# #name for user #name for program #type #default values #explanation sentences
parser.add_argument('--input_dir',dest='input_dir',type=str,default='./PyTorchCheckpoint/',help='directory of saved checkpoints for denoising operation or retraining')
parser.add_argument('--output_dir',dest='output_dir',type=str,default=None,help='directory of saved checkpoints for denoising operation or retraining')
parser.add_argument('--train_dir',dest='train_dir',type=str,default='./Holography/DATABASE/',help='directory of training database')
parser.add_argument('--eval_dir',dest='eval_dir',type=str,default='./Holography/DATABASE/',help='directory of training database')
parser.add_argument('--train_dir',dest='train_dir',type=str,default='./Holography/HOLODEEPmat/DATABASE/',help='directory of training database')
parser.add_argument('--eval_dir',dest='eval_dir',type=str,default='./Holography/HOLODEEPmat/DATABASE/',help='directory of evaluation database')
parser.add_argument('--test_dir',dest='test_dir',type=str,default='./Holography/DATAEVAL/DATAEVAL/',help='directory of testing database')
parser.add_argument('--save_test_dir',dest='save_test_dir',type=str,default='./TestImages/',help='directory where results of de-noising operation will be saved')
...
...
@@ -26,50 +27,51 @@ def parse():
parser.add_argument('--test_patterns',dest='test_patterns',type=int,nargs='+',default=(1,2,3,4,5),help='patterns used for testing')
parser.add_argument('--test_noises',dest='test_noises',type=str,default="0-1-1.5-2-2.5",help='noise levels used for testing ')
parser.add_argument('--clean_train',dest='clean_train',type=str,default='data1/img_clean_train_1-2-3-4-5_0-1-1.5-2-2.5_two_50_50_384.npy',help='filepath of noise free file for training')
parser.add_argument('--noisy_train',dest='noisy_train',type=str,default='data1/img_noisy_train_1-2-3-4-5_0-1-1.5-2-2.5_two_50_50_384.npy',help='filepath of noisy file for training')
parser.add_argument('--clean_train',dest='clean_train',type=str,default='data1/img_clean_train_1_0_two_50_50_3.npy',help='filepath of noise free file for training')
parser.add_argument('--noisy_train',dest='noisy_train',type=str,default='data1/img_noisy_train_1_0_two_50_50_3.npy',help='filepath of noisy file for training')
parser.add_argument('--clean_eval',dest='clean_eval',type=str,default='data1/img_clean_train_1-2-3_0-1-1.5two.npy',help='filepath of noise free file for eval')
parser.add_argument('--noisy_eval',dest='noisy_eval',type=str,default='data1/img_noisy_train_1-2-3_0-1-1.5two.npy',help='filepath of noisy file for eval')
parser.add_argument('--num_epochs',dest='num_epochs',type=int,default=200,help='number of epochs to train')
parser.add_argument('--D',dest='D',type=int,default=4,help='number of dilated convolutional layer (resBlock)')
parser.add_argument('--C',dest='C',type=int,default=64,help='kernel size of convolutional layer')
parser.add_argument('--plot',dest='plot',action='store_true',help='plot loss during training')
parser.add_argument('--lr',dest='lr',type=float,default=1e-3,help='learning rate for training')
parser.add_argument('--train_image_size',dest='train_image_size',type=int,nargs='+',default=(50,50),help='size of train images')
parser.add_argument('--eval_image_size',dest='eval_image_size',type=int,nargs='+',default=(1024,1024),help='size of eval images')
parser.add_argument('--test_image_size',dest='test_image_size',type=int,nargs='+',default=(1024,1024),help='size of test images')
parser.add_argument('--image_mode',dest='image_mode',type=int,default=1,help='1 or 3 (black&white or RGB)')