xvector.py 77.9 KB
Newer Older
Anthony Larcher's avatar
Anthony Larcher committed
1
# coding: utf-8 -*-
Anthony Larcher's avatar
Anthony Larcher committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#
# This file is part of SIDEKIT.
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is a python package for speaker verification.
# Home page: http://www-lium.univ-lemans.fr/sidekit/
#
# SIDEKIT is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# SIDEKIT is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with SIDEKIT.  If not, see <http://www.gnu.org/licenses/>.

"""
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
25
Copyright 2014-2021 Anthony Larcher, Yevhenii Prokopalo
Anthony Larcher's avatar
Anthony Larcher committed
26
"""
Anthony Larcher's avatar
Anthony Larcher committed
27

Anthony Larcher's avatar
Anthony Larcher committed
28
29
30

import pdb
import traceback
Anthony Larcher's avatar
Anthony Larcher committed
31
import logging
Anthony Larcher's avatar
debug    
Anthony Larcher committed
32
import math
Anthony Larcher's avatar
Anthony Larcher committed
33
import os
Anthony Larcher's avatar
Anthony Larcher committed
34
import numpy
Anthony Larcher's avatar
Anthony Larcher committed
35
import pandas
Anthony Larcher's avatar
minor    
Anthony Larcher committed
36
import pickle
Anthony Larcher's avatar
Anthony Larcher committed
37
import shutil
Anthony Larcher's avatar
Anthony Larcher committed
38
import sys
39
import time
Anthony Larcher's avatar
Anthony Larcher committed
40
import torch
Anthony Larcher's avatar
debug    
Anthony Larcher committed
41
import torchaudio
Anthony Larcher's avatar
Anthony Larcher committed
42
import tqdm
Anthony Larcher's avatar
Anthony Larcher committed
43
44
import yaml

Anthony Larcher's avatar
Anthony Larcher committed
45
from collections import OrderedDict
Anthony Larcher's avatar
Anthony Larcher committed
46
from .xsets import SideSet
Anthony Larcher's avatar
debug    
Anthony Larcher committed
47
from .xsets import FileSet
Anthony Larcher's avatar
Anthony Larcher committed
48
from .xsets import IdMapSet
Anthony Larcher's avatar
Anthony Larcher committed
49
from .xsets import IdMapSet_per_speaker
Anthony Larcher's avatar
debug    
Anthony Larcher committed
50
from .xsets import SpkSet
Anthony Larcher's avatar
Anthony Larcher committed
51
from .res_net import RawPreprocessor, ResBlockWFMS, ResBlock, PreResNet34, PreFastResNet34
Anthony Larcher's avatar
Anthony Larcher committed
52
from ..bosaris import IdMap
Anthony Larcher's avatar
Anthony Larcher committed
53
54
from ..bosaris import Key
from ..bosaris import Ndx
Anthony Larcher's avatar
Anthony Larcher committed
55
from ..statserver import StatServer
Anthony Larcher's avatar
Anthony Larcher committed
56
from ..iv_scoring import cosine_scoring
Anthony Larcher's avatar
Anthony Larcher committed
57
from torch.utils.data import DataLoader
Anthony Larcher's avatar
Anthony Larcher committed
58
from sklearn.model_selection import train_test_split
Anthony Larcher's avatar
Anthony Larcher committed
59
from .sincnet import SincNet
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
60
61
from .loss import ArcLinear
from .loss import l2_norm
Anthony Larcher's avatar
Anthony Larcher committed
62
from .loss import ArcMarginProduct
Anthony Larcher's avatar
Anthony Larcher committed
63

Anthony Larcher's avatar
ddp    
Anthony Larcher committed
64

Anthony Larcher's avatar
Anthony Larcher committed
65
os.environ['MKL_THREADING_LAYER'] = 'GNU'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
66

Anthony Larcher's avatar
Anthony Larcher committed
67
68
__license__ = "LGPL"
__author__ = "Anthony Larcher"
Anthony Larcher's avatar
v1.3.7    
Anthony Larcher committed
69
__copyright__ = "Copyright 2015-2021 Anthony Larcher"
Anthony Larcher's avatar
Anthony Larcher committed
70
71
72
73
__maintainer__ = "Anthony Larcher"
__email__ = "anthony.larcher@univ-lemans.fr"
__status__ = "Production"
__docformat__ = 'reS'
Anthony Larcher's avatar
Anthony Larcher committed
74
75


Anthony Larcher's avatar
Anthony Larcher committed
76
77
logging.basicConfig(format='%(asctime)s %(message)s')

Anthony Larcher's avatar
Anthony Larcher committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

# Make PyTorch Deterministic
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
numpy.random.seed(0)


class GuruMeditation (torch.autograd.detect_anomaly):
    
    def __init__(self):
        super(GuruMeditation, self).__init__()

    def __enter__(self):
        super(GuruMeditation, self).__enter__()
        return self

    def __exit__(self, type, value, trace):
        super(GuruMeditation, self).__exit__()
        if isinstance(value, RuntimeError):
            traceback.print_tb(trace)
Anthony Larcher's avatar
Anthony Larcher committed
99
            self.halt(str(value))
Anthony Larcher's avatar
Anthony Larcher committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

    def halt(msg):
        print (msg)
        pdb.set_trace()


def select_n_random(data, labels, n=100):
    '''
    Selects n random datapoints and their corresponding labels from a dataset
    '''
    assert len(data) == len(labels)

    perm = torch.randperm(len(data))
    return data[perm][:n], labels[perm][:n]


def matplotlib_imshow(img, one_channel=False):
    if one_channel:
        img = img.mean(dim=0)
    img = img / 2 + 0.5     # unnormalize
    npimg = img.cpu().numpy()
    if one_channel:
        plt.imshow(npimg, cmap="Greys")
    else:
Anthony Larcher's avatar
Anthony Larcher committed
124
        plt.imshow(numpy.transpose(npimg, (1, 2, 0)))
Anthony Larcher's avatar
Anthony Larcher committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

def speech_to_probs(model, speech):
    '''
    Generates predictions and corresponding probabilities from a trained
    network and a list of images
    '''
    output = model(speech)
    # convert output probabilities to predicted class
    _, preds_tensor = torch.max(output, 1)
    preds = numpy.squeeze(preds_tensor.cpu().numpy())
    return preds, [torch.nn.functional.softmax(el, dim=0)[i].item() for i, el in zip(preds, output)]


def plot_classes_preds(model, speech, labels):
    '''
Anthony Larcher's avatar
Anthony Larcher committed
140

Anthony Larcher's avatar
Anthony Larcher committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    Generates matplotlib Figure using a trained network, along with images
    and labels from a batch, that shows the network's top prediction along
    with its probability, alongside the actual label, coloring this
    information based on whether the prediction was correct or not.
    Uses the "speech_to_probs" function.
    '''
    preds, probs = speech_to_probs(model, speech)
    # plot the images in the batch, along with predicted and true labels
    fig = plt.figure(figsize=(12, 48))
    for idx in numpy.arange(4):
         ax = fig.add_subplot(1, 4, idx+1, xticks=[], yticks=[])
         #matplotlib_imshow(speech[idx], one_channel=True)
         ax.set_title("{0}, {1:.1f}%\n(label: {2})".format(
                                                           preds[idx],
                                                           probs[idx] * 100.0,
                                                           labels[idx]),
                                                           color=("green" if preds[idx]==labels[idx].item() else "red"))
    return fig


Anthony Larcher's avatar
debug    
Anthony Larcher committed
161
162
def test_metrics(model,
                 device,
Anthony Larcher's avatar
Anthony Larcher committed
163
164
165
                 speaker_number,
                 num_thread,
                 mixed_precision):
Anthony Larcher's avatar
Anthony Larcher committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    """Compute model metrics

    Args:
        model ([type]): [description]
        validation_loader ([type]): [description]
        device ([type]): [description]
        speaker_number ([type]): [description]
        model_archi ([type]): [description]

    Raises:
        NotImplementedError: [description]
        NotImplementedError: [description]

    Returns:
        [type]: [description]
    """
Anthony Larcher's avatar
debug    
Anthony Larcher committed
182
183
184
    idmap_test_filename = 'h5f/idmap_test.h5'
    ndx_test_filename = 'h5f/ndx_test.h5'
    key_test_filename = 'h5f/key_test.h5'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
185
    data_root_name='/lium/corpus/base/voxceleb1/test/wav'
Anthony Larcher's avatar
debug    
Anthony Larcher committed
186
187

    transform_pipeline = dict()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
188
189
190
191
192
193
194
195
196
197
    #mfcc_config = dict()
    #mfcc_config['nb_filters'] = 81
    #mfcc_config['nb_ceps'] = 80
    #mfcc_config['lowfreq'] = 133.333
    #mfcc_config['maxfreq'] = 6855.4976
    #mfcc_config['win_time'] = 0.025
    #mfcc_config['shift'] = 0.01
    #mfcc_config['n_fft'] = 2048
    #transform_pipeline['MFCC'] = mfcc_config
    #transform_pipeline['CMVN'] = {}
Anthony Larcher's avatar
debug    
Anthony Larcher committed
198
199
200
201
202
203

    xv_stat = extract_embeddings(idmap_name=idmap_test_filename,
                                 speaker_number=speaker_number,
                                 model_filename=model,
                                 data_root_name=data_root_name,
                                 device=device,
Anthony Larcher's avatar
Anthony Larcher committed
204
205
206
                                 transform_pipeline=transform_pipeline,
                                 num_thread=num_thread,
                                 mixed_precision=mixed_precision)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
207
208
209
210
211
212
213
214
215
216
217
218

    scores = cosine_scoring(xv_stat,
                            xv_stat,
                            Ndx(ndx_test_filename),
                            wccn=None,
                            check_missing=True)

    tar, non = scores.get_tar_non(Key(key_test_filename))

    test_eer = eer(numpy.array(non).astype(numpy.double), numpy.array(tar).astype(numpy.double))

    return test_eer
Anthony Larcher's avatar
Anthony Larcher committed
219

Anthony Larcher's avatar
Anthony Larcher committed
220

221
def get_lr(optimizer):
Anthony Larcher's avatar
Anthony Larcher committed
222
223
224
225
226
    """

    :param optimizer:
    :return:
    """
227
228
229
230
    for param_group in optimizer.param_groups:
        return param_group['lr']


Anthony Larcher's avatar
Anthony Larcher committed
231
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', best_filename='model_best.pth.tar'):
Anthony Larcher's avatar
Anthony Larcher committed
232
233
234
235
236
237
238
239
    """

    :param state:
    :param is_best:
    :param filename:
    :param best_filename:
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
240
241
242
    torch.save(state, filename)
    if is_best:
        shutil.copyfile(filename, best_filename)
Anthony Larcher's avatar
Anthony Larcher committed
243

Anthony Larcher's avatar
Anthony Larcher committed
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
class MeanStdPooling(torch.nn.Module):
    """
    Mean and Standard deviation pooling
    """
    def __init__(self):
        """

        """
        super(MeanStdPooling, self).__init__()
        pass

    def forward(self, x):
        """

        :param x:
        :return:
        """
        mean = torch.mean(x, dim=2)
        std = torch.std(x, dim=2)
        return torch.cat([mean, std], dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
264

Anthony Larcher's avatar
Anthony Larcher committed
265

Anthony Larcher's avatar
Anthony Larcher committed
266
267
268
269
270
271
272
273
274
275
276
class GruPooling(torch.nn.Module):
    """

    """
    def __init__(self, input_size, gru_node, nb_gru_layer):
        """

        :param input_size:
        :param gru_node:
        :param nb_gru_layer:
        """
Anthony Larcher's avatar
Anthony Larcher committed
277
        super(GruPooling, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
        self.lrelu_keras = torch.nn.LeakyReLU(negative_slope = 0.3)
        self.bn_before_gru = torch.nn.BatchNorm1d(num_features = input_size)
        self.gru = torch.nn.GRU(input_size = input_size,
                          hidden_size = gru_node,
                          num_layers = nb_gru_layer,
                          batch_first = True)

    def forward(self, x):
        """

        :param x:
        :return:
        """
        x = self.bn_before_gru(x)
        x = self.lrelu_keras(x)
        x = x.permute(0, 2, 1)  #(batch, filt, time) >> (batch, time, filt)
        self.gru.flatten_parameters()
        x, _ = self.gru(x)
        x = x[:,-1,:]

        return x

Anthony Larcher's avatar
Anthony Larcher committed
300

Anthony Larcher's avatar
Anthony Larcher committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
class PreEmphasis(torch.nn.Module):

    def __init__(self, coef: float = 0.97):
        super().__init__()
        self.coef = coef
        # make kernel
        # In pytorch, the convolution operation uses cross-correlation. So, filter is flipped.
        self.register_buffer(
            'flipped_filter', torch.FloatTensor([-self.coef, 1.]).unsqueeze(0).unsqueeze(0)
        )

    def forward(self, input: torch.tensor) -> torch.tensor:
        assert len(input.size()) == 2, 'The number of dimensions of input tensor must be 2!'
        # reflect padding to match lengths of in/out
        input = input.unsqueeze(1)
        input = torch.nn.functional.pad(input, (1, 0), 'reflect')
        return torch.nn.functional.conv1d(input, self.flipped_filter).squeeze(1)


class MfccFrontEnd(torch.nn.Module):
    """

    """

    def __init__(self,
                 pre_emphasis=0.97,
                 sample_rate=16000,
                 n_fft=2048,
                 f_min=133.333,
                 f_max=6855.4976,
                 win_length=1024,
                 window_fn=torch.hann_window,
                 hop_length=512,
                 power=2.0,
                 n_mels=100,
                 n_mfcc=80):

        super(MfccFrontEnd, self).__init__()

        self.pre_emphasis = pre_emphasis
        self.sample_rate = sample_rate
        self.n_fft = n_fft
        self.f_min = f_min
        self.f_max = f_max
        self.win_length = win_length
        self.window_fn=window_fn
        self.hop_length = hop_length
        self.power=power
        self.window_fn = window_fn
        self.n_mels = n_mels
        self.n_mfcc = n_mfcc

        self.PreEmphasis = PreEmphasis(self.pre_emphasis)

Anthony Larcher's avatar
Anthony Larcher committed
355
356
357
358
359
360
361
362
        self.melkwargs = {"n_fft":self.n_fft,
                          "f_min":self.f_min,
                          "f_max":self.f_max,
                          "win_length":self.win_length,
                          "window_fn":self.window_fn,
                          "hop_length":self.hop_length,
                          "power":self.power,
                          "n_mels":self.n_mels}
Anthony Larcher's avatar
Anthony Larcher committed
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

        self.MFCC = torchaudio.transforms.MFCC(
            sample_rate=self.sample_rate,
            n_mfcc=self.n_mfcc,
            dct_type=2,
            log_mels=True,
            melkwargs=self.melkwargs)

        self.CMVN = torch.nn.InstanceNorm1d(self.n_mfcc)

    def forward(self, x):
        """

        :param x:
        :return:
        """
        with torch.no_grad():
            with torch.cuda.amp.autocast(enabled=False):
                mfcc = self.PreEmphasis(x)
                mfcc = self.MFCC(mfcc)
                mfcc = self.CMVN(mfcc)
        return mfcc

Anthony Larcher's avatar
Anthony Larcher committed
386
class Xtractor(torch.nn.Module):
387
388
389
    """
    Class that defines an x-vector extractor based on 5 convolutional layers and a mean standard deviation pooling
    """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
390

Anthony Larcher's avatar
Anthony Larcher committed
391
392
393
    def __init__(self,
                 speaker_number,
                 model_archi="xvector",
Anthony Larcher's avatar
Anthony Larcher committed
394
                 loss=None,
Anthony Larcher's avatar
Anthony Larcher committed
395
                 norm_embedding=False,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
396
397
                 aam_margin=0.2,
                 aam_s=30):
Anthony Larcher's avatar
Anthony Larcher committed
398
399
        """
        If config is None, default architecture is created
Anthony Larcher's avatar
Anthony Larcher committed
400
        :param model_archi:
Anthony Larcher's avatar
Anthony Larcher committed
401
        """
Anthony Larcher's avatar
Anthony Larcher committed
402
        super(Xtractor, self).__init__()
Anthony Larcher's avatar
Anthony Larcher committed
403
        self.speaker_number = speaker_number
Anthony Larcher's avatar
Anthony Larcher committed
404
        self.feature_size = None
Anthony Larcher's avatar
Anthony Larcher committed
405
        self.norm_embedding = norm_embedding
Anthony Larcher's avatar
Anthony Larcher committed
406

Anthony Larcher's avatar
Anthony Larcher committed
407
408
        print(f"Speaker number : {self.speaker_number}")

Anthony Larcher's avatar
Anthony Larcher committed
409
        if model_archi == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
410

Anthony Larcher's avatar
Anthony Larcher committed
411
412
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
413
414
415
416
417
            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
418
419
            self.activation = torch.nn.LeakyReLU(0.2)

Anthony Larcher's avatar
Anthony Larcher committed
420
            self.preprocessor = MfccFrontEnd()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
421
            self.feature_size = self.preprocessor.n_mfcc
Anthony Larcher's avatar
Anthony Larcher committed
422

Anthony Larcher's avatar
xv    
Anthony Larcher committed
423
            self.sequence_network = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
424
                ("conv1", torch.nn.Conv1d(self.feature_size, 512, 5, dilation=1)),
Anthony Larcher's avatar
Anthony Larcher committed
425
                ("activation1", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
426
                ("batch_norm1", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
427
428
                ("conv2", torch.nn.Conv1d(512, 512, 3, dilation=2)),
                ("activation2", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
429
                ("batch_norm2", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
430
431
                ("conv3", torch.nn.Conv1d(512, 512, 3, dilation=3)),
                ("activation3", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
432
                ("batch_norm3", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
433
                ("conv4", torch.nn.Conv1d(512, 512, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
434
                ("activation4", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
435
                ("batch_norm4", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
436
                ("conv5", torch.nn.Conv1d(512, 1536, 1)),
Anthony Larcher's avatar
Anthony Larcher committed
437
                ("activation5", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
438
                ("batch_norm5", torch.nn.BatchNorm1d(1536))
Anthony Larcher's avatar
Anthony Larcher committed
439
440
            ]))

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
441
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
442
            self.stat_pooling_weight_decay = 0
Anthony Larcher's avatar
xv    
Anthony Larcher committed
443
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
Anthony Larcher's avatar
Anthony Larcher committed
444
                ("linear6", torch.nn.Linear(3072, 512))
Anthony Larcher's avatar
Anthony Larcher committed
445
446
            ]))

447
448
            self.embedding_size = 512

Anthony Larcher's avatar
Anthony Larcher committed
449
            if self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
450
451
452
453
454
                self.after_speaker_embedding = ArcMarginProduct(512,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)
Anthony Larcher's avatar
Anthony Larcher committed
455
456
457
            elif self.loss == "cce":
                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict([
                    ("activation6", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
458
                    ("batch_norm6", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
459
460
461
                    ("dropout6", torch.nn.Dropout(p=0.05)),
                    ("linear7", torch.nn.Linear(512, 512)),
                    ("activation7", torch.nn.LeakyReLU(0.2)),
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
462
                    ("batch_norm7", torch.nn.BatchNorm1d(512)),
Anthony Larcher's avatar
Anthony Larcher committed
463
464
                    ("linear8", torch.nn.Linear(512, int(self.speaker_number)))
                ]))
Anthony Larcher's avatar
Anthony Larcher committed
465

Anthony Larcher's avatar
debug    
Anthony Larcher committed
466
467
468
            self.sequence_network_weight_decay = 0.0002
            self.before_speaker_embedding_weight_decay = 0.002
            self.after_speaker_embedding_weight_decay = 0.002
469
            self.embedding_size = 512
Anthony Larcher's avatar
Anthony Larcher committed
470

Anthony Larcher's avatar
Anthony Larcher committed
471
        elif model_archi == "resnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
472

Anthony Larcher's avatar
Anthony Larcher committed
473
            self.preprocessor = MfccFrontEnd()
Anthony Larcher's avatar
Anthony Larcher committed
474
475
476
477
478
479
480
481
            self.sequence_network = PreResNet34()

            self.before_speaker_embedding = torch.nn.Linear(in_features = 5120,
                                                            out_features = 256)

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

482
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
483

484
            self.loss = "aam"
Anthony Larcher's avatar
Anthony Larcher committed
485
486
487
            self.after_speaker_embedding = ArcMarginProduct(256,
                                                            int(self.speaker_number),
                                                            s = 30.0,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
488
                                                            m = 0.20,
Anthony Larcher's avatar
Anthony Larcher committed
489
                                                            easy_margin = True)
Anthony Larcher's avatar
Anthony Larcher committed
490
491
492
493
494
495
496

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
497
        elif model_archi == "fastresnet34":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
498

Anthony Larcher's avatar
Anthony Larcher committed
499
            self.preprocessor = MfccFrontEnd()
Anthony Larcher's avatar
Anthony Larcher committed
500
            self.sequence_network = PreFastResNet34()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
501
            self.embedding_size = 256
Anthony Larcher's avatar
Anthony Larcher committed
502

Anthony Larcher's avatar
Anthony Larcher committed
503
            self.before_speaker_embedding = torch.nn.Linear(in_features = 2560,
Anthony Larcher's avatar
Anthony Larcher committed
504
505
506
507
508
509
                                                            out_features = 256)

            self.stat_pooling = MeanStdPooling()
            self.stat_pooling_weight_decay = 0

            self.loss = "aam"
Anthony Larcher's avatar
debug    
Anthony Larcher committed
510
            self.after_speaker_embedding = ArcMarginProduct(self.embedding_size,
Anthony Larcher's avatar
Anthony Larcher committed
511
                                                            int(self.speaker_number),
Anthony Larcher's avatar
debug    
Anthony Larcher committed
512
513
                                                            s = 30,
                                                            m = 0.2,
Anthony Larcher's avatar
debug    
Anthony Larcher committed
514
                                                            easy_margin = False)
Anthony Larcher's avatar
Anthony Larcher committed
515
516
517
518
519
520

            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00
Anthony Larcher's avatar
Anthony Larcher committed
521

Anthony Larcher's avatar
Anthony Larcher committed
522
        elif model_archi == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
523
524
525
526
527
528

            if loss not in ["cce", 'aam']:
                raise NotImplementedError(f"The valid loss are for now cce and aam ")
            else:
                self.loss = loss

Anthony Larcher's avatar
Anthony Larcher committed
529
530
            self.input_nbdim = 2

Anthony Larcher's avatar
Anthony Larcher committed
531
532
533
            filts = [128, [128, 128], [128, 256], [256, 256]]
            self.norm_embedding = True

Anthony Larcher's avatar
Anthony Larcher committed
534
            self.preprocessor = RawPreprocessor(nb_samp=48000,
Anthony Larcher's avatar
Anthony Larcher committed
535
                                                in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
536
537
                                                out_channels=filts[0],
                                                kernel_size=3)
Anthony Larcher's avatar
Anthony Larcher committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

            self.sequence_network = torch.nn.Sequential(OrderedDict([
                ("block0", ResBlockWFMS(nb_filts=filts[1], first=True)),
                ("block1", ResBlockWFMS(nb_filts=filts[1])),
                ("block2", ResBlockWFMS(nb_filts=filts[2])),
                ("block3", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block4", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]])),
                ("block5", ResBlockWFMS(nb_filts=[filts[2][1], filts[2][1]]))
            ]))

            self.stat_pooling = GruPooling(input_size=filts[2][-1],
                                           gru_node=1024,
                                           nb_gru_layer=1)

            self.before_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                            out_features = 1024)

Anthony Larcher's avatar
Anthony Larcher committed
555
556
557
558
559
            if self.loss == "aam":
                if loss == 'aam':
                    self.after_speaker_embedding = ArcLinear(1024,
                                                             int(self.speaker_number),
                                                             margin=aam_margin, s=aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
560
            elif self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
561
562
563
                self.after_speaker_embedding = torch.nn.Linear(in_features = 1024,
                                                               out_features = int(self.speaker_number),
                                                               bias = True)
Anthony Larcher's avatar
Anthony Larcher committed
564

Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
565
566
567
568
569
570
            self.preprocessor_weight_decay = 0.000
            self.sequence_network_weight_decay = 0.000
            self.stat_pooling_weight_decay = 0.000
            self.before_speaker_embedding_weight_decay = 0.00
            self.after_speaker_embedding_weight_decay = 0.00

Anthony Larcher's avatar
Anthony Larcher committed
571
        else:
Anthony Larcher's avatar
Anthony Larcher committed
572
573
            is_first_resblock = True

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
574
575
576
577
578
579
            if isinstance(model_archi, dict):
                cfg = model_archi
            else:
                # Load Yaml configuration
                with open(model_archi, 'r') as fh:
                    cfg = yaml.load(fh, Loader=yaml.FullLoader)
Anthony Larcher's avatar
Anthony Larcher committed
580

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
581
            self.loss = cfg["training"]["loss"]
Anthony Larcher's avatar
Anthony Larcher committed
582
            if self.loss == "aam":
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
583
584
                self.aam_margin = cfg["training"]["aam_margin"]
                self.aam_s = cfg["training"]["aam_s"]
Anthony Larcher's avatar
Anthony Larcher committed
585

