Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Marie Tahon
DnCNN-tensorflow-holography
Commits
46fdc215
Commit
46fdc215
authored
Mar 02, 2022
by
Marie Tahon
Browse files
remove unsed folders
parent
333027e0
Changes
2
Hide whitespace changes
Inline
Side-by-side
generate_patches_holo.py
deleted
100644 → 0
View file @
333027e0
# -*- coding: utf-8 -*-
#
# This file is part of DnCnn4Holo.
#
# DnCnn4Holo is a python script for phase image denoising.
# Home page: https://git-lium.univ-lemans.fr/tahon/dncnn-tensorflow-holography
#
# Adapted from https://github.com/wbhu/DnCNN-tensorflow by Hu Wenbo
#
# DnCnn4Holo is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# DnCnn4Holo is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DnCnn4Holo. If not, see <http://www.gnu.org/licenses/>.
"""
Copyright 2019-2020 Marie Tahon
:mod:`generate_patches_holo.py` generate patches from .tiff images
"""
import
argparse
import
argument
#import re
#import glob
import
pathlib
import
os
,
sys
from
PIL
import
Image
import
PIL
#import random
import
numpy
as
np
from
utils
import
*
#from hparams import hparams, hparams_debug_string
from
scipy.io
import
loadmat
__license__
=
"LGPL"
__author__
=
"Marie Tahon"
__copyright__
=
"Copyright 2019-2020 Marie Tahon"
__maintainer__
=
"Marie Tahon"
__email__
=
"marie.tahon@univ-lemans.fr"
__status__
=
"Production"
#__docformat__ = 'reStructuredText'
# the pixel value range is '0-255'(uint8 ) of training data
# macro
DATA_AUG_TIMES
=
1
# transform a sample to a different sample for DATA_AUG_TIMES times
parser
=
argparse
.
ArgumentParser
(
description
=
''
)
#parser.add_argument('--clean_src_dir', dest='clean_src_dir', default='/lium/raid01_c/tahon/holography/NOISEFREEHOLODEEP', help='dir of clean data')
#parser.add_argument('--noise_src_dir', dest='noise_src_dir', default='/lium/raid01_c/tahon/holography/HOLODEEP', help='dir of noisy data')
#parser.add_argument('--train_image', dest='train_patterns', default=hparams.train_patterns, help='patterns of images for training')
#parser.add_argument('--train_noise', dest='train_noise', default=hparams.train_noise, help='noise values for training images')
parser
.
add_argument
(
'--save_dir'
,
dest
=
'save_dir'
,
default
=
'./data1'
,
help
=
'dir of patches'
)
#parser.add_argument('--patch_size', dest='pat_size', type=int, default=hparams.patch_size, help='patch size')#50 for RGB and 70 for grayscale
#parser.add_argument('--stride', dest='stride', type=int, default=hparams.stride, help='stride')
#parser.add_argument('--step', dest='step', type=int, default=hparams.step, help='step')
parser
.
add_argument
(
'--params'
,
dest
=
'params'
,
type
=
str
,
default
=
''
,
help
=
'hyper parameters'
)
# check output arguments
#parser.add_argument('--from_file', dest='from_file', default="./data/img_clean_pats.npy", help='get pic from file')
#parser.add_argument('--num_pic', dest='num_pic', type=int, default=10, help='number of pic to pick')
#args = parser.parse_args()
#print(args.params['patch_size'])
#hparams.parse(args.params)
args
=
argument
.
parse
()
#def from_DATABASE():
def
generate_patches
(
isDebug
=
True
):
#global DATA_AUG_TIMES = 1
#hparams.patch_size = args.pat_size
# print(hparams_debug_string())
#filepaths, noisyfilepaths = from_HOLODEEP(hparams.noise_src_dir, hparams.clean_src_dir, hparams.train_noise, hparams.train_patterns, path_only=True)
filepaths
,
noisyfilepaths
=
from_NATURAL
(
args
.
noise_src_dir
,
args
.
clean_src_dir
,
path_only
=
True
)
if
isDebug
:
filepaths
=
filepaths
[:
10
]
noisyfilepaths
=
noisyfilepaths
[:
10
]
#print(filepaths)
#print(noisyfilepaths)
#exit()
print
(
"number of clean training data {0} and noisy {1}"
.
format
(
len
(
filepaths
),
len
(
noisyfilepaths
)))
scales
=
args
.
scales
#old version [1, 0.9, 0.8, 0.7]
# calculate the number of patches
#we assume that all images have the same size
#origin_size = Image.open(filepaths[0]).size
#for s in range(len(scales)):
# new_size = (int(origin_size[0] * scales[s]), int(origin_size[1] * scales[s]))
count1
=
0
d
=
dict
()
for
i
in
range
(
len
(
filepaths
)):
#print(filepaths[i])
#img = Image.open(filepaths[i]).convert('L') # convert RGB to gray, no need to convert: grayscale
for
s
in
range
(
len
(
scales
)):
newsize
=
(
int
(
args
.
originalsize
[
0
]
*
scales
[
s
]),
int
(
args
.
originalsize
[
1
]
*
scales
[
s
]))
d
[
newsize
]
=
d
.
get
(
newsize
,
0
)
+
1
#pas besoin de reconstruire l'image vraiment, on a juste besoin de sa dimension
#img_s = img.resize(newsize, resample=PIL.Image.BICUBIC) # do not change the original img
#print(img.size, newsize)
im_h
,
im_w
=
newsize
# img_s.size
#for x in range(0 + hparams.step, (im_h - hparams.patch_size), hparams.stride):
# for y in range(0 + hparams.step, (im_w - hparams.patch_size), hparams.stride):
# count += 1
count1
+=
int
((
im_h
-
args
.
patch_size
)
/
args
.
stride
)
*
int
((
im_w
-
args
.
patch_size
)
/
args
.
stride
)
count
=
len
(
scales
)
*
len
(
filepaths
)
*
args
.
patch_per_image
print
(
"total number of patches for all taining images = "
,
count1
,
" and used patches = "
,
count
)
origin_patch_num
=
count
*
DATA_AUG_TIMES
for
size
in
d
:
print
(
"%i images in size %s"
%
(
d
[
size
],
size
))
if
origin_patch_num
%
args
.
batch_size
!=
0
:
#if origin_patch_num > hparams.batch_size:
numPatches
=
int
((
origin_patch_num
/
args
.
batch_size
+
1
)
*
args
.
batch_size
)
else
:
numPatches
=
origin_patch_num
#numPatches = int(numPatches)
print
(
"total patches = %d , batch size = %d, total batches = %d"
%
(
numPatches
,
args
.
batch_size
,
numPatches
/
args
.
batch_size
))
# data matrix 4-D
inputs
=
np
.
zeros
((
numPatches
,
args
.
patch_size
,
args
.
patch_size
,
1
),
dtype
=
"uint8"
)
noisyinputs
=
np
.
zeros
((
numPatches
,
args
.
patch_size
,
args
.
patch_size
,
1
),
dtype
=
"uint8"
)
print
(
"Shape of input (including noisy) : "
,
inputs
.
shape
)
cpt_img_scale
=
0
# generate patches
for
i
in
range
(
len
(
filepaths
)):
#print(filepaths[i])
img
=
Image
.
open
(
filepaths
[
i
]).
convert
(
'L'
)
#import matlab image img = loadmat(filepaths[i]) ? TO CHECK
noisyimg
=
Image
.
open
(
noisyfilepaths
[
i
]).
convert
(
'L'
)
# convert RGB to gray, no need to convert: grayscale
#print(img.size)
#img = filepaths[i]
#noisyimg = noisyfilepaths[i]
for
s
in
range
(
len
(
scales
)):
newsize
=
(
int
(
img
.
size
[
0
]
*
scales
[
s
]),
int
(
img
.
size
[
1
]
*
scales
[
s
]))
# print newsize
img_s
=
img
.
resize
(
newsize
,
resample
=
PIL
.
Image
.
BICUBIC
)
img_s
=
np
.
reshape
(
np
.
array
(
img_s
,
dtype
=
"uint8"
),
(
img_s
.
size
[
0
],
img_s
.
size
[
1
],
1
))
# extend one dimension
noisyimg_s
=
noisyimg
.
resize
(
newsize
,
resample
=
PIL
.
Image
.
BICUBIC
)
noisyimg_s
=
np
.
reshape
(
np
.
array
(
noisyimg_s
,
dtype
=
"uint8"
),
(
noisyimg_s
.
size
[
0
],
noisyimg_s
.
size
[
1
],
1
))
# extend one dimension
#print(img_s.shape)
for
j
in
range
(
DATA_AUG_TIMES
):
im_h
,
im_w
,
_
=
img_s
.
shape
cpt
=
0
indPatch_x
=
range
(
0
+
args
.
step
,
im_h
-
args
.
patch_size
,
args
.
stride
)
indPatch_y
=
range
(
0
+
args
.
step
,
im_w
-
args
.
patch_size
,
args
.
stride
)
#numPatch_per_img = int((im_h-hparams.patch_size)/hparams.stride) * int((im_w-hparams.patch_size)/hparams.stride)
numPatch_per_img
=
len
(
indPatch_x
)
*
len
(
indPatch_y
)
inputs_img_scale
=
np
.
zeros
((
numPatch_per_img
,
args
.
patch_size
,
args
.
patch_size
,
1
),
dtype
=
'uint8'
)
noisyinputs_img_scale
=
np
.
zeros
((
numPatch_per_img
,
args
.
patch_size
,
args
.
patch_size
,
1
),
dtype
=
'uint8'
)
#print(inputs_img_scale.shape)
for
x
in
indPatch_x
:
for
y
in
indPatch_y
:
#en fonction du mode : 0 normal, 1 flip up/down, 2 rotate 90, ..
#inputs[count, :, :, :] = data_augmentation(img_s[x:x + args.pat_size, y:y + args.pat_size, :], np.random.randint(0, 7))
#du coup je veux juste version normale de l'image
inputs_img_scale
[
cpt
,:
,:
,:]
=
img_s
[
x
:
x
+
args
.
patch_size
,
y
:
y
+
args
.
patch_size
,
:]
noisyinputs_img_scale
[
cpt
,:
,:
,:]
=
noisyimg_s
[
x
:
x
+
args
.
patch_size
,
y
:
y
+
args
.
patch_size
,
:]
cpt
+=
1
#shuffle the different patches of an image similarly on noisy and clean images
perm_idx
=
np
.
random
.
permutation
(
cpt
)[:
args
.
patch_per_image
]
#print("perm_idx", perm_idx.shape, perm_idx)
inputs
[
cpt_img_scale
:
cpt_img_scale
+
args
.
patch_per_image
,
:,
:,
:]
=
inputs_img_scale
[
perm_idx
,
:,
:,
:]
noisyinputs
[
cpt_img_scale
:
cpt_img_scale
+
args
.
patch_per_image
,
:,
:,
:]
=
noisyinputs_img_scale
[
perm_idx
,
:,
:,
:]
cpt_img_scale
+=
1
del
img
,
noisyimg
#if hparams.phase_type == 'phi':
# rdm = None
#else:
# rdm = np.random.randint(0, 2, inputs.shape[0])
#inputs_n = normalize_data(inputs, hparams.phase_type, rdm)
#noisyinputs_n = normalize_data(noisyinputs, hparams.phase_type, rdm)
#print("Count total nb of patches = ", cpt_img_scale * hparams.patch_per_image)
# pad the batch (on complete le dernier batch avec les premiers inputs
if
count
<
numPatches
:
to_pad
=
numPatches
-
count
print
(
'Nb of patches added for padding to batch size: '
,
to_pad
)
inputs
[
-
to_pad
:,
:,
:,
:]
=
inputs
[:
to_pad
,
:,
:,
:]
noisyinputs
[
-
to_pad
:,
:,
:,
:]
=
noisyinputs
[:
to_pad
,
:,
:,
:]
#check input images
#import matplotlib.pyplot as plt
#plt.imsave('test0_clean', inputs[0,: ,:,0], cmap = 'Greys')
#plt.imsave('test0_noisy', noisyinputs[0,: ,:,0], cmap = 'Greys')
print
(
'shape of inputs: '
,
inputs
.
shape
)
print
(
'amplitude of inputs: '
,
np
.
max
(
inputs
),
np
.
min
(
inputs
))
sess_name
=
extract_sess_name
(
args
.
train_patterns
,
args
.
train_noise
,
args
.
phase_type
,
args
.
stride
,
args
.
patch_size
,
args
.
patch_per_image
)
if
not
os
.
path
.
exists
(
args
.
save_dir
):
os
.
mkdir
(
args
.
save_dir
)
np
.
save
(
os
.
path
.
join
(
args
.
save_dir
,
"img_clean_train_"
+
sess_name
),
inputs
)
np
.
save
(
os
.
path
.
join
(
args
.
save_dir
,
"img_noisy_train_"
+
sess_name
),
noisyinputs
)
print
(
"size of inputs tensor = "
+
str
(
inputs
.
shape
))
if
__name__
==
'__main__'
:
generate_patches
(
args
.
isDebug
)
generate_patches_holo_fromMAT.py
deleted
100644 → 0
View file @
333027e0
# -*- coding: utf-8 -*-
#
# This file is part of DnCnn4Holo.
#
# Adapted from https://github.com/wbhu/DnCNN-tensorflow by Hu Wenbo
#
# DnCnn4Holo is a python script for phase image denoising.
# Home page: https://git-lium.univ-lemans.fr/tahon/dncnn-tensorflow-holography
#
# DnCnn4Holo is free software: you can redistribute it and/or modify
# it under the terms of the GNU LLesser General Public License as
# published by the Free Software Foundation, either version 3 of the License,
# or (at your option) any later version.
#
# DnCnn4Holo is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DnCnn4Holo. If not, see <http://www.gnu.org/licenses/>.
"""
Copyright 2019-2020 Marie Tahon
:mod:`generate_patches_holo_fromMat.py` generate patches from Matlab images
"""
import
argparse
import
argument
#import re
#import glob
import
pathlib
import
os
,
sys
from
PIL
import
Image
import
PIL
#import random
import
numpy
as
np
from
utils
import
*
#from hparams import hparams, hparams_debug_string
from
scipy.io
import
loadmat
__license__
=
"LGPL"
__author__
=
"Marie Tahon"
__copyright__
=
"Copyright 2019-2020 Marie Tahon"
__maintainer__
=
"Marie Tahon"
__email__
=
"marie.tahon@univ-lemans.fr"
__status__
=
"Production"
#__docformat__ = 'reStructuredText'
# the pixel value range is '0-255'(uint8 ) of training data
# macro
#DATA_AUG_TIMES = 1 # transform a sample to a different sample for DATA_AUG_TIMES times
parser
=
argparse
.
ArgumentParser
(
description
=
''
)
#parser.add_argument('--clean_src_dir', dest='clean_src_dir', default='/lium/raid01_c/tahon/holography/NOISEFREEHOLODEEP', help='dir of clean data')
#parser.add_argument('--noise_src_dir', dest='noise_src_dir', default='/lium/raid01_c/tahon/holography/HOLODEEP', help='dir of noisy data')
#parser.add_argument('--train_image', dest='train_patterns', default=hparams.train_patterns, help='patterns of images for training')
#parser.add_argument('--train_noise', dest='train_noise', default=hparams.train_noise, help='noise values for training images')
#parser.add_argument('--save_dir', dest='save_dir', default='./data1', help='dir of patches')
#parser.add_argument('--patch_size', dest='pat_size', type=int, default=hparams.patch_size, help='patch size')#50 for RGB and 70 for grayscale
#parser.add_argument('--stride', dest='stride', type=int, default=hparams.stride, help='stride')
#parser.add_argument('--step', dest='step', type=int, default=hparams.step, help='step')
#parser.add_argument('--params', dest='params', type=str, default='', help='hyper parameters')
# check output arguments
#parser.add_argument('--from_file', dest='from_file', default="./data/img_clean_pats.npy", help='get pic from file')
#parser.add_argument('--num_pic', dest='num_pic', type=int, default=10, help='number of pic to pick')
#args = parser.parse_args()
#print(args.params['patch_size'])
#hparams.parse(args.params)
#import ipdb
args
=
argument
.
parse
()
def
generate_patches
(
isDebug
=
True
):
#global DATA_AUG_TIMES = 1
#hparams.patch_size = args.pat_size
# print(hparams_debug_string())
#filepaths = [x for x in src_path.glob('*.tiff')] #('*.mat')
#noisyfilepaths = [x for x in noisy_path.glob('*.tiff')] #('*.mat')
cleanmat
,
noisymat
=
from_DATABASE
(
args
.
train_dir
,
args
.
train_noises
,
args
.
train_patterns
)
#ipdb.set_trace()
print
(
"number of clean training data {0} and noisy {1}"
.
format
(
len
(
cleanmat
),
len
(
noisymat
)))
scales
=
1
#et on ne le bouge pas !!!! hparams.scales #old version [1, 0.9, 0.8, 0.7]
if
args
.
patch_size
>
args
.
originalsize
[
0
]:
sys
.
exit
(
'patch size > size of original size of images'
)
nb_image
=
len
(
cleanmat
)
nb_patch_per_image
=
int
((
args
.
originalsize
[
0
]
-
args
.
patch_size
)
/
args
.
stride
+
1
)
*
int
((
args
.
originalsize
[
1
]
-
args
.
patch_size
)
/
args
.
stride
+
1
)
#(1024 - 50)/50 + 1 = 20 -> 20*20 = 400 patch per img
nb_origin_patch
=
nb_patch_per_image
*
nb_image
nb_final_patch
=
args
.
patch_per_image
*
nb_image
print
(
"total number of patches for all taining images = "
,
nb_origin_patch
,
" and used patches = "
,
nb_final_patch
)
if
nb_final_patch
%
args
.
batch_size
!=
0
:
#if origin_patch_num > hparams.batch_size:
numPatches
=
int
(
nb_final_patch
/
args
.
batch_size
+
1
)
*
args
.
batch_size
else
:
numPatches
=
nb_final_patch
print
(
"total patches = %d , batch size = %d, total batches = %d"
%
(
numPatches
,
args
.
batch_size
,
numPatches
/
args
.
batch_size
))
# data matrix 4-D
cleaninputs
=
np
.
zeros
((
numPatches
,
args
.
patch_size
,
args
.
patch_size
,
1
))
noisyinputs
=
np
.
zeros
((
numPatches
,
args
.
patch_size
,
args
.
patch_size
,
1
))
print
(
"Shape of input (including noisy) : "
,
cleaninputs
.
shape
)
#ipdb.set_trace()
cpt_img_scale
=
0
# generate patches
for
i
in
range
(
nb_image
):
cleanimg
=
cleanmat
[
i
]
##import matlab image img = loadmat(filepaths[i]) ? TO CHECK
#noisyimg = Image.open(noisyfilepaths[i]).convert('L') # convert RGB to gray, no need to convert: grayscale
noisyimg
=
noisymat
[
i
]
##import matlab image img = loadmat(filepaths[i]) ? TO CHECK
#for s in range(len(scales)):
# newsize = (int(img.size[0] * scales[s]), int(img.size[1] * scales[s]))
# # print newsize
# img_s = img.resize(newsize, resample=PIL.Image.BICUBIC)
# img_s = np.reshape(np.array(img_s, dtype="uint8"), (img_s.size[0], img_s.size[1], 1)) # extend one dimension
# noisyimg_s = noisyimg.resize(newsize, resample=PIL.Image.BICUBIC)
# noisyimg_s = np.reshape(np.array(noisyimg_s, dtype="uint8"), (noisyimg_s.size[0], noisyimg_s.size[1], 1)) # extend one dimension
# for j in range(DATA_AUG_TIMES):
# im_h, im_w, _ = img_s.shape
cpt
=
0
inputs_img_scale
=
np
.
zeros
((
nb_patch_per_image
,
args
.
patch_size
,
args
.
patch_size
,
1
))
noisyinputs_img_scale
=
np
.
zeros
((
nb_patch_per_image
,
args
.
patch_size
,
args
.
patch_size
,
1
))
for
x
in
range
(
0
+
args
.
step
,
args
.
originalsize
[
0
]
-
args
.
patch_size
,
args
.
stride
):
for
y
in
range
(
0
+
args
.
step
,
args
.
originalsize
[
1
]
-
args
.
patch_size
,
args
.
stride
):
#print(x,y)
#en fonction du mode : 0 normal, 1 flip up/down, 2 rotate 90, ..
#inputs[count, :, :, :] = data_augmentation(img_s[x:x + args.pat_size, y:y + args.pat_size, :], np.random.randint(0, 7))
#du coup je veux juste version normale de l'image
inputs_img_scale
[
cpt
,:
,:
,:]
=
cleanimg
[:,
x
:
x
+
args
.
patch_size
,
y
:
y
+
args
.
patch_size
,
:]
noisyinputs_img_scale
[
cpt
,:
,:
,:]
=
noisyimg
[:,
x
:
x
+
args
.
patch_size
,
y
:
y
+
args
.
patch_size
,
:]
cpt
+=
1
#shuffle the different patches of an image similarly on noisy and clean images
perm_idx
=
np
.
random
.
permutation
(
cpt
)[:
args
.
patch_per_image
]
#print("perm_idx", perm_idx.shape, perm_idx)
cleaninputs
[
cpt_img_scale
:
cpt_img_scale
+
args
.
patch_per_image
,
:,
:,
:]
=
inputs_img_scale
[
perm_idx
,
:,
:,
:]
noisyinputs
[
cpt_img_scale
:
cpt_img_scale
+
args
.
patch_per_image
,
:,
:,
:]
=
noisyinputs_img_scale
[
perm_idx
,
:,
:,
:]
cpt_img_scale
+=
args
.
patch_per_image
#del img, noisyimg
#if hparams.phase_type == 'phi':
# rdm = None
#else:
# rdm = np.random.randint(0, 2, inputs.shape[0])
#inputs_n = normalize_data(inputs, hparams.phase_type, rdm)
#noisyinputs_n = normalize_data(noisyinputs, hparams.phase_type, rdm)
#ipdb.set_trace()
#print("Count total nb of patches = ", cpt_img_scale * hparams.patch_per_image)
# pad the batch (on complete le dernier batch avec les premiers inputs
if
nb_final_patch
<
numPatches
:
to_pad
=
numPatches
-
nb_final_patch
print
(
'Nb of patches added for padding to batch size: '
,
to_pad
)
cleaninputs
[
-
to_pad
:,
:,
:,
:]
=
cleaninputs
[:
to_pad
,
:,
:,
:]
noisyinputs
[
-
to_pad
:,
:,
:,
:]
=
noisyinputs
[:
to_pad
,
:,
:,
:]
#check input images
#import matplotlib.pyplot as plt
#plt.imsave('test0_clean', inputs[0,: ,:,0], cmap = 'Greys')
#plt.imsave('test0_noisy', noisyinputs[0,: ,:,0], cmap = 'Greys')
print
(
'shape of inputs: '
,
cleaninputs
.
shape
)
print
(
'amplitude of inputs: '
,
np
.
max
(
cleaninputs
),
np
.
min
(
cleaninputs
))
sess_name
=
extract_sess_name
(
args
.
train_patterns
,
args
.
train_noises
,
args
.
phase_type
,
args
.
stride
,
args
.
patch_size
,
args
.
patch_per_image
)
if
not
os
.
path
.
exists
(
args
.
save_dir
):
os
.
mkdir
(
args
.
save_dir
)
np
.
save
(
os
.
path
.
join
(
args
.
save_dir
,
"img_clean_train_"
+
sess_name
),
cleaninputs
)
np
.
save
(
os
.
path
.
join
(
args
.
save_dir
,
"img_noisy_train_"
+
sess_name
),
noisyinputs
)
print
(
"size of inputs tensor = "
+
str
(
cleaninputs
.
shape
))
if
__name__
==
'__main__'
:
generate_patches
(
args
.
isDebug
)
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment