Commit 497fe561 authored by Gaël Le Lan's avatar Gaël Le Lan
Browse files

BN bias

parent 85663495
......@@ -522,7 +522,7 @@ class Xtractor(torch.nn.Module):
self.sequence_network = PreHalfResNet34()
self.embedding_size = 256
self.before_speaker_embedding = torch.nn.Sequential(OrderedDict([
("emb1", torch.nn.Linear(in_features = 5120, out_features = self.embedding_size)),
("emb1", torch.nn.Linear(in_features = 5120, out_features = self.embedding_size, bias=False)),
("bn1", torch.nn.BatchNorm1d(self.embedding_size))
]))
......@@ -541,7 +541,7 @@ class Xtractor(torch.nn.Module):
self.sequence_network_weight_decay = 0.00002
self.stat_pooling_weight_decay = 0.00002
self.before_speaker_embedding_weight_decay = 0.00002
self.after_speaker_embedding_weight_decay = 0.0002
self.after_speaker_embedding_weight_decay = 0 #0.0002
elif model_archi == "rawnet2":
......@@ -1222,7 +1222,7 @@ def get_optimizer(model, model_opts, train_opts, training_loader):
scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer=optimizer,
base_lr=1e-8,
max_lr=train_opts["lr"],
step_size_up=training_loader.__len__() * 12,
step_size_up=training_loader.__len__() * 16,
step_size_down=None,
cycle_momentum=cycle_momentum,
mode="triangular2")
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment