Commit ccb6b64d authored by Malik Koné's avatar Malik Koné

adding the best_paper_award

parent 375f9d0f
# Table of Contents
1. [CSEDU-2019](#orgbf8e38b)
1. [Images](#org8ac626a)
2. [Code](#org96cf4dc)
1. [Hangout chats:](#orgcba8365)
2. [Moodle visualization:](#orgec74280)
3. [Coursera](#orgcd541bc)
1. [CSEDU-2019](#org5968523)
1. [Images](#org789fb42)
2. [Code](#orgc54c525)
1. [Hangout chats:](#org4f380ad)
2. [Moodle visualization:](#orgaac2801)
3. [Coursera](#orgc546d66)
<a id="orgbf8e38b"></a>
<a id="org5968523"></a>
# CSEDU-2019
Resources and annexes to the paper **"[Towards Visual Explorations of Forums' Collective Dynamics in Learning Management Systems](tex_draft.pdf)"** (This paper received the best student paper award)
Resources and annexes to the paper **"[Towards Visual Explorations of Forums' Collective Dynamics in Learning Management Systems](tex_draft.pdf)"** (This paper received the [best student paper award](./images/best_paper_award2.jpg))
Checkout the [presentation](mkone_CSEDU2019_diapo.pdf)
<a id="org8ac626a"></a>
<a id="org789fb42"></a>
## Images
......@@ -76,7 +76,7 @@ The images in the paper are sometime small. We offer high enough resolution ima
At the top (a) is half of compound yearly actor-actor network. The three bottom images (b), (c) and (d) are closeup around actor 642 during the quarters of the year.
<a id="org96cf4dc"></a>
<a id="orgc54c525"></a>
## Code
......@@ -85,25 +85,25 @@ It is mainly code to preprocess the data files that will then be processed in d3
The exemples of visualisations are accessible online at the following adresses (<span class="timestamp-wrapper"><span class="timestamp">&lt;2019-05-22 mer.&gt;</span></span>):
<a id="orgcba8365"></a>
<a id="org4f380ad"></a>
### Hangout chats:
Visualizations on <https://observablehq.com/@maliky/conversation-visualization-v2>
<a id="orgec74280"></a>
<a id="orgaac2801"></a>
### Moodle visualization:
Visualizations on <https://observablehq.com/@maliky/playing-with-moodle-data>
<a id="orgcd541bc"></a>
<a id="orgc546d66"></a>
### Coursera
Use the file [Code/SNA-Coursera17/](Code/SNA-Coursera17/) folder to scrape the data from a Coursera course and then wrangle the data to make the visualisation.
Use the file <Code/SNA-Coursera17/> folder to scrape the data from a Coursera course and then wrangle the data to make the visualisation.
The visualisation requires graph<sub>tool.py</sub>
Check the [Code/SNA-Coursera17/README.md](Code/SNA-Coursera17/README.md)
Check the <Code/SNA-Coursera17/README.md>
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment