Skip to content
GitLab
Menu
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Gaëtan Caillaut
minibert-deft2018
Commits
68f45ceb
Commit
68f45ceb
authored
Mar 29, 2021
by
Gaëtan Caillaut
Browse files
train semi-transforming models
parent
dc89bf5a
Changes
15
Hide whitespace changes
Inline
Side-by-side
slurm_scripts/semi-transforming/job.sh
0 → 100755
View file @
68f45ceb
#!/bin/bash
#SBATCH -N 1
#SBATCH -p gpu
#SBATCH --gres gpu:rtx6000:1
#SBATCH --job-name mlm-semitrans
#SBATCH --time 10-0
#SBATCH --mem 20G
#SBATCH -o logs/out-%j.txt
#SBATCH -e logs/err-%j.txt
#SBATCH --mail-type=ALL
#SBATCH --mail-user=gaetan.caillaut@univ-lemans.fr
eval
"
$(
conda shell.bash hook
)
"
conda activate polysemy
TRAIN
=
"data/cleaned/t1/train.csv"
DEV
=
"data/cleaned/t1/dev.csv"
TEST
=
"data/cleaned/t1/test.csv"
TOKENIZER
=
"output/tokenizer.json"
OUT_DIR
=
"models/cleaned"
BS
=
512
DEVICE
=
"cuda"
LOGDIR
=
"runs/cleaned"
for
d
in
${
OUT_DIR
}
${
LOGDIR
}
;
do
if
[
!
-d
${
d
}
]
;
then
mkdir
-p
${
d
}
fi
done
export
PYTHONPATH
=
"/lium/raid01_b/gcaillaut/polysemy/minibert-oscar/minibert:
${
PYTHONPATH
}
"
set
-x
set
-e
for
E
in
$(
seq
-f
"%05g"
0 10 40
)
;
do
for
D
in
16 32 64 96 128
;
do
for
ATT
in
"semi-transforming"
;
do
for
POS
in
"none"
"fixed"
"trained"
;
do
RUN_NAME
=
"d
${
D
}
_
${
ATT
}
_
${
POS
}
_gelu_norm"
TB_DIR
=
"
${
LOGDIR
}
/
${
RUN_NAME
}
"
if
((
10#
$E
>
0
))
;
then
CHECKPOINT
=
"
${
OUT_DIR
}
/
${
RUN_NAME
}
/checkpoint-
${
E
}
.tar"
python train.py mlm
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
-o
${
OUT_DIR
}
-d
${
D
}
--bs
${
BS
}
--epochs
10
--attention
${
ATT
}
--position
${
POS
}
--device
${
DEVICE
}
--checkpoint
${
CHECKPOINT
}
--logdir
${
TB_DIR
}
else
python train.py mlm
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
-o
${
OUT_DIR
}
-d
${
D
}
--bs
${
BS
}
--epochs
10
--attention
${
ATT
}
--position
${
POS
}
--device
${
DEVICE
}
--logdir
${
TB_DIR
}
fi
done
done
done
done
\ No newline at end of file
slurm_scripts/semi-transforming/job_lemmatized.sh
0 → 100755
View file @
68f45ceb
#!/bin/bash
#SBATCH -N 1
#SBATCH -p gpu
#SBATCH --gres gpu:rtx6000:1
#SBATCH --job-name mlm-semitrans-lemmatized
#SBATCH --time 10-0
#SBATCH --mem 20G
#SBATCH -o logs/out-%j.txt
#SBATCH -e logs/err-%j.txt
#SBATCH --mail-type=ALL
#SBATCH --mail-user=gaetan.caillaut@univ-lemans.fr
eval
"
$(
conda shell.bash hook
)
"
conda activate polysemy
TRAIN
=
"data/lemmatized/t1/train.csv"
DEV
=
"data/lemmatized/t1/dev.csv"
TEST
=
"data/lemmatized/t1/test.csv"
TOKENIZER
=
"output/tokenizer_lemmatized.json"
OUT_DIR
=
"models/lemmatized"
BS
=
512
DEVICE
=
"cuda"
LOGDIR
=
"runs/lemmatized"
for
d
in
${
OUT_DIR
}
${
LOGDIR
}
;
do
if
[
!
-d
${
d
}
]
;
then
mkdir
-p
${
d
}
fi
done
export
PYTHONPATH
=
"/lium/raid01_b/gcaillaut/polysemy/minibert-oscar/minibert:
${
PYTHONPATH
}
"
set
-x
set
-e
for
E
in
$(
seq
-f
"%05g"
0 10 40
)
;
do
for
D
in
16 32 64 96 128
;
do
for
ATT
in
"semi-transforming"
;
do
for
POS
in
"none"
"fixed"
"trained"
;
do
RUN_NAME
=
"d
${
D
}
_
${
ATT
}
_
${
POS
}
_gelu_norm"
TB_DIR
=
"
${
LOGDIR
}
/
${
RUN_NAME
}
"
if
((
10#
$E
>
0
))
;
then
CHECKPOINT
=
"
${
OUT_DIR
}
/
${
RUN_NAME
}
/checkpoint-
${
E
}
.tar"
python train.py mlm
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
-o
${
OUT_DIR
}
-d
${
D
}
--bs
${
BS
}
--epochs
10
--attention
${
ATT
}
--position
${
POS
}
--device
${
DEVICE
}
--checkpoint
${
CHECKPOINT
}
--logdir
${
TB_DIR
}
else
python train.py mlm
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
-o
${
OUT_DIR
}
-d
${
D
}
--bs
${
BS
}
--epochs
10
--attention
${
ATT
}
--position
${
POS
}
--device
${
DEVICE
}
--logdir
${
TB_DIR
}
fi
done
done
done
done
\ No newline at end of file
slurm_scripts/semi-transforming/job_t1.sh
0 → 100755
View file @
68f45ceb
#!/bin/bash
#SBATCH -N 1
#SBATCH -p gpu
#SBATCH --gres gpu:rtx6000:1
#SBATCH --job-name t1-semitrans
#SBATCH --time 10-0
#SBATCH --mem 20G
#SBATCH -o logs/out-%j.txt
#SBATCH -e logs/err-%j.txt
#SBATCH --mail-type=ALL
#SBATCH --mail-user=gaetan.caillaut@univ-lemans.fr
eval
"
$(
conda shell.bash hook
)
"
conda activate polysemy
TRAIN
=
"data/cleaned/t1/train.csv"
DEV
=
"data/cleaned/t1/dev.csv"
TEST
=
"data/cleaned/t1/test.csv"
TOKENIZER
=
"output/tokenizer.json"
PRETRAINED_DIR
=
"models/cleaned"
OUT_DIR
=
"models/t1/cleaned"
BS
=
512
DEVICE
=
"cuda"
LOGDIR
=
"runs/t1/cleaned"
for
d
in
${
OUT_DIR
}
${
LOGDIR
}
;
do
if
[
!
-d
${
d
}
]
;
then
mkdir
-p
${
d
}
fi
done
export
PYTHONPATH
=
"/lium/raid01_b/gcaillaut/polysemy/minibert:
${
PYTHONPATH
}
"
set
-x
set
-e
for
E
in
$(
seq
-f
"%05g"
0 10 40
)
;
do
for
D
in
16 32 64 96 128
;
do
for
ATT
in
"semi-transforming"
;
do
for
POS
in
"none"
"fixed"
"trained"
;
do
MLM_RUN_NAME
=
"d
${
D
}
_
${
ATT
}
_
${
POS
}
_gelu_norm"
T1_RUN_NAME
=
"d
${
D
}
_
${
ATT
}
_
${
POS
}
_norm"
TB_DIR
=
"
${
LOGDIR
}
/
${
T1_RUN_NAME
}
"
if
((
10#
$E
>
0
))
;
then
CHECKPOINT
=
"
${
OUT_DIR
}
/
${
T1_RUN_NAME
}
/checkpoint-
${
E
}
.tar"
python train.py t1
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
"
${
PRETRAINED_DIR
}
/
${
MLM_RUN_NAME
}
/minibert-model.pt"
-o
${
OUT_DIR
}
-d
${
D
}
--attention
${
ATT
}
--position
${
POS
}
--epochs
10
--bs
${
BS
}
--device
${
DEVICE
}
--logdir
${
TB_DIR
}
--checkpoint
${
CHECKPOINT
}
else
python train.py t1
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
"
${
PRETRAINED_DIR
}
/
${
MLM_RUN_NAME
}
/minibert-model.pt"
-o
${
OUT_DIR
}
-d
${
D
}
--attention
${
ATT
}
--position
${
POS
}
--epochs
10
--bs
${
BS
}
--device
${
DEVICE
}
--logdir
${
TB_DIR
}
fi
done
done
done
done
\ No newline at end of file
slurm_scripts/semi-transforming/job_t1_frozen.sh
0 → 100755
View file @
68f45ceb
#!/bin/bash
#SBATCH -N 1
#SBATCH -p gpu
#SBATCH --gres gpu:rtx6000:1
#SBATCH --job-name t1-semitrans-frozen
#SBATCH --time 10-0
#SBATCH --mem 20G
#SBATCH -o logs/out-%j.txt
#SBATCH -e logs/err-%j.txt
#SBATCH --mail-type=ALL
#SBATCH --mail-user=gaetan.caillaut@univ-lemans.fr
eval
"
$(
conda shell.bash hook
)
"
conda activate polysemy
TRAIN
=
"data/cleaned/t1/train.csv"
DEV
=
"data/cleaned/t1/dev.csv"
TEST
=
"data/cleaned/t1/test.csv"
TOKENIZER
=
"output/tokenizer.json"
PRETRAINED_DIR
=
"models/cleaned"
OUT_DIR
=
"models/t1/cleaned"
BS
=
512
DEVICE
=
"cuda"
LOGDIR
=
"runs/t1/cleaned"
for
d
in
${
OUT_DIR
}
${
LOGDIR
}
;
do
if
[
!
-d
${
d
}
]
;
then
mkdir
-p
${
d
}
fi
done
export
PYTHONPATH
=
"/lium/raid01_b/gcaillaut/polysemy/minibert:
${
PYTHONPATH
}
"
set
-x
set
-e
for
E
in
$(
seq
-f
"%05g"
0 10 40
)
;
do
for
D
in
16 32 64 96 128
;
do
for
ATT
in
"semi-transforming"
;
do
for
POS
in
"none"
"fixed"
"trained"
;
do
MLM_RUN_NAME
=
"d
${
D
}
_
${
ATT
}
_
${
POS
}
_gelu_norm"
T1_RUN_NAME
=
"d
${
D
}
_
${
ATT
}
_
${
POS
}
_norm_frozen"
TB_DIR
=
"
${
LOGDIR
}
/
${
T1_RUN_NAME
}
"
if
((
10#
$E
>
0
))
;
then
CHECKPOINT
=
"
${
OUT_DIR
}
/
${
T1_RUN_NAME
}
/checkpoint-
${
E
}
.tar"
python train.py t1
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
"
${
PRETRAINED_DIR
}
/
${
MLM_RUN_NAME
}
/minibert-model.pt"
-o
${
OUT_DIR
}
-d
${
D
}
--attention
${
ATT
}
--position
${
POS
}
--epochs
10
--bs
${
BS
}
--device
${
DEVICE
}
--logdir
${
TB_DIR
}
--checkpoint
${
CHECKPOINT
}
--freeze-attention
else
python train.py t1
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
"
${
PRETRAINED_DIR
}
/
${
MLM_RUN_NAME
}
/minibert-model.pt"
-o
${
OUT_DIR
}
-d
${
D
}
--attention
${
ATT
}
--position
${
POS
}
--epochs
10
--bs
${
BS
}
--device
${
DEVICE
}
--logdir
${
TB_DIR
}
--freeze-attention
fi
done
done
done
done
\ No newline at end of file
slurm_scripts/semi-transforming/job_t1_fs.sh
0 → 100755
View file @
68f45ceb
#!/bin/bash
#SBATCH -N 1
#SBATCH -p gpu
#SBATCH --gres gpu:rtx6000:1
#SBATCH --job-name t1_fs-semitrans
#SBATCH --time 10-0
#SBATCH --mem 20G
#SBATCH -o logs/out-%j.txt
#SBATCH -e logs/err-%j.txt
#SBATCH --mail-type=ALL
#SBATCH --mail-user=gaetan.caillaut@univ-lemans.fr
eval
"
$(
conda shell.bash hook
)
"
conda activate polysemy
TRAIN
=
"data/cleaned/t1/train.csv"
DEV
=
"data/cleaned/t1/dev.csv"
TEST
=
"data/cleaned/t1/test.csv"
TOKENIZER
=
"output/tokenizer.json"
PRETRAINED_DIR
=
"models/cleaned"
OUT_DIR
=
"models/t1_fs/cleaned"
BS
=
512
DEVICE
=
"cuda"
LOGDIR
=
"runs/t1_fs/cleaned"
for
d
in
${
OUT_DIR
}
${
LOGDIR
}
;
do
if
[
!
-d
${
d
}
]
;
then
mkdir
-p
${
d
}
fi
done
export
PYTHONPATH
=
"/lium/raid01_b/gcaillaut/polysemy/minibert:
${
PYTHONPATH
}
"
set
-x
set
-e
for
E
in
$(
seq
-f
"%05g"
0 10 40
)
;
do
for
D
in
16 32 64 96 128
;
do
for
ATT
in
"semi-transforming"
;
do
for
POS
in
"none"
"fixed"
"trained"
;
do
MLM_RUN_NAME
=
"d
${
D
}
_
${
ATT
}
_
${
POS
}
_gelu_norm"
T1_RUN_NAME
=
"d
${
D
}
_
${
ATT
}
_
${
POS
}
_norm"
TB_DIR
=
"
${
LOGDIR
}
/
${
T1_RUN_NAME
}
"
if
((
10#
$E
>
0
))
;
then
CHECKPOINT
=
"
${
OUT_DIR
}
/
${
T1_RUN_NAME
}
/checkpoint-
${
E
}
.tar"
python train.py t1-fs
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
-o
${
OUT_DIR
}
-d
${
D
}
--attention
${
ATT
}
--position
${
POS
}
--epochs
10
--bs
${
BS
}
--device
${
DEVICE
}
--logdir
${
TB_DIR
}
--checkpoint
${
CHECKPOINT
}
else
python train.py t1-fs
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
-o
${
OUT_DIR
}
-d
${
D
}
--attention
${
ATT
}
--position
${
POS
}
--epochs
10
--bs
${
BS
}
--device
${
DEVICE
}
--logdir
${
TB_DIR
}
fi
done
done
done
done
\ No newline at end of file
slurm_scripts/semi-transforming/job_t1_fs_lemmatized.sh
0 → 100755
View file @
68f45ceb
#!/bin/bash
#SBATCH -N 1
#SBATCH -p gpu
#SBATCH --gres gpu:rtx6000:1
#SBATCH --job-name t1_fs-semitrans-lemmatized
#SBATCH --time 10-0
#SBATCH --mem 20G
#SBATCH -o logs/out-%j.txt
#SBATCH -e logs/err-%j.txt
#SBATCH --mail-type=ALL
#SBATCH --mail-user=gaetan.caillaut@univ-lemans.fr
eval
"
$(
conda shell.bash hook
)
"
conda activate polysemy
TRAIN
=
"data/lemmatized/t1/train.csv"
DEV
=
"data/lemmatized/t1/dev.csv"
TEST
=
"data/lemmatized/t1/test.csv"
TOKENIZER
=
"output/tokenizer_lemmatized.json"
PRETRAINED_DIR
=
"models/lemmatized"
OUT_DIR
=
"models/t1_fs/lemmatized"
BS
=
512
DEVICE
=
"cuda"
LOGDIR
=
"runs/t1_fs/lemmatized"
for
d
in
${
OUT_DIR
}
${
LOGDIR
}
;
do
if
[
!
-d
${
d
}
]
;
then
mkdir
-p
${
d
}
fi
done
export
PYTHONPATH
=
"/lium/raid01_b/gcaillaut/polysemy/minibert:
${
PYTHONPATH
}
"
set
-x
set
-e
for
E
in
$(
seq
-f
"%05g"
0 10 40
)
;
do
for
D
in
16 32 64 96 128
;
do
for
ATT
in
"semi-transforming"
;
do
for
POS
in
"none"
"fixed"
"trained"
;
do
MLM_RUN_NAME
=
"d
${
D
}
_
${
ATT
}
_
${
POS
}
_gelu_norm"
T1_RUN_NAME
=
"d
${
D
}
_
${
ATT
}
_
${
POS
}
_norm"
TB_DIR
=
"
${
LOGDIR
}
/
${
T1_RUN_NAME
}
"
if
((
10#
$E
>
0
))
;
then
CHECKPOINT
=
"
${
OUT_DIR
}
/
${
T1_RUN_NAME
}
/checkpoint-
${
E
}
.tar"
python train.py t1-fs
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
-o
${
OUT_DIR
}
-d
${
D
}
--attention
${
ATT
}
--position
${
POS
}
--epochs
10
--bs
${
BS
}
--device
${
DEVICE
}
--logdir
${
TB_DIR
}
--checkpoint
${
CHECKPOINT
}
else
python train.py t1-fs
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
-o
${
OUT_DIR
}
-d
${
D
}
--attention
${
ATT
}
--position
${
POS
}
--epochs
10
--bs
${
BS
}
--device
${
DEVICE
}
--logdir
${
TB_DIR
}
fi
done
done
done
done
\ No newline at end of file
slurm_scripts/semi-transforming/job_t1_lemmatized.sh
0 → 100755
View file @
68f45ceb
#!/bin/bash
#SBATCH -N 1
#SBATCH -p gpu
#SBATCH --gres gpu:rtx6000:1
#SBATCH --job-name t1-semitrans-lemmatized
#SBATCH --time 10-0
#SBATCH --mem 20G
#SBATCH -o logs/out-%j.txt
#SBATCH -e logs/err-%j.txt
#SBATCH --mail-type=ALL
#SBATCH --mail-user=gaetan.caillaut@univ-lemans.fr
eval
"
$(
conda shell.bash hook
)
"
conda activate polysemy
TRAIN
=
"data/lemmatized/t1/train.csv"
DEV
=
"data/lemmatized/t1/dev.csv"
TEST
=
"data/lemmatized/t1/test.csv"
TOKENIZER
=
"output/tokenizer_lemmatized.json"
PRETRAINED_DIR
=
"models/lemmatized"
OUT_DIR
=
"models/t1/lemmatized"
BS
=
512
DEVICE
=
"cuda"
LOGDIR
=
"runs/t1/lemmatized"
for
d
in
${
OUT_DIR
}
${
LOGDIR
}
;
do
if
[
!
-d
${
d
}
]
;
then
mkdir
-p
${
d
}
fi
done
export
PYTHONPATH
=
"/lium/raid01_b/gcaillaut/polysemy/minibert:
${
PYTHONPATH
}
"
set
-x
set
-e
for
E
in
$(
seq
-f
"%05g"
0 10 40
)
;
do
for
D
in
16 32 64 96 128
;
do
for
ATT
in
"semi-transforming"
;
do
for
POS
in
"none"
"fixed"
"trained"
;
do
MLM_RUN_NAME
=
"d
${
D
}
_
${
ATT
}
_
${
POS
}
_gelu_norm"
T1_RUN_NAME
=
"d
${
D
}
_
${
ATT
}
_
${
POS
}
_norm"
TB_DIR
=
"
${
LOGDIR
}
/
${
T1_RUN_NAME
}
"
if
((
10#
$E
>
0
))
;
then
CHECKPOINT
=
"
${
OUT_DIR
}
/
${
T1_RUN_NAME
}
/checkpoint-
${
E
}
.tar"
python train.py t1
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
"
${
PRETRAINED_DIR
}
/
${
MLM_RUN_NAME
}
/mi
\
nibert-model.pt"
-o
${
OUT_DIR
}
-d
${
D
}
--attention
${
ATT
}
--position
${
POS
}
--epochs
10
--bs
${
BS
}
--device
${
DEVICE
}
--logdir
${
TB_DIR
}
--checkpoi
\
nt
${
CHECKPOINT
}
else
python train.py t1
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
"
${
PRETRAINED_DIR
}
/
${
MLM_RUN_NAME
}
/mi
\
nibert-model.pt"
-o
${
OUT_DIR
}
-d
${
D
}
--attention
${
ATT
}
--position
${
POS
}
--epochs
10
--bs
${
BS
}
--device
${
DEVICE
}
--logdir
${
TB_DIR
}
fi
done
done
done
done
\ No newline at end of file
slurm_scripts/semi-transforming/job_t1_lemmatized_frozen.sh
0 → 100755
View file @
68f45ceb
#!/bin/bash
#SBATCH -N 1
#SBATCH -p gpu
#SBATCH --gres gpu:rtx6000:1
#SBATCH --job-name t1-semitrans-lemmatized-frozen
#SBATCH --time 10-0
#SBATCH --mem 20G
#SBATCH -o logs/out-%j.txt
#SBATCH -e logs/err-%j.txt
#SBATCH --mail-type=ALL
#SBATCH --mail-user=gaetan.caillaut@univ-lemans.fr
eval
"
$(
conda shell.bash hook
)
"
conda activate polysemy
TRAIN
=
"data/lemmatized/t1/train.csv"
DEV
=
"data/lemmatized/t1/dev.csv"
TEST
=
"data/lemmatized/t1/test.csv"
TOKENIZER
=
"output/tokenizer_lemmatized.json"
PRETRAINED_DIR
=
"models/lemmatized"
OUT_DIR
=
"models/t1/lemmatized"
BS
=
512
DEVICE
=
"cuda"
LOGDIR
=
"runs/t1/lemmatized"
for
d
in
${
OUT_DIR
}
${
LOGDIR
}
;
do
if
[
!
-d
${
d
}
]
;
then
mkdir
-p
${
d
}
fi
done
export
PYTHONPATH
=
"/lium/raid01_b/gcaillaut/polysemy/minibert:
${
PYTHONPATH
}
"
set
-x
set
-e
for
E
in
$(
seq
-f
"%05g"
0 10 40
)
;
do
for
D
in
16 32 64 96 128
;
do
for
ATT
in
"semi-transforming"
;
do
for
POS
in
"none"
"fixed"
"trained"
;
do
MLM_RUN_NAME
=
"d
${
D
}
_
${
ATT
}
_
${
POS
}
_gelu_norm"
T1_RUN_NAME
=
"d
${
D
}
_
${
ATT
}
_
${
POS
}
_norm_frozen"
TB_DIR
=
"
${
LOGDIR
}
/
${
T1_RUN_NAME
}
"
if
((
10#
$E
>
0
))
;
then
CHECKPOINT
=
"
${
OUT_DIR
}
/
${
T1_RUN_NAME
}
/checkpoint-
${
E
}
.tar"
python train.py t1
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
"
${
PRETRAINED_DIR
}
/
${
MLM_RUN_NAME
}
/minibert-model.pt"
-o
${
OUT_DIR
}
-d
${
D
}
--attention
${
ATT
}
--position
${
POS
}
--epochs
10
--bs
${
BS
}
--device
${
DEVICE
}
--logdir
${
TB_DIR
}
--checkpoint
${
CHECKPOINT
}
--freeze-attention
else
python train.py t1
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
"
${
PRETRAINED_DIR
}
/
${
MLM_RUN_NAME
}
/minibert-model.pt"
-o
${
OUT_DIR
}
-d
${
D
}
--attention
${
ATT
}
--position
${
POS
}
--epochs
10
--bs
${
BS
}
--device
${
DEVICE
}
--logdir
${
TB_DIR
}
--freeze-attention
fi
done
done
done
done
\ No newline at end of file
slurm_scripts/semi-transforming/job_t2.sh
0 → 100755
View file @
68f45ceb
#!/bin/bash
#SBATCH -N 1
#SBATCH -p gpu
#SBATCH --gres gpu:rtx6000:1
#SBATCH --job-name t2-semitrans
#SBATCH --time 10-0
#SBATCH --mem 20G
#SBATCH -o logs/out-%j.txt
#SBATCH -e logs/err-%j.txt
#SBATCH --mail-type=ALL
#SBATCH --mail-user=gaetan.caillaut@univ-lemans.fr
eval
"
$(
conda shell.bash hook
)
"
conda activate polysemy
TRAIN
=
"data/cleaned/t2/train.csv"
DEV
=
"data/cleaned/t2/dev.csv"
TEST
=
"data/cleaned/t2/test.csv"
TOKENIZER
=
"output/tokenizer.json"
PRETRAINED_DIR
=
"models/cleaned"
OUT_DIR
=
"models/t2/cleaned"
BS
=
512
DEVICE
=
"cuda"
LOGDIR
=
"runs/t2/cleaned"
for
d
in
${
OUT_DIR
}
${
LOGDIR
}
;
do
if
[
!
-d
${
d
}
]
;
then
mkdir
-p
${
d
}
fi
done
export
PYTHONPATH
=
"/lium/raid01_b/gcaillaut/polysemy/minibert:
${
PYTHONPATH
}
"
set
-x
set
-e
for
E
in
$(
seq
-f
"%05g"
0 10 40
)
;
do
for
D
in
16 32 64 96 128
;
do
for
ATT
in
"semi-transforming"
;
do
for
POS
in
"none"
"fixed"
"trained"
;
do
MLM_RUN_NAME
=
"d
${
D
}
_
${
ATT
}
_
${
POS
}
_gelu_norm"
T2_RUN_NAME
=
"d
${
D
}
_
${
ATT
}
_
${
POS
}
_norm"
TB_DIR
=
"
${
LOGDIR
}
/
${
T2_RUN_NAME
}
"
if
((
10#
$E
>
0
))
;
then
CHECKPOINT
=
"
${
OUT_DIR
}
/
${
T2_RUN_NAME
}
/checkpoint-
${
E
}
.tar"
python train.py t2
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
"
${
PRETRAINED_DIR
}
/
${
MLM_RUN_NAME
}
/minibert-model.pt"
-o
${
OUT_DIR
}
-d
${
D
}
--attention
${
ATT
}
--position
${
POS
}
--epochs
10
--bs
${
BS
}
--device
${
DEVICE
}
--logdir
${
TB_DIR
}
--checkpoint
${
CHECKPOINT
}
else
python train.py t2
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
"
${
PRETRAINED_DIR
}
/
${
MLM_RUN_NAME
}
/minibert-model.pt"
-o
${
OUT_DIR
}
-d
${
D
}
--attention
${
ATT
}
--position
${
POS
}
--epochs
10
--bs
${
BS
}
--device
${
DEVICE
}
--logdir
${
TB_DIR
}
fi
done
done
done
done
\ No newline at end of file
slurm_scripts/semi-transforming/job_t2_frozen.sh
0 → 100755
View file @
68f45ceb
#!/bin/bash
#SBATCH -N 1
#SBATCH -p gpu
#SBATCH --gres gpu:rtx6000:1
#SBATCH --job-name t2-semitrans-frozen
#SBATCH --time 10-0
#SBATCH --mem 20G
#SBATCH -o logs/out-%j.txt
#SBATCH -e logs/err-%j.txt
#SBATCH --mail-type=ALL
#SBATCH --mail-user=gaetan.caillaut@univ-lemans.fr
eval
"
$(
conda shell.bash hook
)
"
conda activate polysemy
TRAIN
=
"data/cleaned/t2/train.csv"
DEV
=
"data/cleaned/t2/dev.csv"
TEST
=
"data/cleaned/t2/test.csv"
TOKENIZER
=
"output/tokenizer.json"
PRETRAINED_DIR
=
"models/cleaned"
OUT_DIR
=
"models/t2/cleaned"
BS
=
512
DEVICE
=
"cuda"
LOGDIR
=
"runs/t2/cleaned"
for
d
in
${
OUT_DIR
}
${
LOGDIR
}
;
do
if
[
!
-d
${
d
}
]
;
then
mkdir
-p
${
d
}
fi
done
export
PYTHONPATH
=
"/lium/raid01_b/gcaillaut/polysemy/minibert:
${
PYTHONPATH
}
"
set
-x
set
-e
for
E
in
$(
seq
-f
"%05g"
0 10 40
)
;
do
for
D
in
16 32 64 96 128
;
do
for
ATT
in
"semi-transforming"
;
do
for
POS
in
"none"
"fixed"
"trained"
;
do
MLM_RUN_NAME
=
"d
${
D
}
_
${
ATT
}
_
${
POS
}
_gelu_norm"
T2_RUN_NAME
=
"d
${
D
}
_
${
ATT
}
_
${
POS
}
_norm_frozen"
TB_DIR
=
"
${
LOGDIR
}
/
${
T2_RUN_NAME
}
"
if
((
10#
$E
>
0
))
;
then
CHECKPOINT
=
"
${
OUT_DIR
}
/
${
T2_RUN_NAME
}
/checkpoint-
${
E
}
.tar"
python train.py t2
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
"
${
PRETRAINED_DIR
}
/
${
MLM_RUN_NAME
}
/minibert-model.pt"
-o
${
OUT_DIR
}
-d
${
D
}
--attention
${
ATT
}
--position
${
POS
}
--epochs
10
--bs
${
BS
}
--device
${
DEVICE
}
--logdir
${
TB_DIR
}
--checkpoint
${
CHECKPOINT
}
--freeze-attention
else
python train.py t2
${
TRAIN
}
${
TEST
}
${
DEV
}
${
TOKENIZER
}
"
${
PRETRAINED_DIR
}
/
${
MLM_RUN_NAME
}
/minibert-model.pt"
-o
${
OUT_DIR
}
-d
${
D
}
--attention
${
ATT
}
--position
${
POS
}
--epochs
10
--bs
${
BS
}
--device
${
DEVICE
}
--logdir
${
TB_DIR
}
--freeze-attention
fi
done
done
done
done
\ No newline at end of file
slurm_scripts/semi-transforming/job_t2_fs.sh
0 → 100755
View file @
68f45ceb
#!/bin/bash
#SBATCH -N 1
#SBATCH -p gpu
#SBATCH --gres gpu:rtx6000:1
#SBATCH --job-name t2_fs-semitrans
#SBATCH --time 10-0
#SBATCH --mem 20G
#SBATCH -o logs/out-%j.txt
#SBATCH -e logs/err-%j.txt
#SBATCH --mail-type=ALL
#SBATCH --mail-user=gaetan.caillaut@univ-lemans.fr
eval
"
$(
conda shell.bash hook
)
"
conda activate polysemy
TRAIN
=
"data/cleaned/t2/train.csv"
DEV
=
"data/cleaned/t2/dev.csv"
TEST
=
"data/cleaned/t2/test.csv"
TOKENIZER
=
"output/tokenizer.json"
PRETRAINED_DIR
=
"models/cleaned"
OUT_DIR
=
"models/t2_fs/cleaned"
BS
=
512
DEVICE
=
"cuda"
LOGDIR
=
"runs/t2_fs/cleaned"
for
d
in
${
OUT_DIR
}
${
LOGDIR
}
;
do
if
[
!
-d
${
d
}
]
;
then
mkdir
-p
${
d
}
fi
done