Skip to content
GitLab
Menu
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Ambuj Mehrish
sidekit
Commits
8f28cac0
Commit
8f28cac0
authored
Nov 22, 2018
by
Anthony Larcher
Browse files
cleaning
parent
be028f64
Changes
3
Hide whitespace changes
Inline
Side-by-side
features_server.py
View file @
8f28cac0
...
...
@@ -482,13 +482,12 @@ class FeaturesServer(object):
label
=
label
,
start
=
start
,
stop
=
stop
,
global_cmvn
=
self
.
global_cmvn
)
# Post-process the features and return the features and vad label
if
global_cmvn
:
feat
,
label
=
self
.
post_processing
(
feat
,
label
,
global_mean
,
global_std
)
else
:
feat
,
label
=
self
.
post_processing
(
feat
,
label
)
if
mask
is
not
None
:
if
self
.
mask
is
not
None
:
feat
=
feat
[:,
self
.
mask
]
return
feat
,
label
...
...
frontend/io.py
View file @
8f28cac0
...
...
@@ -586,7 +586,6 @@ def read_hdf5_segment(file_handler,
stop
=
dataset_length
pad_end
=
stop
-
dataset_length
if
stop
>
dataset_length
else
0
stop
=
min
(
stop
,
dataset_length
)
global_cmvn
=
global_cmvn
and
not
(
start
is
None
or
stop
is
None
)
# Get the data between start and stop
...
...
@@ -601,7 +600,10 @@ def read_hdf5_segment(file_handler,
if
"/"
.
join
((
show
,
data_id
))
in
h5f
:
dataset_id
=
show
+
'/{}'
.
format
(
data_id
)
if
compression
==
'none'
:
feat
.
append
(
_read_segment
(
h5f
,
dataset_id
,
start
,
stop
))
data
=
_read_segment
(
h5f
,
dataset_id
,
start
,
stop
)
if
data
.
ndim
==
1
:
data
=
data
[:,
numpy
.
newaxis
]
feat
.
append
(
data
)
elif
compression
==
'htk'
:
feat
.
append
(
_read_segment_htk
(
h5f
,
dataset_id
,
start
,
stop
))
else
:
...
...
@@ -995,8 +997,9 @@ def _read_dataset(h5f, dataset_id):
data
=
data
[:,
numpy
.
newaxis
]
return
data
def
_read_segment
(
h5f
,
dataset_id
,
e
,
s
):
return
h5f
[
dataset_id
][
s
:
e
,
:]
def
_read_segment
(
h5f
,
dataset_id
,
s
,
e
):
data
=
h5f
[
dataset_id
][
s
:
e
]
return
data
def
_read_dataset_htk
(
h5f
,
dataset_id
):
(
A
,
B
)
=
h5f
[
dataset_id
+
"comp"
].
value
...
...
nnet/feed_forward.py
View file @
8f28cac0
...
...
@@ -423,8 +423,6 @@ class FForwardNetwork():
features
,
_
=
dnn_features_server
.
load
(
seg
)
stat_features
,
labels
=
features_server
.
load
(
seg
)
#s0 = self.forward(torch.from_numpy(
# dnn_features_server.get_context(feat=features)[0]).type(torch.FloatTensor).to(device))[labels]
s0
=
self
.
forward
(
torch
.
from_numpy
(
dnn_features_server
.
get_context
(
feat
=
features
)[
0
][
labels
]).
type
(
torch
.
FloatTensor
).
to
(
device
))
stat_features
=
stat_features
[
labels
,
:]
...
...
@@ -473,7 +471,6 @@ class FForwardNetwork():
"""
model
.
cpu
()
for
idx
in
seg_indices
:
print
(
"Compute statistics for {}"
.
format
(
segset
[
idx
]))
logging
.
debug
(
'Compute statistics for {}'
.
format
(
segset
[
idx
]))
show
=
segset
[
idx
]
...
...
@@ -520,11 +517,10 @@ class FForwardNetwork():
ss
.
stat1
=
numpy
.
zeros
((
idmap
.
leftids
.
shape
[
0
],
ndim
*
feature_size
),
dtype
=
numpy
.
float32
)
self
.
model
.
cpu
()
for
idx
in
numpy
.
arange
(
len
(
idmap
.
segset
)):
print
(
"Compute statistics for {}"
.
format
(
idmap
.
segset
[
idx
]))
logging
.
debug
(
'Compute statistics for {}'
.
format
(
idmap
.
segset
[
idx
]))
for
idx
in
numpy
.
arange
(
len
(
idmap
.
rightids
)):
logging
.
debug
(
'Compute statistics for {}'
.
format
(
idmap
.
rightids
[
idx
]))
show
=
idmap
.
segset
[
idx
]
show
=
idmap
.
rightids
[
idx
]
channel
=
0
if
features_server
.
features_extractor
is
not
None
\
and
show
.
endswith
(
features_server
.
double_channel_extension
[
1
]):
...
...
@@ -533,8 +529,10 @@ class FForwardNetwork():
features
,
_
=
dnn_features_server
.
load
(
show
,
channel
=
channel
)
stat_features
=
stat_features
[
labels
,
:]
s0
=
self
.
model
(
torch
.
from_numpy
(
dnn_features_server
.
get_context
(
feat
=
features
)[
0
]).
type
(
torch
.
FloatTensor
).
cpu
())[
labels
]
s0
.
cpu
().
data
.
numpy
()
s0
=
self
.
model
(
torch
.
from_numpy
(
dnn_features_server
.
get_context
(
feat
=
features
)[
0
][
labels
]).
type
(
torch
.
FloatTensor
).
cpu
())
s0
=
s0
.
cpu
().
data
.
numpy
()
s1
=
numpy
.
dot
(
stat_features
.
T
,
s0
).
T
ss
.
stat0
[
idx
,
:]
=
s0
.
sum
(
axis
=
0
)
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment