.before_speaker_embedding(x)
        if is_eval:
            return x
488

Anthony Larcher's avatar
Anthony Larcher committed
489
490
491
492
        if self.norm_embedding:
            x_norm = x.norm(p=2,dim=1, keepdim=True) / 10.
            x = torch.div(x, x_norm)

Anthony Larcher's avatar
Anthony Larcher committed
493
494
        x = self.after_speaker_embedding(x)
        return x
Anthony Larcher's avatar
Anthony Larcher committed
495

Anthony Larcher's avatar
Anthony Larcher committed
496

Anthony Larcher's avatar
Anthony Larcher committed
497
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
498
           dataset_yaml,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
499
           epochs=100,
Anthony Larcher's avatar
Anthony Larcher committed
500
           lr=0.01,
Anthony Larcher's avatar
Anthony Larcher committed
501
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
502
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
503
           tmp_model_name=None,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
504
           best_model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
505
           multi_gpu=True,
506
           clipping=False,
Anthony Larcher's avatar
Anthony Larcher committed
507
           opt='sgd',
Anthony Larcher's avatar
Anthony Larcher committed
508
509
           reset_parts=[],
           freeze_parts=[],
Anthony Larcher's avatar
Anthony Larcher committed
510
           num_thread=1):
511
512
    """

Anthony Larcher's avatar
Anthony Larcher committed
513
514
515
516
517
518
519
520
521
522
523
    :param speaker_number:
    :param dataset_yaml:
    :param epochs:
    :param lr:
    :param model_yaml:
    :param model_name:
    :param tmp_model_name:
    :param best_model_name:
    :param multi_gpu:
    :param clipping:
    :param num_thread:
524
525
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
526
527
528
529
    # Add for tensorboard
    # Writer will output to ./runs/ directory by default
    #writer = SummaryWriter("runs/xvectors_experiments_2")
    writer = None
Anthony Larcher's avatar
Anthony Larcher committed
530

531
532
533
    t= time.localtime()                                                                                                             
    logging.critical(f"Start process at {time.strftime('%H:%M:%S', t)}")

Anthony Larcher's avatar
Anthony Larcher committed
534
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Anthony Larcher's avatar
Anthony Larcher committed
535
536
    # Start from scratch
    if model_name is None:
Anthony Larcher's avatar
Anthony Larcher committed
537
        # Initialize a first model
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
538
        if model_yaml == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
539
            model = Xtractor(speaker_number, "xvector")
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
540
        elif model_yaml == "rawnet2":
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
541
            model = Xtractor(speaker_number, "rawnet2")
Anthony Larcher's avatar
Anthony Larcher committed
542
        else:
Anthony Larcher's avatar
Anthony Larcher committed
543
            model = Xtractor(speaker_number, model_yaml)
Anthony Larcher's avatar
Anthony Larcher committed
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
    # If we start from an existing model
    else:
        # Load the model
        logging.critical(f"*** Load model from = {model_name}")
        checkpoint = torch.load(model_name)
        model = Xtractor(speaker_number, model_yaml)

        """
        Here we remove all layers that we don't want to reload
        
        """
        pretrained_dict = checkpoint["model_state_dict"]
        for part in reset_parts:
            pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

Anthony Larcher's avatar
Anthony Larcher committed
559
        new_model_dict = model.state_dict()
Anthony Larcher's avatar
Anthony Larcher committed
560
561
562
563
564
565
566
        new_model_dict.update(pretrained_dict)
        model.load_state_dict(new_model_dict)

    # Freeze required layers
    for name, param in model.named_parameters():
        if name.split(".")[0] in freeze_parts:
            param.requires_grad = False
Anthony Larcher's avatar
Anthony Larcher committed
567

Anthony Larcher's avatar
Anthony Larcher committed
568

Anthony Larcher's avatar
Anthony Larcher committed
569
    if torch.cuda.device_count() > 1 and multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
570
571
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)
Anthony Larcher's avatar
Anthony Larcher committed
572
573
    else:
        print("Train on a single GPU")
Anthony Larcher's avatar
Anthony Larcher committed
574
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
575
576

    """
Anthony Larcher's avatar
Anthony Larcher committed
577
578
579
580
    Set the dataloaders according to the dataset_yaml
    
    First we load the dataframe from CSV file in order to split it for training and validation purpose
    Then we provide those two 
Anthony Larcher's avatar
Anthony Larcher committed
581
    """
Anthony Larcher's avatar
Anthony Larcher committed
582
583
584
585
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])
    training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"])
586

Anthony Larcher's avatar
Anthony Larcher committed
587
    torch.manual_seed(dataset_params['seed'])
588
589
590
    training_set = SideSet(dataset_yaml, 
                           set_type="train", 
                           dataset_df=training_df, 
Anthony Larcher's avatar
Anthony Larcher committed
591
592
                           chunk_per_segment=dataset_params['train']['chunk_per_segment'], 
                           overlap=dataset_params['train']['overlap'])
Anthony Larcher's avatar
Anthony Larcher committed
593
594
595
    training_loader = DataLoader(training_set,
                                 batch_size=dataset_params["batch_size"],
                                 shuffle=True,
Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
596
                                 drop_last=True,
Anthony Larcher's avatar
Anthony Larcher committed
597
                                 pin_memory=True,
Anthony Larcher's avatar
Anthony Larcher committed
598
                                 num_workers=num_thread)
599

Anthony Larcher's avatar
Anthony Larcher committed
600
601
602
    validation_set = SideSet(dataset_yaml, set_type="validation", dataset_df=validation_df)
    validation_loader = DataLoader(validation_set,
                                   batch_size=dataset_params["batch_size"],
Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
603
                                   drop_last=True,
Anthony Larcher's avatar
Anthony Larcher committed
604
                                   pin_memory=True,
Anthony Larcher's avatar
Anthony Larcher committed
605
                                   num_workers=num_thread)
Anthony Larcher's avatar
Anthony Larcher committed
606

Anthony Larcher's avatar
Anthony Larcher committed
607
608
609
610
611
612
    # Add for TensorBoard
    #dataiter = iter(training_loader)
    #data, labels = dataiter.next()
    #writer.add_graph(model, data)


Anthony Larcher's avatar
Anthony Larcher committed
613
614
615
    """
    Set the training options
    """
Anthony Larcher's avatar
Anthony Larcher committed
616
617
    if opt == 'sgd':
        _optimizer = torch.optim.SGD
Anthony Larcher's avatar
Anthony Larcher committed
618
        _options = {'lr': lr, 'momentum': 0.9}
Anthony Larcher's avatar
Anthony Larcher committed
619
620
    elif opt == 'adam':
        _optimizer = torch.optim.Adam
Anthony Larcher's avatar
Anthony Larcher committed
621
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
622
623
    elif opt == 'rmsprop':
        _optimizer = torch.optim.RMSprop
Anthony Larcher's avatar
Anthony Larcher committed
624
        _options = {'lr': lr}
Anthony Larcher's avatar
Anthony Larcher committed
625

Anthony Larcher's avatar
Anthony Larcher committed
626
627
628
629
630
631
632
633
634
635
636
637
638
639
    params = [
        {
            'params': [
                param for name, param in model.named_parameters() if 'bn' not in name
            ]
        },
        {
            'params': [
                param for name, param in model.named_parameters() if 'bn' in name
            ],
            'weight_decay': 0
        },
    ]

640
641
642
643
644
645
646
647
648
649
    #optimizer = torch.optim.Adam(params,
    #                             lr=0.001,
    #                             weight_decay=0.0001,
    #                             amsgrad=1)

    optimizer = torch.optim.SGD(params,
                                lr=lr,
                                momentum=0.9,
                                weight_decay=0.0005)
    print(f"Learning rate = {lr}")
Anthony Larcher's avatar
Anthony Larcher committed
650

Anthony Larcher's avatar
Anthony Larcher committed
651
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', verbose=True)
652

Anthony Larcher's avatar
sincxv    
Anthony Larcher committed
653
    best_accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
654
    best_accuracy_epoch = 1
Anthony Larcher's avatar
Anthony Larcher committed
655
    for epoch in range(1, epochs + 1):
656
        # Process one epoch and return the current model
Anthony Larcher's avatar
Anthony Larcher committed
657
658
659
660
661
662
        model = train_epoch(model,
                            epoch,
                            training_loader,
                            optimizer,
                            dataset_params["log_interval"],
                            device=device,
Anthony Larcher's avatar
Anthony Larcher committed
663
664
                            clipping=clipping,
                            tb_writer=writer)
665
666

        # Add the cross validation here
Anthony Larcher's avatar
Anthony Larcher committed
667
        accuracy, val_loss = cross_validation(model, validation_loader, device=device)
668
669
        t= time.localtime()
        logging.critical(f"***{time.strftime('%H:%M:%S', t)} Cross validation accuracy = {accuracy} %")
670
671
672
673

        # Decrease learning rate according to the scheduler policy
        scheduler.step(val_loss)

Anthony Larcher's avatar
Anthony Larcher committed
674
675
676
677
        # remember best accuracy and save checkpoint
        is_best = accuracy > best_accuracy
        best_accuracy = max(accuracy, best_accuracy)

Anthony Larcher's avatar
Anthony Larcher committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
        if type(model) is Xtractor:
            save_checkpoint({
                'epoch': epoch,
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'accuracy': best_accuracy,
                'scheduler': scheduler
            }, is_best, filename=tmp_model_name+".pt", best_filename=best_model_name+'.pt')
        else:
            save_checkpoint({
                'epoch': epoch,
                'model_state_dict': model.module.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'accuracy': best_accuracy,
                'scheduler': scheduler
            }, is_best, filename=tmp_model_name+".pt", best_filename=best_model_name+'.pt')
Anthony Larcher's avatar
Anthony Larcher committed
694
695
696

        if is_best:
            best_accuracy_epoch = epoch
Anthony Larcher's avatar
Anthony Larcher committed
697
    #writer.close()
698

699
700
701
    for ii in range(torch.cuda.device_count()):
        print(torch.cuda.memory_summary(ii))

Anthony Larcher's avatar
Anthony Larcher committed
702
    logging.critical(f"Best accuracy {best_accuracy * 100.} obtained at epoch {best_accuracy_epoch}")
703

Anthony Larcher's avatar
Anthony Larcher committed
704
def train_epoch(model, epoch, training_loader, optimizer, log_interval, device, clipping=False, tb_writer=None):
705
706
707
708
    """

    :param model:
    :param epoch:
Anthony Larcher's avatar
Anthony Larcher committed
709
    :param training_loader:
710
    :param optimizer:
Anthony Larcher's avatar
Anthony Larcher committed
711
712
713
    :param log_interval:
    :param device:
    :param clipping:
714
715
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
716
    model.train()
Anthony Larcher's avatar
Anthony Larcher committed
717
    criterion = torch.nn.CrossEntropyLoss(reduction='mean')
718
719

    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
720
    running_loss = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
721
    for batch_idx, (data, target) in enumerate(training_loader):
722
723
724
        target = target.squeeze()
        optimizer.zero_grad()
        output = model(data.to(device))
Anthony Larcher's avatar
Anthony Larcher committed
725
        #with GuruMeditation():
726
        loss = criterion(output, target.to(device))
Anthony Larcher's avatar
Anthony Larcher committed
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
        if not torch.isnan(loss):
            loss.backward()
            if clipping:
                torch.nn.utils.clip_grad_norm_(model.parameters(), 1.)
            running_loss += loss.item()
            optimizer.step()

            running_loss += loss.item()
            accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()

            if batch_idx % log_interval == 0:
                batch_size = target.shape[0]
                logging.critical('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tAccuracy: {:.3f}'.format(
                    epoch, batch_idx + 1, training_loader.__len__(),
                    100. * batch_idx / training_loader.__len__(), loss.item(),
                    100.0 * accuracy.item() / ((batch_idx + 1) * batch_size)))
                #tb_writer.add_scalar('training loss',
                #                     running_loss / log_interval,
                #                     epoch * len(training_loader) + batch_idx)
                #tb_writer.add_scalar('training_accuracy',
                #                      100.0 * accuracy.item() / ((batch_idx + 1) * batch_size),
                #                      epoch * len(training_loader) + batch_idx)

                # ...log a Matplotlib Figure showing the model's predictions on a
                # random mini-batch
                #tb_writer.add_figure('predictions vs. actuals',
                #                     plot_classes_preds(model, data.to(device), target.to(device)),
                #                     global_step=epoch * len(training_loader) + batch_idx)

756
757
758
759
760
761
762
763
764
765
766
767
768
        else:
            save_checkpoint({
                             'epoch': epoch,
                             'model_state_dict': model.state_dict(),
                             'optimizer_state_dict': optimizer.state_dict(),
                             'accuracy': 0.0,
                             'scheduler': 0.0
                             }, False, filename="model_loss_NAN.pt", best_filename='toto.pt')
            with open("batch_loss_NAN.pkl", "wb") as fh:
                pickle.dump(data.cpu(), fh)
            import sys
            sys.exit()
        running_loss = 0.0
769
770
771
    return model


Anthony Larcher's avatar
Anthony Larcher committed
772
def cross_validation(model, validation_loader, device):
773
774
775
    """

    :param model:
Anthony Larcher's avatar
Anthony Larcher committed
776
777
    :param validation_loader:
    :param device:
778
779
780
781
782
    :return:
    """
    model.eval()

    accuracy = 0.0
Anthony Larcher's avatar
Anthony Larcher committed
783
    loss = 0.0
784
    criterion = torch.nn.CrossEntropyLoss()
Anthony Larcher's avatar
Anthony Larcher committed
785
786
787
788
789
790
    with torch.no_grad():
        for batch_idx, (data, target) in enumerate(validation_loader):
            batch_size = target.shape[0]
            target = target.squeeze()
            output = model(data.to(device))
            accuracy += (torch.argmax(output.data, 1) == target.to(device)).sum()
791

Anthony Larcher's avatar
Anthony Larcher committed
792
793
            loss += criterion(output, target.to(device))
    
Anthony Larcher's avatar
Anthony Larcher committed
794
795
796
797
    return 100. * accuracy.cpu().numpy() / ((batch_idx + 1) * batch_size), \
           loss.cpu().numpy() / ((batch_idx + 1) * batch_size)


Anthony Larcher's avatar
Anthony Larcher committed
798
799
800
801
802
803
804
805
def extract_embeddings(idmap_name,
                       speaker_number,
                       model_filename,
                       model_yaml,
                       data_root_name ,
                       device,
                       file_extension="wav",
                       transform_pipeline=None):
Anthony Larcher's avatar
Anthony Larcher committed
806

Anthony Larcher's avatar
Anthony Larcher committed
807
    if isinstance(idmap_name, IdMap):
808
809
810
811
        idmap = idmap_name
    else:
        idmap = IdMap(idmap_name)

Anthony Larcher's avatar
Anthony Larcher committed
812
    # Create dataset to load the data
Anthony Larcher's avatar
Anthony Larcher committed
813
814
815
816
    dataset = IdMapSet(idmap_name=idmap_name,
                       data_root_path=data_root_name,
                       file_extension=file_extension,
                       transform_pipeline=transform_pipeline)
Anthony Larcher's avatar
Anthony Larcher committed
817
818

    # Load the model
819
820
821
822
823
824
825
    if isinstance(model_filename, str):
        checkpoint = torch.load(model_filename)
        model = Xtractor(speaker_number, model_archi=model_yaml)
        model.load_state_dict(checkpoint["model_state_dict"])
    else:
        model = model_filename

Anthony Larcher's avatar
Anthony Larcher committed
826
827
    model.eval()
    model.to(device)
828

Anthony Larcher's avatar
Anthony Larcher committed
829
830
831
    # Get the size of embeddings to extract
    name = list(model.before_speaker_embedding.state_dict().keys())[-1].split('.')[0] + '.weight'
    emb_size = model.before_speaker_embedding.state_dict()[name].shape[0]
Anthony Larcher's avatar
Anthony Larcher committed
832
    
Anthony Larcher's avatar
Anthony Larcher committed
833
    # Create the StatServer
Anthony Larcher's avatar
Anthony Larcher committed
834
    embeddings = StatServer()
Anthony Larcher's avatar
Anthony Larcher committed
835
836
837
838
839
840
    embeddings.modelset = idmap.leftids
    embeddings.segset = idmap.rightids
    embeddings.start = idmap.start
    embeddings.stop = idmap.stop
    embeddings.stat0 = numpy.ones((embeddings.modelset.shape[0], 1))
    embeddings.stat1 = numpy.ones((embeddings.modelset.shape[0], emb_size))
Anthony Larcher's avatar
Anthony Larcher committed
841

Anthony Larcher's avatar
Anthony Larcher committed
842
843
    # Process the data
    with torch.no_grad():
Anthony Larcher's avatar
Anthony Larcher committed
844
        for idx in tqdm.tqdm(range(len(dataset))):
Anthony Larcher's avatar
Anthony Larcher committed
845
            data, mod, seg, start, stop = dataset[idx]
Anthony Larcher's avatar
Anthony Larcher committed
846
            vec = model(data[None, :, :].to(device), is_eval=True)
Anthony Larcher's avatar
Anthony Larcher committed
847
848
849
850
851
852
            #current_idx = numpy.argwhere(numpy.logical_and(idmap.leftids == mod, idmap.rightids == seg))[0][0]
            embeddings.start[idx] = start
            embeddings.stop[idx] = stop
            embeddings.modelset[idx] = mod
            embeddings.segset[idx] = seg
            embeddings.stat1[idx, :] = vec.detach().cpu()
Anthony Larcher's avatar
Anthony Larcher committed
853
854
855
856

    return embeddings


Anthony Larcher's avatar
Anthony Larcher committed
857
858
859
860
861
862
863
864
865
866
867
868
def extract_sliding_embedding(idmap_name,
                              window_length,
                              sample_rate,
                              overlap,
                              speaker_number,
                              model_filename,
                              model_yaml,
                              data_root_name ,
                              device,
                              file_extension="wav",
                              transform_pipeline=None):

869
870
871
872
873
874
875
876
877
878
879

    # From the original IdMap, create the new one to extract x-vectors
    input_idmap = IdMap(idmap_name)

    # Create temporary lists
    nb_chunks = 0
    model_names = []
    segment_names = []
    starts = []
    stops = []
    for mod, seg, start, stop in zip(input_idmap.leftids, input_idmap.rightids, input_idmap.start, input_idmap.stop):
Anthony Larcher's avatar
Anthony Larcher committed
880

881
882
883
        # Compute the number of chunks to process
        chunk_starts = numpy.arange(start,
                                    stop - int(sample_rate * window_length),
Anthony Larcher's avatar
Anthony Larcher committed
884
                                    int(sample_rate * (window_length - overlap)))
885
886

        # Create a numpy array to store the current x-vectors
Anthony Larcher's avatar
Anthony Larcher committed
887
        model_names.append(numpy.array([mod + f"_{ii}" for ii in range(len(chunk_starts))]).astype("U"))
888
889
890
891
892
893
894
        segment_names.append(numpy.array([seg, ] * chunk_starts.shape[0]))
        starts.append(chunk_starts)
        stops.append(chunk_starts + sample_rate * window_length)

        nb_chunks += len(chunk_starts)

    sliding_idmap = IdMap()
Anthony Larcher's avatar
Anthony Larcher committed
895
896
897
898
    sliding_idmap.leftids = numpy.hstack(model_names)
    sliding_idmap.rightids = numpy.hstack(segment_names)
    sliding_idmap.start = numpy.hstack(starts)
    sliding_idmap.stop = numpy.hstack(stops)
899
    assert sliding_idmap.validate()
Anthony Larcher's avatar
Anthony Larcher committed
900

Anthony Larcher's avatar
Anthony Larcher committed
901
902
903
904
905
906
    embeddings = extract_embeddings(sliding_idmap,
                                 speaker_number,
                                 model_filename,
                                 model_yaml,
                                 data_root_name,
                                 device,
Anthony Larcher's avatar
Anthony Larcher committed
907
908
                                 file_extension=file_extension,
                                 transform_pipeline=transform_pipeline)
Anthony Larcher's avatar
Anthony Larcher committed
909
910

    return embeddings
Anthony Larcher's avatar
Anthony Larcher committed
911