Anthony Larcher's avatar
Anthony Larcher committed
586
587
588
            """
            Prepare Preprocessor
            """
Anthony Larcher's avatar
Anthony Larcher committed
589
            self.preprocessor = None
Anthony Larcher's avatar
Anthony Larcher committed
590
591
            if "preprocessor" in cfg:
                if cfg['preprocessor']["type"] == "sincnet":
Anthony Larcher's avatar
Anthony Larcher committed
592
                    self.preprocessor = SincNet(
Anthony Larcher's avatar
Anthony Larcher committed
593
594
595
596
597
598
599
600
601
602
603
604
                        waveform_normalize=cfg['preprocessor']["waveform_normalize"],
                        sample_rate=cfg['preprocessor']["sample_rate"],
                        min_low_hz=cfg['preprocessor']["min_low_hz"],
                        min_band_hz=cfg['preprocessor']["min_band_hz"],
                        out_channels=cfg['preprocessor']["out_channels"],
                        kernel_size=cfg['preprocessor']["kernel_size"],
                        stride=cfg['preprocessor']["stride"],
                        max_pool=cfg['preprocessor']["max_pool"],
                        instance_normalize=cfg['preprocessor']["instance_normalize"],
                        activation=cfg['preprocessor']["activation"],
                        dropout=cfg['preprocessor']["dropout"]
                    )
Anthony Larcher's avatar
Anthony Larcher committed
605
                    self.feature_size = self.preprocessor.dimension
Anthony Larcher's avatar
Anthony Larcher committed
606
                elif cfg['preprocessor']["type"] == "rawnet2":
Anthony Larcher's avatar
Anthony Larcher committed
607
                    self.preprocessor = RawPreprocessor(nb_samp=int(cfg['preprocessor']["sampling_frequency"] * cfg['preprocessor']["duration"]),
Anthony Larcher's avatar
Anthony Larcher committed
608
                                                        in_channels=1,
Anthony Larcher's avatar
Anthony Larcher committed
609
610
611
612
613
614
                                                        out_channels=cfg["feature_size"],
                                                        kernel_size=cfg['preprocessor']["kernel_size"],
                                                        stride=cfg['preprocessor']["stride"],
                                                        padding=cfg['preprocessor']["padding"],
                                                        dilation=cfg['preprocessor']["dilation"])
                    self.feature_size = cfg["feature_size"]
Anthony Larcher's avatar
Anthony Larcher committed
615
                self.preprocessor_weight_decay = 0.000
Anthony Larcher's avatar
Anthony Larcher committed
616
617

            """
Anthony Larcher's avatar
minor    
Anthony Larcher committed
618
            Prepare sequence network
Anthony Larcher's avatar
Anthony Larcher committed
619
            """
Anthony Larcher's avatar
Anthony Larcher committed
620
            # Get Feature size
Anthony Larcher's avatar
Anthony Larcher committed
621
622
623
            if self.feature_size is None:
                self.feature_size = cfg["feature_size"]

Anthony Larcher's avatar
Anthony Larcher committed
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
            input_size = self.feature_size

            # Get activation function
            if cfg["activation"] == 'LeakyReLU':
                self.activation = torch.nn.LeakyReLU(0.2)
            elif cfg["activation"] == 'PReLU':
                self.activation = torch.nn.PReLU()
            elif cfg["activation"] == 'ReLU6':
                self.activation = torch.nn.ReLU6()
            else:
                self.activation = torch.nn.ReLU()

            # Create sequential object for the first part of the network
            segmental_layers = []
            for k in cfg["segmental"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
639
640
641
642
643
                if k.startswith("lin"):
                    segmental_layers.append((k, torch.nn.Linear(input_size,
                                                                cfg["segmental"][k]["output"])))
                    input_size = cfg["segmental"][k]["output"]

Anthony Larcher's avatar
Anthony Larcher committed
644
645
646
647
648
                elif k.startswith("conv2D"):
                    segmental_layers.append((k, torch.nn.Conv2d(in_channels=1,
                                                                out_channels=entry_conv_out_channels,
                                                                kernel_size=entry_conv_kernel_size,
                                                                padding=3,
Anthony Larcher's avatar
Anthony Larcher committed
649
                                                                stride=1)))
Anthony Larcher's avatar
Anthony Larcher committed
650

Anthony Larcher's avatar
Anthony Larcher committed
651
                elif k.startswith("conv"):
Anthony Larcher's avatar
Anthony Larcher committed
652
                    segmental_layers.append((k, torch.nn.Conv1d(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
653
                                                                cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
654
655
                                                                kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
656
657
                    input_size = cfg["segmental"][k]["output_channels"]

Anthony Larcher's avatar
Anthony Larcher committed
658
659
                elif k.startswith("ctrans"):
                    segmental_layers.append((k, torch.nn.ConvTranspose1d(input_size,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
660
                                                                         cfg["segmental"][k]["output_channels"],
Anthony Larcher's avatar
Anthony Larcher committed
661
662
                                                                         kernel_size=cfg["segmental"][k]["kernel_size"],
                                                                         dilation=cfg["segmental"][k]["dilation"])))
Anthony Larcher's avatar
Anthony Larcher committed
663
664
665
                elif k.startswith("activation"):
                    segmental_layers.append((k, self.activation))

Anthony Larcher's avatar
Anthony Larcher committed
666
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
Anthony Larcher committed
667
668
                    segmental_layers.append((k, torch.nn.BatchNorm1d(input_size)))

Anthony Larcher's avatar
Anthony Larcher committed
669
670
671
672
673
674
                elif k.startswith('resblock'):
                    segmental_layers.append((ResBlock(cfg["segmental"][k]["input_channel"],
                                                      cfg["segmental"][k]["output_channel"],
                                                      is_first_resblock)))
                    is_first_resblock = False

Anthony Larcher's avatar
Anthony Larcher committed
675
            self.sequence_network = torch.nn.Sequential(OrderedDict(segmental_layers))
Anthony Larcher's avatar
Anthony Larcher committed
676
            self.sequence_network_weight_decay = cfg["segmental"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
677

Anthony Larcher's avatar
pooling    
Anthony Larcher committed
678
679
680
681
            """
            Pooling
            """
            self.stat_pooling = MeanStdPooling()
Anthony Larcher's avatar
Anthony Larcher committed
682
            tmp_input_size = input_size * 2
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
683
684
685
686
            if cfg["stat_pooling"]["type"] == "GRU":
                self.stat_pooling = GruPooling(input_size=cfg["stat_pooling"]["input_size"],
                                               gru_node=cfg["stat_pooling"]["gru_node"],
                                               nb_gru_layer=cfg["stat_pooling"]["nb_gru_layer"])
Anthony Larcher's avatar
debug    
Anthony Larcher committed
687
                tmp_input_size = cfg["stat_pooling"]["gru_node"]
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
688

Anthony Larcher's avatar
Anthony Larcher committed
689
690
            self.stat_pooling_weight_decay = cfg["stat_pooling"]["weight_decay"]

Anthony Larcher's avatar
Anthony Larcher committed
691
            """
Anthony Larcher's avatar
Anthony Larcher committed
692
            Prepare last part of the network (after pooling)
Anthony Larcher's avatar
Anthony Larcher committed
693
            """
Anthony Larcher's avatar
Anthony Larcher committed
694
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
695
            input_size = tmp_input_size
Anthony Larcher's avatar
xv    
Anthony Larcher committed
696
697
            before_embedding_layers = []
            for k in cfg["before_embedding"].keys():
Anthony Larcher's avatar
Anthony Larcher committed
698
                if k.startswith("lin"):
Anthony Larcher's avatar
Anthony Larcher committed
699
700
                    if cfg["before_embedding"][k]["output"] == "speaker_number":
                        before_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
Anthony Larcher's avatar
Anthony Larcher committed
701
                    else:
Anthony Larcher's avatar
Anthony Larcher committed
702
703
                        before_embedding_layers.append((k, torch.nn.Linear(input_size,
                                                                           cfg["before_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
704
                        input_size = cfg["before_embedding"][k]["output"]
Anthony Larcher's avatar
Anthony Larcher committed
705
706

                elif k.startswith("activation"):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
707
                    before_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
Anthony Larcher committed
708

Anthony Larcher's avatar
Anthony Larcher committed
709
                elif k.startswith('batch_norm'):
Anthony Larcher's avatar
xv    
Anthony Larcher committed
710
                    before_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
Anthony Larcher committed
711
712

                elif k.startswith('dropout'):
Anthony Larcher's avatar
Anthony Larcher committed
713
                    before_embedding_layers.append((k, torch.nn.Dropout(p=cfg["before_embedding"][k])))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
714

Anthony Larcher's avatar
Anthony Larcher committed
715
            self.embedding_size = input_size
Anthony Larcher's avatar
Anthony Larcher committed
716
            self.before_speaker_embedding = torch.nn.Sequential(OrderedDict(before_embedding_layers))
Anthony Larcher's avatar
Anthony Larcher committed
717
            self.before_speaker_embedding_weight_decay = cfg["before_embedding"]["weight_decay"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
718

Anthony Larcher's avatar
Anthony Larcher committed
719
            # if loss_criteria is "cce"
Anthony Larcher's avatar
xv    
Anthony Larcher committed
720
            # Create sequential object for the second part of the network
Anthony Larcher's avatar
Anthony Larcher committed
721
722
723
724
725
726
727
728
            if self.loss == "cce":
                after_embedding_layers = []
                for k in cfg["after_embedding"].keys():
                    if k.startswith("lin"):
                        if cfg["after_embedding"][k]["output"] == "speaker_number":
                            after_embedding_layers.append((k, torch.nn.Linear(input_size, self.speaker_number)))
                        else:
                            after_embedding_layers.append((k, torch.nn.Linear(input_size,
Anthony Larcher's avatar
Anthony Larcher committed
729
                                                                          cfg["after_embedding"][k]["output"])))
Anthony Larcher's avatar
Anthony Larcher committed
730
                            input_size = cfg["after_embedding"][k]["output"]
Anthony Larcher's avatar
xv    
Anthony Larcher committed
731

Anthony Larcher's avatar
Anthony Larcher committed
732
733
734
735
736
                    elif k.startswith('arc'):
                        after_embedding_layers.append((k, ArcLinear(input_size,
                                                                    self.speaker_number,
                                                                    margin=self.aam_margin,
                                                                    s=self.aam_s)))
Anthony Larcher's avatar
Anthony Larcher committed
737

Anthony Larcher's avatar
Anthony Larcher committed
738
739
                    elif k.startswith("activation"):
                        after_embedding_layers.append((k, self.activation))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
740

Anthony Larcher's avatar
Anthony Larcher committed
741
742
                    elif k.startswith('batch_norm'):
                        after_embedding_layers.append((k, torch.nn.BatchNorm1d(input_size)))
Anthony Larcher's avatar
xv    
Anthony Larcher committed
743

Anthony Larcher's avatar
Anthony Larcher committed
744
745
746
747
748
749
                    elif k.startswith('dropout'):
                        after_embedding_layers.append((k, torch.nn.Dropout(p=cfg["after_embedding"][k])))

                self.after_speaker_embedding = torch.nn.Sequential(OrderedDict(after_embedding_layers))

            elif self.loss == "aam":
Anthony Larcher's avatar
Anthony Larcher committed
750
751
752
753
754
755
756
                self.norm_embedding = True
                self.after_speaker_embedding = ArcMarginProduct(input_size,
                                                                int(self.speaker_number),
                                                                s=64,
                                                                m=0.2,
                                                                easy_margin=True)

Anthony Larcher's avatar
arcface    
Anthony Larcher committed
757
758
759
760
                #self.after_speaker_embedding = ArcLinear(input_size,
                #                                         self.speaker_number,
                #                                         margin=self.aam_margin,
                #                                         s=self.aam_s)
Anthony Larcher's avatar
Anthony Larcher committed
761
762
763
764
                #self.after_speaker_embedding = ArcFace(embedding_size=input_size,
                #                                       classnum=self.speaker_number,
                #                                       s=64.,
                #                                       m=0.5)
Anthony Larcher's avatar
Anthony Larcher committed
765

Anthony Larcher's avatar
Anthony Larcher committed
766
            self.after_speaker_embedding_weight_decay = cfg["after_embedding"]["weight_decay"]
Anthony Larcher's avatar
Anthony Larcher committed
767

Anthony Larcher's avatar
Anthony Larcher committed
768

769
    def forward(self, x, is_eval=False, target=None, extract_after_pooling=False):
770
771
772
        """

        :param x:
773
        :param is_eval: False for training
774
775
        :return:
        """
Anthony Larcher's avatar
Anthony Larcher committed
776
777
778
        if self.preprocessor is not None:
            x = self.preprocessor(x)

Anthony Larcher's avatar
Anthony Larcher committed
779
        x = self.sequence_network(x)
780

Anthony Larcher's avatar
Anthony Larcher committed
781
        # Mean and Standard deviation pooling
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
782
        x = self.stat_pooling(x)
Anthony Larcher's avatar
Anthony Larcher committed
783

784
785
786
        if extract_after_pooling:
            return x

Anthony Larcher's avatar
Anthony Larcher committed
787
        x = self.before_speaker_embedding(x)
788

Anthony Larcher's avatar
Anthony Larcher committed
789
        if self.norm_embedding:
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
790
            #x_norm = x.norm(p=2,dim=1, keepdim=True) / 10. # Why  10. ?
Anthony Larcher's avatar
arcface    
Anthony Larcher committed
791
792
793
            #x_norm = torch.linalg.norm(x, ord=2, dim=1, keepdim=True, out=None, dtype=None)
            #x = torch.div(x, x_norm)
            x = l2_norm(x)
Anthony Larcher's avatar
Anthony Larcher committed
794

Anthony Larcher's avatar
Anthony Larcher committed
795
        if self.loss == "cce":
Anthony Larcher's avatar
Anthony Larcher committed
796
            if is_eval:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
797
                return x
Anthony Larcher's avatar
debug    
Anthony Larcher committed
798
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
799
                return self.after_speaker_embedding(x), x
Anthony Larcher's avatar
Anthony Larcher committed
800

Anthony Larcher's avatar
Anthony Larcher committed
801
        elif self.loss == "aam":
Anthony Larcher's avatar
debug    
Anthony Larcher committed
802
803
            if is_eval:
                x = torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
debug    
Anthony Larcher committed
804
            else:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
805
                x = self.after_speaker_embedding(torch.nn.functional.normalize(x, dim=1), target=target), torch.nn.functional.normalize(x, dim=1)
Anthony Larcher's avatar
Anthony Larcher committed
806

Anthony Larcher's avatar
Anthony Larcher committed
807
        return x
Anthony Larcher's avatar
Anthony Larcher committed
808

809
810
    def context_size(self):
        context = 1
Anthony Larcher's avatar
Anthony Larcher committed
811
812
813
814
815
816
817
818
819
        if isinstance(self, Xtractor):
            for name, module in self.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        else:
            for name, module in self.module.sequence_network.named_modules():
                if name.startswith("conv"):
                    context += module.dilation[0] * (module.kernel_size[0] - 1)
        return context
Anthony Larcher's avatar
Anthony Larcher committed
820

Anthony Larcher's avatar
Anthony Larcher committed
821
def xtrain(speaker_number,
Anthony Larcher's avatar
Anthony Larcher committed
822
           dataset_yaml,
Anthony Larcher's avatar
Anthony Larcher committed
823
824
           epochs=None,
           lr=None,
Anthony Larcher's avatar
Anthony Larcher committed
825
           model_yaml=None,
Anthony Larcher's avatar
Anthony Larcher committed
826
           model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
827
828
829
830
           loss=None,
           aam_margin=None,
           aam_s=None,
           patience=None,
Anthony Larcher's avatar
Anthony Larcher committed
831
           tmp_model_name=None,
Anthony Larcher's avatar
minor    
Anthony Larcher committed
832
           best_model_name=None,
Anthony Larcher's avatar
Anthony Larcher committed
833
           multi_gpu=True,
Anthony Larcher's avatar
Anthony Larcher committed
834
           mixed_precision=False,
835
           clipping=False,
Anthony Larcher's avatar
Anthony Larcher committed
836
           opt=None,
Anthony Larcher's avatar
Anthony Larcher committed
837
838
           reset_parts=[],
           freeze_parts=[],
Anthony Larcher's avatar
Anthony Larcher committed
839
840
841
842
           num_thread=None,
           write_batches_to_disk=False,
           load_batches_from_disk=False,
           tmp_batch_dir=None):
843
844
    """

Anthony Larcher's avatar
Anthony Larcher committed
845
846
847
848
849
850
    :param speaker_number:
    :param dataset_yaml:
    :param epochs:
    :param lr:
    :param model_yaml:
    :param model_name:
Anthony Larcher's avatar
Anthony Larcher committed
851
852
853
854
    :param loss:
    :param aam_margin:
    :param aam_s:
    :param patience:
Anthony Larcher's avatar
Anthony Larcher committed
855
856
857
858
    :param tmp_model_name:
    :param best_model_name:
    :param multi_gpu:
    :param clipping:
Anthony Larcher's avatar
Anthony Larcher committed
859
860
861
    :param opt:
    :param reset_parts:
    :param freeze_parts:
Anthony Larcher's avatar
Anthony Larcher committed
862
    :param num_thread:
863
864
    :return:
    """
Anthony Larcher's avatar
Anthony Larcher committed
865
866
867
868
    # Add for tensorboard
    # Writer will output to ./runs/ directory by default
    #writer = SummaryWriter("runs/xvectors_experiments_2")
    writer = None
Anthony Larcher's avatar
Anthony Larcher committed
869

Anthony Larcher's avatar
Anthony Larcher committed
870
871
872
    if write_batches_to_disk:
        load_batches_from_disk = True

Anthony Larcher's avatar
Anthony Larcher committed
873
    if num_thread is None:
Anthony Larcher's avatar
debug    
Anthony Larcher committed
874
875
        import multiprocessing

Anthony Larcher's avatar
Anthony Larcher committed
876
877
        num_thread = multiprocessing.cpu_count()

Anthony Larcher's avatar
Anthony Larcher committed
878
    logging.critical(f"Use {num_thread} cpus")
Anthony Larcher's avatar
Anthony Larcher committed
879
    logging.critical(f"Start process at {time.strftime('%H:%M:%S', time.localtime())}")
880

Anthony Larcher's avatar
Anthony Larcher committed
881
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Anthony Larcher's avatar
Anthony Larcher committed
882
    # Start from scratch
Anthony Larcher's avatar
Anthony Larcher committed
883
    if model_name is None and model_yaml in ["xvector", "rawnet2", "resnet34", "fastresnet34"]:
Anthony Larcher's avatar
Anthony Larcher committed
884
        # Initialize a first model
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
885
        if model_yaml == "xvector":
Anthony Larcher's avatar
Anthony Larcher committed
886
            model = Xtractor(speaker_number, "xvector", loss=loss)
Anthony Larcher's avatar
rawnet2    
Anthony Larcher committed
887
        elif model_yaml == "rawnet2":
Anthony Larcher's avatar
pooling    
Anthony Larcher committed
888
            model = Xtractor(speaker_number, "rawnet2")
889
890
        elif model_yaml == "resnet34":
            model = Xtractor(speaker_number, "resnet34")
Anthony Larcher's avatar
Anthony Larcher committed
891
892
        elif model_yaml == "fastresnet34":
            model = Xtractor(speaker_number, "fastresnet34")
Anthony Larcher's avatar
Anthony Larcher committed
893
        model_archi = model_yaml
Anthony Larcher's avatar
Anthony Larcher committed
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
    else:
        with open(model_yaml, 'r') as fh:
            model_archi = yaml.load(fh, Loader=yaml.FullLoader)
            if epochs is None:
                epochs = model_archi["training"]["epochs"]
            if patience is None:
                patience = model_archi["training"]["patience"]
            if opt is None:
                opt = model_archi["training"]["opt"]
            if lr is None:
                lr = model_archi["training"]["lr"]
            if loss is None:
                loss = model_archi["training"]["loss"]
            if aam_margin is None and model_archi["training"]["loss"] == "aam":
                aam_margin = model_archi["training"]["aam_margin"]
            if aam_s is None and model_archi["training"]["loss"] == "aam":
                aam_s = model_archi["training"]["aam_s"]
            if tmp_model_name is None:
                tmp_model_name = model_archi["training"]["tmp_model_name"]
            if best_model_name is None:
                best_model_name = model_archi["training"]["best_model_name"]
            if multi_gpu is None:
                multi_gpu = model_archi["training"]["multi_gpu"]
            if clipping is None:
                clipping = model_archi["training"]["clipping"]

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
920
        if model_name is None:
Anthony Larcher's avatar
Anthony Larcher committed
921
922
923
            model = Xtractor(speaker_number, model_yaml)

         # If we start from an existing model
Anthony Larcher's avatar
Anthony Larcher committed
924
        else:
Anthony Larcher's avatar
Anthony Larcher committed
925
926
927
            # Load the model
            logging.critical(f"*** Load model from = {model_name}")
            checkpoint = torch.load(model_name)
Anthony Larcher's avatar
Anthony Larcher committed
928
            model = Xtractor(speaker_number, model_yaml)
Anthony Larcher's avatar
Anthony Larcher committed
929

Anthony Larcher's avatar
fix API    
Anthony Larcher committed
930
931
            """
            Here we remove all layers that we don't want to reload
Anthony Larcher's avatar
Anthony Larcher committed
932
        
Anthony Larcher's avatar
fix API    
Anthony Larcher committed
933
934
935
936
937
938
939
940
941
942
943
944
945
            """
            pretrained_dict = checkpoint["model_state_dict"]
            for part in reset_parts:
                pretrained_dict = {k: v for k, v in pretrained_dict.items() if not k.startswith(part)}

            new_model_dict = model.state_dict()
            new_model_dict.update(pretrained_dict)
            model.load_state_dict(new_model_dict)

        # Freeze required layers
        for name, param in model.named_parameters():
            if name.split(".")[0] in freeze_parts:
                param.requires_grad = False
Anthony Larcher's avatar
Anthony Larcher committed
946

Anthony Larcher's avatar
Anthony Larcher committed
947
948
949
950
    logging.critical(model)

    logging.critical("model_parameters_count: {:d}".format(
        sum(p.numel()
Anthony Larcher's avatar
debug    
Anthony Larcher committed
951
952
953
954
            for p in model.sequence_network.parameters()
            if p.requires_grad) + \
        sum(p.numel()
            for p in model.before_speaker_embedding.parameters()
Anthony Larcher's avatar
Anthony Larcher committed
955
956
            if p.requires_grad)))

Anthony Larcher's avatar
Anthony Larcher committed
957
    embedding_size = model.embedding_size
Anthony Larcher's avatar
Anthony Larcher committed
958

Anthony Larcher's avatar
Anthony Larcher committed
959
    if torch.cuda.device_count() > 1 and multi_gpu:
Anthony Larcher's avatar
Anthony Larcher committed
960
961
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        model = torch.nn.DataParallel(model)
Anthony Larcher's avatar
Anthony Larcher committed
962
        #model = DDP(model)
Anthony Larcher's avatar
Anthony Larcher committed
963
964
    else:
        print("Train on a single GPU")
Anthony Larcher's avatar
Anthony Larcher committed
965
    model.to(device)
Anthony Larcher's avatar
Anthony Larcher committed
966

Anthony Larcher's avatar
debug    
Anthony Larcher committed
967
968
969
970
    with open(dataset_yaml, "r") as fh:
        dataset_params = yaml.load(fh, Loader=yaml.FullLoader)
        df = pandas.read_csv(dataset_params["dataset_description"])

Anthony Larcher's avatar
Anthony Larcher committed
971
972
973
    if load_batches_from_disk:
        train_batch_fn_format = tmp_batch_dir + "/train/train_{}_batch.h5"
        val_batch_fn_format = tmp_batch_dir + "/val/val_{}_batch.h5"
974

Anthony Larcher's avatar
Anthony Larcher committed
975
976
977
978
979
980
981
    if not load_batches_from_disk or write_batches_to_disk:
        """
        Set the dataloaders according to the dataset_yaml
        
        First we load the dataframe from CSV file in order to split it for training and validation purpose
        Then we provide those two 
        """
Anthony Larcher's avatar
Anthony Larcher committed
982

Anthony Larcher's avatar
minor    
Anthony Larcher committed
983
        if write_batches_to_disk or dataset_params["batch_size"] > 1:
Anthony Larcher's avatar
Anthony Larcher committed
984
985
986
987
            output_format = "numpy"
        else:
            output_format = "pytorch"

Anthony Larcher's avatar
Anthony Larcher committed
988
989
        training_df, validation_df = train_test_split(df, test_size=dataset_params["validation_ratio"])
        torch.manual_seed(dataset_params['seed'])
Anthony Larcher's avatar
Anthony Larcher committed
990
991
992
993
        training_set = SpkSet(dataset_yaml,
                              set_type="train",
                              dataset_df=training_df,
                              overlap=dataset_params['train']['overlap'],
Anthony Larcher's avatar
debug    
Anthony Larcher committed
994
                              output_format=output_format,
Anthony Larcher's avatar
Anthony Larcher committed
995
                              windowed=True)
Anthony Larcher's avatar
Anthony Larcher committed
996

Anthony Larcher's avatar
Anthony Larcher committed
997
998
999
1000
        validation_set = SideSet(dataset_yaml,
                                 set_type="validation",
                                 dataset_df=validation_df,
                                 output_format=output_format)