xvector.py 78 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
25
Copyright 2014-2021 Anthony Larcher, Yevhenii Prokopalo
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
30

import pdb
import traceback
Anthony Larcher's avatar
Anthony Larcher committed
31
import logging
Anthony Larcher's avatar
debug    
Anthony Larcher committed
32
import math
Anthony Larcher's avatar
Anthony Larcher committed
33
import os
Anthony Larcher's avatar
Anthony Larcher committed
34
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
35
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
36
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
37
import shutil
Anthony Larcher's avatar
Anthony Larcher committed
38
import sys
39
import time
Anthony Larcher's avatar
Anthony Larcher committed
40
import torch
Anthony Larcher's avatar
debug    
Anthony Larcher committed
41
import torchaudio
Anthony Larcher's avatar
Anthony Larcher committed
42
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
43
44
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
45
from torchvision import transforms
Anthony Larcher's avatar
Anthony Larcher committed
46
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
47
from .xsets import SideSet
Anthony Larcher's avatar
debug    
Anthony Larcher committed
48
from .xsets import FileSet
Anthony Larcher's avatar
Anthony Larcher committed
49
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
50
from .xsets import IdMapSet_per_speaker
Anthony Larcher's avatar
debug    
Anthony Larcher committed
51
from .xsets import SpkSet
Anthony Larcher's avatar
Anthony Larcher committed
52
from .res_net import RawPreprocessor, ResBlockWFMS, ResBlock, PreResNet34, PreFastResNet34
Anthony Larcher's avatar
Anthony Larcher committed
53
from ..bosaris import IdMap
Anthony Larcher's avatar
Anthony Larcher committed
54
55
56
57
from ..bosaris import Key
from ..bosaris import Ndx
from ..bosaris.detplot import rocch
from ..bosaris.detplot import rocch2eer
Anthony Larcher's avatar
Anthony Larcher committed
58
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
59
from ..iv_scoring import cosine_scoring
Anthony Larcher's avatar
Anthony Larcher committed
60
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
61
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
62
from .sincnet import SincNet
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
63
64
65
from .loss import ArcLinear
from .loss import ArcFace
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
66
from .loss import ArcMarginProduct
Anthony Larcher's avatar
Anthony Larcher committed
67

Anthony Larcher's avatar
ddp    
Anthony Larcher committed
68

Anthony Larcher's avatar
Anthony Larcher committed
69
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
70

Anthony Larcher's avatar
Anthony Larcher committed
71
72
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
73
__copyright__ = "Copyright 2015-2021 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
74
75
76
77
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
78
79


Anthony Larcher's avatar
Anthony Larcher committed
80
81
logging.basicConfig(format='%(asctime)s %(message)s')

Anthony Larcher's avatar
Anthony Larcher committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

# Make PyTorch Deterministic
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
numpy.random.seed(0)


class GuruMeditation (torch.autograd.detect_anomaly):
    
    def __init__(self):
        super(GuruMeditation, self).__init__()

    def __enter__(self):
        super(GuruMeditation, self).__enter__()
        return self

    def __exit__(self, type, value, trace):
        super(GuruMeditation, self).__exit__()
        if isinstance(value, RuntimeError):
            traceback.print_tb(trace)
Anthony Larcher's avatar
Anthony Larcher committed
103
            self.halt(str(value))
Anthony Larcher's avatar
Anthony Larcher committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

    def halt(msg):
        print (msg)
        pdb.set_trace()


def select_n_random(data, labels, n=100):
    '''
    Selects n random datapoints and their corresponding labels from a dataset
    '''
    assert len(data) == len(labels)

    perm = torch.randperm(len(data))
    return data[perm][:n], labels[perm][:n]


def matplotlib_imshow(img, one_channel=False):
    if one_channel:
        img = img.mean(dim=0)
    img = img / 2 + 0.5     # unnormalize
    npimg = img.cpu().numpy()
    if one_channel:
        plt.imshow(npimg, cmap="Greys")
    else:
Anthony Larcher's avatar
Anthony Larcher committed
128
        plt.imshow(numpy.transpose(npimg, (1, 2, 0)))
Anthony Larcher's avatar
Anthony Larcher committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

def speech_to_probs(model, speech):
    '''
    Generates predictions and corresponding probabilities from a trained
    network and a list of images
    '''
    output = model(speech)
    # convert output probabilities to predicted class
    _, preds_tensor = torch.max(output, 1)
    preds = numpy.squeeze(preds_tensor.cpu().numpy())
    return preds, [torch.nn.functional.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]


def plot_classes_preds(model, speech, labels):
    '''
Anthony Larcher's avatar
Anthony Larcher committed
144

Anthony Larcher's avatar
Anthony Larcher committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    Generates matplotlib Figure using a trained network, along with images
    and labels from a batch, that shows the network's top prediction along
    with its probability, alongside the actual label, coloring this
    information based on whether the prediction was correct or not.
    Uses the "speech_to_probs" function.
    '''
    preds, probs = speech_to_probs(model, speech)
    # plot the images in the batch, along with predicted and true labels
    fig = plt.figure(figsize=(12, 48))
    for idx in numpy.arange(4):
         ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])
         #matplotlib_imshow(speech[idx], one_channel=True)
         ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
                                                           preds[idx],
                                                           probs[idx] * 100.0,
                                                           labels[idx]),
                                                           color=("green" if preds[idx]==labels[idx].item() else "red"))
    return fig


Anthony Larcher's avatar
debug    
Anthony Larcher committed
165
166
def test_metrics(model,
                 device,
Anthony Larcher's avatar
Anthony Larcher committed
167
168
169
                 speaker_number,
                 num_thread,
                 mixed_precision):
Anthony Larcher's avatar
Anthony Larcher committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
Anthony Larcher's avatar
debug    
Anthony Larcher committed
186
187
188
    idmap_test_filename = 'h5f/idmap_test.h5'
    ndx_test_filename = 'h5f/ndx_test.h5'
    key_test_filename = 'h5f/key_test.h5'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
189
    data_root_name='/lium/corpus/base/voxceleb1/test/wav'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
190
191

    transform_pipeline = dict()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
192
193
194
195
196
197
198
199
200
201
    #mfcc_config = dict()
    #mfcc_config['nb_filters'] = 81
    #mfcc_config['nb_ceps'] = 80
    #mfcc_config['lowfreq'] = 133.333
    #mfcc_config['maxfreq'] = 6855.4976
    #mfcc_config['win_time'] = 0.025
    #mfcc_config['shift'] = 0.01
    #mfcc_config['n_fft'] = 2048
    #transform_pipeline['MFCC'] = mfcc_config
    #transform_pipeline['CMVN'] = {}
Anthony Larcher's avatar
debug    
Anthony Larcher committed
202
203
204
205
206
207

    xv_stat = extract_embeddings(idmap_name=idmap_test_filename,
                                 speaker_number=speaker_number,
                                 model_filename=model,
                                 data_root_name=data_root_name,
                                 device=device,
Anthony Larcher's avatar
Anthony Larcher committed
208
209
210
                                 transform_pipeline=transform_pipeline,
                                 num_thread=num_thread,
                                 mixed_precision=mixed_precision)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
211
212
213
214
215
216
217
218
219
220
221
222

    scores = cosine_scoring(xv_stat,
                            xv_stat,
                            Ndx(ndx_test_filename),
                            wccn=None,
                            check_missing=True)

    tar, non = scores.get_tar_non(Key(key_test_filename))

    test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))

    return test_eer
Anthony Larcher's avatar
Anthony Larcher committed
223

Anthony Larcher's avatar
Anthony Larcher committed
224

225
def get_lr(optimizer):
Anthony Larcher's avatar
Anthony Larcher committed
226
227
228
229
230
    """

    :param optimizer:
    :return:
    """
231
232
233
234
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
235
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
236
237
238
239
240
241
242
243
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
244
245
246
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
247

Anthony Larcher's avatar
Anthony Larcher committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
class MeanStdPooling(torch.nn.Module):
    """
    Mean and Standard deviation pooling
    """
    def __init__(self):
        """

        """
        super(MeanStdPooling, self).__init__()
        pass

    def forward(self, x):
        """

        :param x:
        :return:
        """
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        return torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
268

Anthony Larcher's avatar
Anthony Larcher committed
269

Anthony Larcher's avatar
Anthony Larcher committed
270
271
272
273
274
275
276
277
278
279
280
class GruPooling(torch.nn.Module):
    """

    """
    def __init__(self, input_size, gru_node, nb_gru_layer):
        """

        :param input_size:
        :param gru_node:
        :param nb_gru_layer:
        """
Anthony Larcher's avatar
Anthony Larcher committed
281
        super(GruPooling, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
        self.lrelu_keras = torch.nn.LeakyReLU(negative_slope = 0.3)
        self.bn_before_gru = torch.nn.BatchNorm1d(num_features = input_size)
        self.gru = torch.nn.GRU(input_size = input_size,
                          hidden_size = gru_node,
                          num_layers = nb_gru_layer,
                          batch_first = True)

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = self.bn_before_gru(x)
        x = self.lrelu_keras(x)
        x = x.permute(0, 2, 1)  #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
        x = x[:,-1,:]

        return x

Anthony Larcher's avatar
Anthony Larcher committed
304

Anthony Larcher's avatar
Anthony Larcher committed
305
class Xtractor(torch.nn.Module):
306
307
308
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
309

Anthony Larcher's avatar
Anthony Larcher committed
310
311
312
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
313
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
314
                 norm_embedding=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
315
316
                 aam_margin=0.2,
                 aam_s=30):
Anthony Larcher's avatar
Anthony Larcher committed
317
318
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
319
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
320
        """
Anthony Larcher's avatar
Anthony Larcher committed
321
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
322
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
323
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
324
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
325

Anthony Larcher's avatar
Anthony Larcher committed
326
327
        print(f"Speaker number : {self.speaker_number}")

Anthony Larcher's avatar
Anthony Larcher committed
328
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
329

Anthony Larcher's avatar
Anthony Larcher committed
330
331
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
332
333
334
335
336
            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
debug    
Anthony Larcher committed
337
            self.feature_size = 80
Anthony Larcher's avatar
Anthony Larcher committed
338
339
            self.activation = torch.nn.LeakyReLU(0.2)

Anthony Larcher's avatar
debug    
Anthony Larcher committed
340
341
342
343
344
345
346
347
348
349
350
351
352
            # Feature extraction
            n_fft = 2048
            win_length = None
            hop_length = 128 
            n_mels = 80
            n_mfcc = 80

            self.MFCC = torchaudio.transforms.MFCC( 
                sample_rate=16000,
                n_mfcc=n_mfcc, melkwargs={'n_fft': n_fft, 'n_mels': n_mels, 'hop_length': hop_length})

            self.CMVN = torch.nn.InstanceNorm1d(80)

Anthony Larcher's avatar
Anthony Larcher committed
353
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
354

Anthony Larcher's avatar
xv    
Anthony Larcher committed
355
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
356
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
357
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
358
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
359
360
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
361
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
362
363
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
364
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
365
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
366
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
367
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
368
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
369
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
370
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
371
372
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
373
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
374
            self.stat_pooling_weight_decay = 0
Anthony Larcher's avatar
xv    
Anthony Larcher committed
375
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
376
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
377
378
            ]))

379
380
            self.embedding_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
381
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
382
383
384
385
386
                self.after_speaker_embedding = ArcMarginProduct(512,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)
Anthony Larcher's avatar
Anthony Larcher committed
387
388
389
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
390
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
391
392
393
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
394
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
395
396
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
397

Anthony Larcher's avatar
debug    
Anthony Larcher committed
398
399
400
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002
401
            self.embedding_size = 512
Anthony Larcher's avatar
Anthony Larcher committed
402

Anthony Larcher's avatar
Anthony Larcher committed
403
        elif model_archi == "resnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
404
            self.input_nbdim = 2
Anthony Larcher's avatar
debug    
Anthony Larcher committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418

            # Feature extraction
            n_fft = 2048 
            win_length = None 
            hop_length = 128  
            n_mels = 80 
            n_mfcc = 80 

            self.MFCC = torchaudio.transforms.MFCC( 
                sample_rate=16000,
                n_mfcc=n_mfcc, melkwargs={'n_fft': n_fft, 'n_mels': n_mels, 'hop_length': hop_length})

            self.CMVN = torch.nn.InstanceNorm1d(80)

Anthony Larcher's avatar
Anthony Larcher committed
419
420
421
422
423
424
425
426
427
            self.preprocessor = None
            self.sequence_network = PreResNet34()

            self.before_speaker_embedding = torch.nn.Linear(in_features = 5120,
                                                            out_features = 256)

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

428
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
429

430
            self.loss = "aam"
Anthony Larcher's avatar
Anthony Larcher committed
431
432
433
            self.after_speaker_embedding = ArcMarginProduct(256,
                                                            int(self.speaker_number),
                                                            s = 30.0,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
434
                                                            m = 0.20,
Anthony Larcher's avatar
Anthony Larcher committed
435
                                                            easy_margin = True)
Anthony Larcher's avatar
Anthony Larcher committed
436
437
438
439
440
441
442

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
443
444
        elif model_archi == "fastresnet34":
            self.input_nbdim = 2
Anthony Larcher's avatar
debug    
Anthony Larcher committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458

            # Feature extraction
            n_fft = 2048 
            win_length = None 
            hop_length = 128  
            n_mels = 80 
            n_mfcc = 80 

            self.MFCC = torchaudio.transforms.MFCC( 
                sample_rate=16000,
                n_mfcc=n_mfcc, melkwargs={'n_fft': n_fft, 'n_mels': n_mels, 'hop_length': hop_length})

            self.CMVN = torch.nn.InstanceNorm1d(80)

Anthony Larcher's avatar
Anthony Larcher committed
459
460
461
            self.preprocessor = None
            self.sequence_network = PreFastResNet34()

Anthony Larcher's avatar
Anthony Larcher committed
462
            self.before_speaker_embedding = torch.nn.Linear(in_features = 2560,
Anthony Larcher's avatar
Anthony Larcher committed
463
464
465
466
467
468
469
470
471
472
473
474
                                                            out_features = 256)

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

            self.embedding_size = 256

            self.loss = "aam"
            self.after_speaker_embedding = ArcMarginProduct(256,
                                                            int(self.speaker_number),
                                                            s = 30.0,
                                                            m = 0.20,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
475
                                                            easy_margin = False)
Anthony Larcher's avatar
Anthony Larcher committed
476
477
478
479
480
481

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00
Anthony Larcher's avatar
Anthony Larcher committed
482

Anthony Larcher's avatar
Anthony Larcher committed
483
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
484
485
486
487
488
489

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
490
491
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
492
493
494
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
495
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
496
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
497
498
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
516
517
518
519
520
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
521
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
522
523
524
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
525

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
526
527
528
529
530
531
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
532
        else:
Anthony Larcher's avatar
Anthony Larcher committed
533
534
            is_first_resblock = True

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
535
536
537
538
539
540
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
541

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
542
            self.loss = cfg["training"]["loss"]
Anthony Larcher's avatar
Anthony Larcher committed
543
            if self.loss == "aam":
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
544
545
                self.aam_margin = cfg["training"]["aam_margin"]
                self.aam_s = cfg["training"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
546

Anthony Larcher's avatar
Anthony Larcher committed
547
548
549
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
550
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
551
552
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
553
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
554
555
556
557
558
559
560
561
562
563
564
565
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
566
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
567
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
568
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
569
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
570
571
572
573
574
575
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
576
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
577
578

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
579
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
580
            """
Anthony Larcher's avatar
Anthony Larcher committed
581
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
582
583
584
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
585
586
587
588
589
590
591
592
593
594
595
596
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

Anthony Larcher's avatar
Anthony Larcher committed
597
598
599
600
601
            if cfg["segmental"][list(cfg["segmental"].keys())[0]].startswith("conv2D"):
                self.input_nbdim = 3
            elif cfg["segmental"][list(cfg["segmental"].keys())[0]].startswith("conv"):
                self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
602
603
604
            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
605
606
607
608
609
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

Anthony Larcher's avatar
Anthony Larcher committed
610
611
612
613
614
                elif k.startswith("conv2D"):
                    segmental_layers.append((k, torch.nn.Conv2d(in_channels=1,
                                                                out_channels=entry_conv_out_channels,
                                                                kernel_size=entry_conv_kernel_size,
                                                                padding=3,
Anthony Larcher's avatar
Anthony Larcher committed
615
                                                                stride=1)))
Anthony Larcher's avatar
Anthony Larcher committed
616

Anthony Larcher's avatar
Anthony Larcher committed
617
                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
618
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
619
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
620
621
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
622
623
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
624
625
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
626
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
627
628
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
629
630
631
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
632
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
633
634
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
635
636
637
638
639
640
                elif k.startswith('resblock'):
                    segmental_layers.append((ResBlock(cfg["segmental"][k]["input_channel"],
                                                      cfg["segmental"][k]["output_channel"],
                                                      is_first_resblock)))
                    is_first_resblock = False

Anthony Larcher's avatar
Anthony Larcher committed
641
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
642
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
643

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
644
645
646
647
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
648
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
649
650
651
652
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
653
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
654

Anthony Larcher's avatar
Anthony Larcher committed
655
656
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
657
            """
Anthony Larcher's avatar
Anthony Larcher committed
658
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
659
            """
Anthony Larcher's avatar
Anthony Larcher committed
660
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
661
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
662
663
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
664
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
665
666
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
667
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
668
669
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
670
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
671
672

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
673
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
674

Anthony Larcher's avatar
Anthony Larcher committed
675
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
676
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
677
678

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
679
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
680

Anthony Larcher's avatar
Anthony Larcher committed
681
            self.embedding_size = input_size
Anthony Larcher's avatar
Anthony Larcher committed
682
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
683
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
684

Anthony Larcher's avatar
Anthony Larcher committed
685
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
686
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
687
688
689
690
691
692
693
694
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
695
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
696
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
697

Anthony Larcher's avatar
Anthony Larcher committed
698
699
700
701
702
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
703

Anthony Larcher's avatar
Anthony Larcher committed
704
705
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
706

Anthony Larcher's avatar
Anthony Larcher committed
707
708
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
709

Anthony Larcher's avatar
Anthony Larcher committed
710
711
712
713
714
715
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
716
717
718
719
720
721
722
                self.norm_embedding = True
                self.after_speaker_embedding = ArcMarginProduct(input_size,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)

Anthony Larcher's avatar
arcface    
Anthony Larcher committed
723
724
725
726
                #self.after_speaker_embedding = ArcLinear(input_size,
                #                                         self.speaker_number,
                #                                         margin=self.aam_margin,
                #                                         s=self.aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
727
728
729
730
                #self.after_speaker_embedding = ArcFace(embedding_size=input_size,
                #                                       classnum=self.speaker_number,
                #                                       s=64.,
                #                                       m=0.5)
Anthony Larcher's avatar
Anthony Larcher committed
731

Anthony Larcher's avatar
Anthony Larcher committed
732
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
733

Anthony Larcher's avatar
Anthony Larcher committed
734

735
    def forward(self, x, is_eval=False, target=None, extract_after_pooling=False):
736
737
738
        """

        :param x:
739
        :param is_eval: False for training
740
741
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
742
743
744
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
debug    
Anthony Larcher committed
745
746
747
748
749
        else:
            x = self.MFCC(x)
            x = self.CMVN(x)
            #x = x.unsqueeze(1)

Anthony Larcher's avatar
Anthony Larcher committed
750
        x = self.sequence_network(x)
751

Anthony Larcher's avatar
Anthony Larcher committed
752
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
753
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
754

755
756
757
        if extract_after_pooling:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
758
        x = self.before_speaker_embedding(x)
759

Anthony Larcher's avatar
Anthony Larcher committed
760
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
761
            #x_norm = x.norm(p=2,dim=1, keepdim=True) / 10. # Why  10. ?
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
762
763
764
            #x_norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True, out=None, dtype=None)
            #x = torch.div(x, x_norm)
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
765

Anthony Larcher's avatar
Anthony Larcher committed
766
        if self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
767
            if is_eval:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
768
                return x
Anthony Larcher's avatar
debug    
Anthony Larcher committed
769
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
770
                return self.after_speaker_embedding(x), x
Anthony Larcher's avatar
Anthony Larcher committed
771

Anthony Larcher's avatar
Anthony Larcher committed
772
        elif self.loss == "aam":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
773
774
            if is_eval:
                x = torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
775
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
776
                x = self.after_speaker_embedding(torch.nn.functional.normalize(x, dim=1), target=target), torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
777

Anthony Larcher's avatar
Anthony Larcher committed
778
        return x
Anthony Larcher's avatar
Anthony Larcher committed
779

780
781
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
782
783
784
785
786
787
788
789
790
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
791

Anthony Larcher's avatar
Anthony Larcher committed
792
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
793
           dataset_yaml,
Anthony Larcher's avatar
Anthony Larcher committed
794
795
           epochs=None,
           lr=None,
Anthony Larcher's avatar
Anthony Larcher committed
796
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
797
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
798
799
800
801
           loss=None,
           aam_margin=None,
           aam_s=None,
           patience=None,
Anthony Larcher's avatar
Anthony Larcher committed
802
           tmp_model_name=None,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
803
           best_model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
804
           multi_gpu=True,
Anthony Larcher's avatar
Anthony Larcher committed
805
           mixed_precision=False,
806
           clipping=False,
Anthony Larcher's avatar
Anthony Larcher committed
807
           opt=None,
Anthony Larcher's avatar
Anthony Larcher committed
808
809
           reset_parts=[],
           freeze_parts=[],
Anthony Larcher's avatar
Anthony Larcher committed
810
811
812
813
           num_thread=None,
           write_batches_to_disk=False,
           load_batches_from_disk=False,
           tmp_batch_dir=None):
814
815
    """

Anthony Larcher's avatar
Anthony Larcher committed
816
817
818
819
820
821
    :param speaker_number:
    :param dataset_yaml:
    :param epochs:
    :param lr:
    :param model_yaml:
    :param model_name:
Anthony Larcher's avatar
Anthony Larcher committed
822
823
824
825
    :param loss:
    :param aam_margin:
    :param aam_s:
    :param patience:
Anthony Larcher's avatar
Anthony Larcher committed
826
827
828
829
    :param tmp_model_name:
    :param best_model_name:
    :param multi_gpu:
    :param clipping:
Anthony Larcher's avatar
Anthony Larcher committed
830
831
832
    :param opt:
    :param reset_parts:
    :param freeze_parts:
Anthony Larcher's avatar
Anthony Larcher committed
833
    :param num_thread:
834
835
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
836
837
838
839
    # Add for tensorboard
    # Writer will output to ./runs/ directory by default
    #writer = SummaryWriter("runs/xvectors_experiments_2")
    writer = None
Anthony Larcher's avatar
Anthony Larcher committed
840

Anthony Larcher's avatar
Anthony Larcher committed
841
842
843
    if write_batches_to_disk:
        load_batches_from_disk = True

Anthony Larcher's avatar
Anthony Larcher committed
844
    if num_thread is None:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
845
846
        import multiprocessing

Anthony Larcher's avatar
Anthony Larcher committed
847
848
        num_thread = multiprocessing.cpu_count()

Anthony Larcher's avatar
Anthony Larcher committed
849
    logging.critical(f"Use {num_thread} cpus")
Anthony Larcher's avatar
Anthony Larcher committed
850
    logging.critical(f"Start process at {time.strftime('%H:%M:%S', time.localtime())}")
851

Anthony Larcher's avatar
Anthony Larcher committed
852
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Anthony Larcher's avatar
Anthony Larcher committed
853
    # Start from scratch
Anthony Larcher's avatar
Anthony Larcher committed
854
    if model_name is None and model_yaml in ["xvector", "rawnet2", "resnet34", "fastresnet34"]:
Anthony Larcher's avatar
Anthony Larcher committed
855
        # Initialize a first model
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
856
        if model_yaml == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
857
            model = Xtractor(speaker_number, "xvector", loss=loss)
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
858
        elif model_yaml == "rawnet2":
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
859
            model = Xtractor(speaker_number, "rawnet2")
860
861
        elif model_yaml == "resnet34":
            model = Xtractor(speaker_number, "resnet34")
Anthony Larcher's avatar
Anthony Larcher committed
862
863
        elif model_yaml == "fastresnet34":
            model = Xtractor(speaker_number, "fastresnet34")
Anthony Larcher's avatar
Anthony Larcher committed
864
        model_archi = model_yaml
Anthony Larcher's avatar
Anthony Larcher committed
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
    else:
        with open(model_yaml, 'r') as fh:
            model_archi = yaml.load(fh, Loader=yaml.FullLoader)
            if epochs is None:
                epochs = model_archi["training"]["epochs"]
            if patience is None:
                patience = model_archi["training"]["patience"]
            if opt is None:
                opt = model_archi["training"]["opt"]
            if lr is None:
                lr = model_archi["training"]["lr"]
            if loss is None:
                loss = model_archi["training"]["loss"]
            if aam_margin is None and model_archi["training"]["loss"] == "aam":
                aam_margin = model_archi["training"]["aam_margin"]
            if aam_s is None and model_archi["training"]["loss"] == "aam":
                aam_s = model_archi["training"]["aam_s"]
            if tmp_model_name is None:
                tmp_model_name = model_archi["training"]["tmp_model_name"]
            if best_model_name is None:
                best_model_name = model_archi["training"]["best_model_name"]
            if multi_gpu is None:
                multi_gpu = model_archi["training"]["multi_gpu"]
            if clipping is None:
                clipping = model_archi["training"]["clipping"]

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
891
        if model_name is None:
Anthony Larcher's avatar
Anthony Larcher committed
892
893
894
            model = Xtractor(speaker_number, model_yaml)

         # If we start from an existing model
Anthony Larcher's avatar
Anthony Larcher committed
895
        else:
Anthony Larcher's avatar
Anthony Larcher committed
896
897
898
            # Load the model
            logging.critical(f"*** Load model from = {model_name}")
            checkpoint = torch.load(model_name)
Anthony Larcher's avatar
Anthony Larcher committed
899
            model = Xtractor(speaker_number, model_yaml)
Anthony Larcher's avatar
Anthony Larcher committed
900

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
901
902
            """
            Here we remove all layers that we don't want to reload
Anthony Larcher's avatar
Anthony Larcher committed
903
        
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
904
905
906
907
908
909
910
911
912
913
914
915
916
            """
            pretrained_dict = checkpoint["model_state_dict"]
            for part in reset_parts:
                pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

            new_model_dict = model.state_dict()
            new_model_dict.update(pretrained_dict)
            model.load_state_dict(new_model_dict)

        # Freeze required layers
        for name, param in model.named_parameters():
            if name.split(".")[0] in freeze_parts:
                param.requires_grad = False
Anthony Larcher's avatar
Anthony Larcher committed
917

Anthony Larcher's avatar
Anthony Larcher committed
918
919
920
921
922
923
924
    logging.critical(model)

    logging.critical("model_parameters_count: {:d}".format(
        sum(p.numel()
            for p in model.parameters()
            if p.requires_grad)))

Anthony Larcher's avatar
Anthony Larcher committed
925
    embedding_size = model.embedding_size
Anthony Larcher's avatar
Anthony Larcher committed
926

Anthony Larcher's avatar
Anthony Larcher committed
927
    if torch.cuda.device_count() > 1 and multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
928
929
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)
Anthony Larcher's avatar
Anthony Larcher committed
930
        #model = DDP(model)
Anthony Larcher's avatar
Anthony Larcher committed
931
932
    else:
        print("Train on a single GPU")
Anthony Larcher's avatar
Anthony Larcher committed
933
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
934

Anthony Larcher's avatar
debug    
Anthony Larcher committed
935
936
937
938
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])

Anthony Larcher's avatar
Anthony Larcher committed
939
940
941
    if load_batches_from_disk:
        train_batch_fn_format = tmp_batch_dir + "/train/train_{}_batch.h5"
        val_batch_fn_format = tmp_batch_dir + "/val/val_{}_batch.h5"
942

Anthony Larcher's avatar
Anthony Larcher committed
943
944
945
946
947
948
949
    if not load_batches_from_disk or write_batches_to_disk:
        """
        Set the dataloaders according to the dataset_yaml
        
        First we load the dataframe from CSV file in order to split it for training and validation purpose
        Then we provide those two 
        """
Anthony Larcher's avatar
Anthony Larcher committed
950

Anthony Larcher's avatar
minor    
Anthony Larcher committed
951
        if write_batches_to_disk or dataset_params["batch_size"] > 1:
Anthony Larcher's avatar
Anthony Larcher committed
952
953
954
955
            output_format = "numpy"
        else:
            output_format = "pytorch"

Anthony Larcher's avatar
Anthony Larcher committed
956
957
        training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"])
        torch.manual_seed(dataset_params['seed'])
Anthony Larcher's avatar
Anthony Larcher committed
958
959
960
961
962
963
        training_set = SpkSet(dataset_yaml,
                              set_type="train",
                              dataset_df=training_df,
                              overlap=dataset_params['train']['overlap'],
                              output_format="pytorch",
                              windowed=True)
Anthony Larcher's avatar
Anthony Larcher committed
964

Anthony Larcher's avatar
Anthony Larcher committed
965
966
967
968
969
970
        #training_set = SideSet(dataset_yaml,
        #                       set_type="train",
        #                       overlap=dataset_params['train']['overlap'],
        #                       dataset_df=training_df,
        #                       output_format="pytorch",
        #                       )
Anthony Larcher's avatar
Anthony Larcher committed
971

Anthony Larcher's avatar
Anthony Larcher committed
972

Anthony Larcher's avatar
Anthony Larcher committed
973
974
975
976
        validation_set = SideSet(dataset_yaml,
                                 set_type="validation",
                                 dataset_df=validation_df,
                                 output_format=output_format)
Anthony Larcher's avatar
Anthony Larcher committed
977
978


Anthony Larcher's avatar
Anthony Larcher committed
979
        if write_batches_to_disk:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
980
            logging.critical("Start writing batches on disk")
Anthony Larcher's avatar
Anthony Larcher committed
981
982
            training_set.write_to_disk(dataset_params["batch_size"], train_batch_fn_format, num_thread)
            validation_set.write_to_disk(dataset_params["batch_size"], val_batch_fn_format, num_thread)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
983
            logging.critical("---> Done")
Anthony Larcher's avatar
Anthony Larcher committed
984
985

    if load_batches_from_disk:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
986
987
988
989
990
991
992
993
994
995
996
997
998
        training_set = FileSet(train_batch_fn_format)
        validation_set = FileSet(train_batch_fn_format)
        batch_size = 1
    else:
        batch_size = dataset_params["batch_size"]


    print(f"Size of batches = {batch_size}")
    training_loader = DataLoader(training_set,
                                 batch_size=batch_size,
                                 shuffle=True,
                                 drop_last=True,
                                 pin_memory=True,
Anthony Larcher's avatar
Anthony Larcher committed
999
                                 num_workers=1,#num_thread,
Anthony Larcher's avatar
Anthony Larcher committed
1000
                                 persistent_workers=True)